
译者的话

本书译自 David J. Griffiths 教授所著《量子力学概论》第二版。Griffiths 教授是美国

著名的物理教育学家，他所撰写的许多教材都被美国著名高校所使用。其中《量子力学概论》

一书是美国许多一流理工科大学，包括麻省理工学院（MIT）和加州大学洛杉矶分校（UCLA）

等一些著名高校物理系学生的教学用书，在欧美被认为是最合适、最现代的教材之一。

本书的特点为：

（1）立足于“量子力学入门水平”，包含了大学量子力学最主要的内容，讲解直接从薛定

谔方程开始。强调实验基础和基本概念，力图改变了量子力学难于理解、难于接受的教学状

况。作者从务实的角度出发，着重于交互式的写作，采用对话式的语言，叙述简明，文笔流

畅，使人感到耳目一新。

（2）不仅仅局限于知识的讲授，而是让读者真正从具体问题中体会到量子力学的精髓。针

对量子力学不易理解的特点，本书首先从简单的概率论和微分方程入手，让学生能迅速对一

些简单的量子力学问题“上手”，而不仅仅是望着深奥的知识兴叹。

（3）充分体现现代物理内容，在讲述量子力学的同时，把问题扩展到多个前沿的研究领域，

如统计物理、固体物理、粒子物理等。在物理学各个分支中常用的部分既有精辟的叙述，又

有实际举例。

（4）作者通过把一些内容移到课外习题的方式来缩减内容，使学生可以通过自学来掌握量

子力学相当大的一部分内容，使得本书主线清晰，内容简练。为此，作者在练习题选择上特

别下功夫。例题与习题对数学的要求并不高；习题分为容易、中等和较难三个层次，可供不

同基础的学生选择。对难的题目还附有提示。有利于学生对量子力学的掌握。

鉴于上述特点，我们认为这本书非常适合我国学生在学习量子力学中使用。该教材的翻译出

版会对量子力学的教学起到积极的作用。

本书的 1－4 章、12 章由胡行翻译，5－9 章由贾瑜翻译，10－11 章由李玉晓翻译，最后由

贾瑜对全书进行了统一。×××教授审校了全书，霍裕平院士为中译本写了序言，译者对此

表示衷心感谢。由于时间紧迫，加之译者水平有限，不妥或错误之处，敬请广大读者批评指

正，以便再版改正。

本书的翻译策划到最后完稿，机械工业出版社李永联老师、姜风老师给了很大的帮助和支持。

在翻译过程中还得到了郑州大学物理工程学院霍裕平院士、美国橡树岭国家实验室张振宇教

授、武汉大学物理与技术学院刘觉平教授等的关心和指导。郑州大学李新建教授、姚乾凯教

授给了很多帮助。在此，对他们表示感谢！

译者

2009 年 7 月于郑州大学
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序

与 Newton力学, 或Maxwell电动力学, 或 Einstein相对论不同, 量子力学不是由⎯甚至不是

明确地组装⎯个别人建立的, 直到现在对它令人振奋但有创伤的初期仍缺乏足够的了解。它

的基本原理是什么，如何去思考它，它到底“意味”着什么，至今没有普遍一致的看法。任

何一个有能力的物理学家可以“谈论”量子力学，但是我们告诉我们自己关于我们正在做什

么的故事就像斯凯尔特河（Scheherazade）传说一样千变万化，几乎是难以置信的。Niels

Bohr（波尔）曾说过，“如果你没有被量子力学搞迷惑，则你根本就没有理解量子力学。”；

Richard Feynman曾评述过，“我想我可以有把握地说没有人明白量子力学。”

本书的目的是教你如何学习量子力学。除了在第 1章中某些必备基础知识外，深刻的准

-哲学的问题将留在书尾。我不相信一个人在对量子力学是干什么的有一个牢固理解之前，

他可以明智地讨论量子力学意味着什么。但是如果你急不可待，在学习过第 1章后可立即阅

读后记。

量子力学不仅概念丰富，技术上也比较难，除了人为的课本范例外，严格解十分罕见。

因此发展处理实际问题的特殊技术十分必要。相应的本书分为两部分； 1第一部分含盖基本

理论，第二部分汇集了近似方法，同时配以直观的有启发性的应用示例。尽管在逻辑上保持

两部分的独立是重要的，学习时也没必要一定按照目前的次序。例如，有些教师可能希望在

第 2章之后能立即开始学习定态微扰理论。

本书是供大学三年级或四年级学生一学期或一学年的课程。一学期的课程应主要集中在

第一部分；一学年的课程在第二部分之外还可以学习一些补充材料。读者必须具备线性代数

(总结在附录之中)、复数、微积分的基础知识，熟悉一些 Fourier（傅立叶）变换和 Dirac

（狄拉克）δ 函数的知识是很有帮助的。当然，基本经典力学是必要的，一些电动力学的知

识也会很有帮助。一般总是如此，你对物理和数学知道的越多，学习起来就越容易，通过学

习获得的就越多。但是我要强调的是，以我的观点，量子力学不是早期理论自然平滑的产物。

相反，它代表着对经典思想的一种急剧的革命性的变革，唤起一种全新的完全反直觉的思考

自然世界的方法。这也正是使它成为一个如此有魅力学科的原因所在。

乍看起来，你可能被书中可怕的数学所震惊。我们遇到 Legendre、Hermite和 Laguerre

多项式，球谐、Bessel、Neumann和 Hankel函数，Airy泛函，甚至是 Riemannζ 函数⎯

更不用说 Fourier变换，Hilbert空间，Hermitian算符，Clebsch-Gordan系数和 Lagrange

乘子。所有这些东西都是必要的吗？也许是不必要的，但是物理学家像木匠一样：使用正确

的工具使工作简易，减少困难，学习量子力学而没有适当的数学工具就像让学生一个螺丝刀

去挖一个地基一样。（另一方面，如果教师讲授使用每一个工具的完善复杂课程，学习就会

枯燥乏味，而且会使重点偏移。我自己的经验是给学生铁铲告诉他们开始挖掘。也许开始他

们会遇到困难，但是我仍然认为这是最有效最激励的学习方式。在任何情况下，我可以向你

保证本书没有很深的数学，如果你遇到不熟悉的事物，并且认为我的解释不充分，务必请教

其他人，或查阅文献。关于数学方法有很多优秀的书籍⎯我特别推荐 Mary Boas的“物理

科学中的数学方法”，第 2 版，Wiley，New York（1983），或者 George Arfken和 Hans-Jurgen
Weber的“物理学家所用的数学方法”，第 5版，Academic Press， Orlando（2000）。但是无

论如何，不要让数学⎯对我们来说它仅是工具⎯干扰物理。

一些读者已经注意到和通常的教科书相比本书中例题较少，一些重要的内容是放在了习



题中。这并非偶然。我不认为你们可以不做大量的习题而学懂量子力学。当然，如果时间允

许，教师应当在课堂上给出更多的例题，但是学生们应当注意这不是一个任何人都有直观感

觉的课题⎯这里你们正在开发的是一个全新的肌体，运动是必不可少。Mark Semon建议我

对习题给出一个“Michelin 导引”，用不同数目的星号标出其重要性和难度。这看起来是一

个好主意（虽然，像一个饭店的质量一样，一个习题的重要性部分是取决于口味）；我将采

取下面的分级方案：

* 每个读者都应该研究的基本问题;
** 有点难度或辅助问题.
*** 极有挑战性的问题，可能需要 1小时以上时间。

（没有星号的意味着快餐：OK 如果你很饥饿，但是营养不太丰富。）大多数的 1 星习题出

现在相关一节的后面，而大多数的 3星习题出现在一章的后面。出版商可提供习题答案（仅

供教师）。

在改写第 2 版时，我试图尽可能地保持第 1版的精神。仅有第 3 章是完全改写，原有

的太长而且偏离主题，并在附录中归入了有限维矢量空间（对授课水平上的学生此内容是舒

适的）的背景材料。在第 2章中增加了一些例题（修改了原先对谐振子升降阶算符别扭的定

义）。在后面的章节中我尽可能地仅做少量改动，甚至在可能情况下尽量保持习题和公式的

标号。内容的编排和处理是流畅的（例如，在第 4章一个很好的对角动量的介绍，第 10章
中对绝热定理的一个更简洁的证明，第 11章中分波相移的一个新的节段）。不可避免地，我

很抱歉，第 2版要比第 1版略长一些，但是我希望它更清晰,更容易接受和理解。

许多同事地建议和意见使我受益匪浅，他们阅读初稿，指出第一版的不足（或错误），

提出在表述上的改进，提供有趣的习题。我特别致谢 P.K. Aravind (Worcester Polytech), Greg
Benesh (Baylor), DaVid Boness (Seattle), Burt Brody (Bard), Ash Carter (Drew), Edward Chang
(Massachusetts), Peter Collings (Swarthmore), Richard Crandall (Reed), Jeff Dunham
(Middlebury), Greg Elliott (Puget Sound), John Essick (Reed), Gregg Franklin (Carnegie Mellon),
Henry Greenside (Duke), Paul Haines (Dartmouth), J.R. Huddle (Navy), Larry Hunter (Amherst),
David Kaplan (Washington),Alex Kuzmich (Georigia Tech), Peter Leung (Portland State), Tony
Liss (Illinois), Jeffry Mallow (Chicago Loyola), James McTavish (Liverpool), James Mearing
(Miami), Johnny Powell (Reed), Krishna Rajagopal (MIT), Brian Raue (Florida International),
Robert Reynolds (Reed), Keith Riles (Michigan), Mark Semon (Bates), Herschel Snodgrass
（ lewis and Clark） , John Taylor (Colorado), Stavros Theodorakis (Cypprus), A.S. Tremsin
(Berkeley), Dan Velleman (Amherst), Nicholas Wheeler (Reed), Scott Willenbrock (Illinois),
William Wootters (Williams), Sam Wurzel (Brown), 和 Jens Zorn (Michigan)。



第 1 部分 理 论 
第 1 章 
波函数 
 
1.1  薛定鄂方程 
 

假设一个质量为m 的粒子被限制沿 x 轴运动，所受的力为 ),( txF （图 1.1）。在经典力学

中要解决的问题是决定在给定任意时刻这个粒子的位置： )(tx 。由此可以求出速度

（ dtdxv /= ），动量（ mvp = ），动能（ 2)2/1( mvT = ），或者其它任何感兴趣的动力

学量。如何决定 )(tx ？我们应用牛顿(Newton)第二定律： maF = 。（对保守体系－我们

将仅考虑的体系，并且很幸运，也是在微观尺度所需考虑的唯一体系－力可以表示为势能函

数的导数
1
， xVF ∂−∂= / ，牛顿第二定律可以写为 xVdtxmd ∂−∂= // 222

。）这个方程

和适当的初始条件一起（一般讲在 0=t 时刻的位置和速度），可以决定 )(tx 。 

量子力学探讨这个问题是完全不同的。我们要寻找的是粒子的波函数， ( , )x tΨ ，得到

这个波函数是通过解薛定鄂(Schrödinger)方程： 

                                                                                
 

[1.1] 
   

 
这里 i 是 1− 的平方根， 是普朗克(Planck)常数－或者最初的常数（h ）除以 π2 ： 

                   
341.054572 10 .

2
h J s
π

−= = × ⋅                       [1.2] 

薛定鄂方程的作用和地位从逻辑上讲就像牛顿第二定律:给定适当的初始条件(一般来

说, )0,(xΨ ),薛定鄂方程决定以后所有时刻的波函数 ),( txΨ ,就像经典力学中牛顿定律决

定以后所有时刻的 )(tx 。
2
 

 
图 1.1 一个“粒子”在一个给定力的作用下限制在一维运动。 

 

1.2 波函数的统计诠释 
 
但是在严格的意义上“波函数”是什么,一旦你得到波函数它可以为你做什么？首先，一个

粒子由其本质，是位于一个点，而波函数（像它的名字暗示那样）是在空间的一个分布（在

任何给定时间 t ，它是 x 的一个函数）。这样一个东西如何表示一个粒子的状态呢？答案由

                                                        
1磁力是一个例外,但是现在我们无需担心它们。另外，在本书中我们假设运动是非相对论的（ cv << ）。 
2对薛定鄂方程起源的第一手资料，参看 Felix Bloch 在 Physics Today， December 1976 的有趣文章。 
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波恩（Born）关于波函数的统计诠释给出，这个诠释指出
2),( txΨ 给出在时刻 t 在 x 处发现

这个粒子的几率⎯或者更精确地说
3
 

 

                                                                           

[1.3] 

 

 

这个几率是
2Ψ 的图形中a 到b 之间所包含的面积。 对图 1.2 所给的波函数,你将非常可能

在点 A附近区域发现粒子,因为那里的
2Ψ 比较大,而在B 点附近可能发现不了粒子。 

波函数的统计诠释在量子力学中引入了一种不确定性，即便你根据这个理论知道了一个

粒子的所有信息（它的波函数），你仍然不能在一个简单的测量它位置的实验中确切地预言

实验结果 ⎯ 量子力学所能提供的仅是一些可能结果的统计信息。这个不确定性曾严重困惑

了物理学家和哲学家，很自然人们要问，这种不确定性是事物的本质，还是理论的缺陷？ 

假定我确实测量了这个粒子的位置并且发现它在点C 。
4
 问题：在我恰好进行测量之前

这个粒子在那里？有三种可能的回答，它们代表三种主要学派对不确定性的不同看法。 

1. 现实主义学派：粒子还是在 C 。听起来像一个很合理的回答，这也是爱因斯坦

（Einstein）所持的观点。可是注意，如果这是真实的，这就意味着量子力学是一个不完备

的理论，如果粒子在测量前就在C ，而量子力学没有能力告诉我们这一点。对现实主义而

言，不确定性不是自然的本性，而是反映了我们对自然的无知。d′Espagnat 强调说“粒子的

位置从来就不是不可确定的，而仅是试验者不知道而已。”
5
显然Ψ不是全部的故事 ⎯ 需

要提供某些附加的信息（称为隐变量）才能提供对粒子的完全描述。 

2. 正统学派：粒子哪也不在。是测量强迫粒子“在某处露面”（尽管我们无法知道为什

么及如何它决定在C 露面）。Jordan 更加明确地指出：“观测者不仅扰动了被观测量，而且

产生了它… 我们强迫(粒子)出现在特定的位置.”
6
这种观点(称为哥本哈根（Copenhagen）

学派解释),源于波尔（Bohr）和其追随者。在物理学家中是被最广泛接受的观点。可是注意，

如果这种观点是正确的，测量的作用将非常独特 ⎯ 对其争论了半个世纪但少有进展。 

3．不可知论学派：拒绝回答。这个回答并不是像它听起来那样糊涂愚蠢 － 首先，知

道你的回答是否正确的唯一途径是进行一个精确的测量，那么什么情况可以叫做 “测量

前”？在这种情况下，对测量前粒子的状态进行论断有什么意义？为某些由其本质是不可能

被检测的事而担忧是故弄玄虚。泡利（Pauli）曾说过：“和讨论一个针尖上能坐多少天使的 

 
图 1.2： 一个典型的波函数。阴影区域表示发现粒子处于 a 和b 之间的几率。在 A附近最

有可能发现粒子，而在 B 附近最没有可能发现粒子。 

                                                        
3波函数本身是复数，但是

2 *Ψ = Ψ Ψ（
*Ψ 是Ψ的复共轭）是一个非负值实数，就像一个几率必须是

正的实数那样。 
4当然，任何测量仪器的精度都是有限的；这里是说在仪器所允许偏差范围内在C 附近发现粒子。 
5 Bernard d′Espagnat， “量子理论与现实主义”（Scientific American，November 1979，p.165）。 
6引自 N.David Mermin 一篇可爱的文章,”没人看时月亮存在吗?”(Physics Today,April 1985,p.38) 

{ }2
.( , )

b

a

a bx t dx tΨ =∫ 在 时刻发现粒子处于 和 之间的几率  



远古问题一样，我们无需为某些我们根本无法知道的事情浪费脑力”。
7
数十年来,大多数物

理学家采取这种回避的姿态。他们向你兜售正统学派的观点，但是如果你坚持，他们停止对

话，又会回到不可知论的观点。 

直到最近，所有三种观点还都有自己的支持者。但是在 1964 年 John Bell 震惊了物理学

界，他宣布粒子在测量前有没有一个确定的位置在观测上会导致不同的测量结果。Bell 的

发现排除了不可知论作为一种可能的观点，并且把判断正统观点和现实主义观点谁是正确的

变成一个实验的问题。我将在本书结尾重回到这个问题，那时你们的知识能使你们更好地欣

赏 Bell 的论述。至于现在，只需指出实验已经决定性的证实了正统观点：
8
一个粒子在测量

前没有一个确定的位置，就像水面的波纹，是测量的过程给出了一个具体数量，在这个意义

上，给出了受波函数统计权重限定的特定的结果。 

如果紧接着第一次测量进行第二次测量，能测量到什么结果？粒子还是在 C？还是每次

都测量到一个完全的不同的新结果？在这个问题上所有人都是完全一致的：一个重复实验

（对同一粒子）将产生同样的结果。 的确，如果紧接的第二次测量不能证实粒子在 C，它

将是很困难证明粒子在第一次测量确实出现在 C。正统观点如何解释第二测量结果限制粒子

在 C？事实是第一次测量完全改变了波函数，所以它现在是尖锐的在 C点耸起（图 1.3）。我

们称之为由于测量产生的波函数的坍塌,在 C 点生成针状波形(由于波函数遵从薛定鄂方程,

这个波将很快弥散开来,所以第二次测量要立即进行)。所以存在两类完全不同的物理过程:

“正常”类，波函数按薛定鄂方程“从容不迫”的演化，“测量”类，由于测量，波函数突

然和不连续的坍塌。
9
 

 

图 1.3： 波函数的坍塌：在测量发现粒子处于C 点后瞬时的
2Ψ 的图形。 

 

1.3 几率 
 

1.3.1 分立变量 

 
由于统计诠释，几率在量子力学中起着非常重要的作用，所以现在我们偏离主题简短讨论一

下几率理论。以一个简单的例子，介绍一些术语和概念。 

假设一个屋子中有 14 个人，他们的年龄分布为： 

      14 岁  1 人， 

      15 岁  1 人， 

                                                        
7 引自 Mermin（脚标 6），p. 40。 
8这个论断可能过于强烈：现在还有一些理论和实验的漏洞。我将在以后讨论其中的一些。非局域隐变量理

论（著名的有 David Bohm）和其它表达（如多世界解释），这些不能非常明确的划归到我的三种分类中。

但是我想它是明智的，至少从教学法的观点，从一开始就采取一个清晰自洽的框架。其余的以后再说。 
9测量的作用在量子力学如此关键奇异，你可能困惑什么精确构成一个测量？在微观（量子）体系和宏观（经

典）测量仪器之间必须存在相互作用么（像 Bohr 坚持那样）？或者是由留下一个永久的“记录”来刻划（像

Heisenberg 宣称的那样）？或者它卷入了一个有意识“观测者”的干涉（像 Wigner 建议的那样）？后面，

我会将重提这个棘手的话题；现在，让我们采取一个朴素的看法：一个测量就是一个科学家在实验室用尺

子，秒表，Geiger 计数器等所做的那样一类事情。 



      16 岁  3 人， 

      22 岁  2 人， 

      24 岁  2 人， 

      25 岁  5 人. 

如果我们用 )( jN 表示年龄为 j 的人数，则 

          

(14) 1,
(15) 1,
(16) 3,
(22) 2,
(24) 2,
(25) 3,

N
N
N
N
N
N

=
=
=
=
=
=

 

而其余 )( jN ,例如 )17(N ,为零。屋子中的总人数为 

                               
0

( ).
j

N N j
∞

=

= ∑                               [1.4] 

(当然，在上面例子中， 14=N 。) 图 1.4 是以上数据的直方图。下面是关于这个分布的一

些我们可能要问的一些问题。 

问题 1. 如果随机从这组人群中选出一个人,并且年龄为 15 岁,其几率为多少?答

案:1/14,因为有 14 种可能的选择,每种机会相等,而只有一人年龄符合要求.如果 )( jP 是选

出年龄为 j 的几率,则 ,14/1)14( =P  ,14/1)15( =P ,14/3)16( =P …。一般有， 

                            
( )( ) .N jP j
N

=                              [1.5] 

注意到选出年龄为 14 或 15 岁的几率为年龄为 14 岁的几率同年龄为 15 岁的几率之和（本例

中，为 7/1 ）。特别有，所有几率之和为 1⎯如果不限定选出人的年龄； 

                                
0

( ) 1.
j

P j
∞

=

=∑                               [1.5] 

   问题 2.最可几年龄是那个年龄? 答案:显然为 25 岁；5 个人具有这个年龄，而另外的年

龄，至多只有 3 人有一样的年龄。普遍有，最可几 j 是使 )( jP 取最大值的 j 。 

   问题 3. 中值年龄是多大? 答案:23 岁,因为 7 人比这个年龄大,7 人比它小。（普遍有，

中值 j 是比它大的值的几率和比它小的值的几率各占一半。） 

   问题 4. 平均年龄是多大? 答案: 

            
(14) (15) 3 (16) 2 (22) 2 (24) 5 (25) 294 21.

14 14
+ + ⋅ + ⋅ + ⋅ + ⋅

= =  

普遍的， j 的平均值(我们将写作 j )是 

                      
0

( )
( ).

j

jN j
j jP j

N

∞

=

= =∑ ∑                           [1.7] 



 
图 1.4：  1.3.1 节中年龄分布的直方图,纵坐标为人数 )( jN ,横坐标为年龄 j 。 

 

注意可能没有任何人的年龄是平均年龄或中值年龄⎯本例中没有人年龄是 21 岁或 23 岁。在

量子力学中平均值是通常最感兴趣的量；在这个意义上它被称为期待值。这是个容易产生误

解的叫法，因为它暗含着在一次测量中这是你最可能得到的结果（其实最可能得到的应该是

最可几值，而不是平均值 ⎯ 不过我们还是保留这个称呼。 

问题 5. 年龄平方的平均是多少？答案：你有 196142 = ，几率为 1/14， 225152 = ，

几率为 1/14, 256162 = ,几率为 3/14,等。因此平均值为 

                        
2 2

0
( ).j j P j

∞

=∑                              [1.8] 

普遍地, 可以给出 j 的函数的平均值 

             

 

[1.9] 

 

 

(1.6，1.7，1.8 式是上式的特殊形式。) 注意：平方的平均
2j 一般情况下是不等于平均

的平方的。例如，屋子里仅有两个婴儿，一个 1 岁，另一个 3 岁，则
2 5j = ，而

2 4j = 。 

在图 1.5 所给的两个直方图中,即便它们有着同样的中值、平均值、最可几值和同等数

目的元素，它们仍然有着明显的不同：第一个是非常集中地放置在平均值的地方，而第二

个很宽很平。（第一个可能代表一个大城市学校班级中学生年龄的分布，而第二个可能代表

偏远地区仅有一个教室的学校中学生年龄的分布。）我们需要一个分布对平均值“弥散”数

量上的量度。这个量度一种最明显的方法是找出每一个个体对平均值的偏差是多少，即 

    ,j j jΔ = −                              [1.10] 

然后计算 jΔ 的平均值。这样做的问题在于，由于平均值的性质， jΔ 的值有正有负，正负相

消，你得到的结果为零： 

               
( ) ( ) ( ) ( )

0.      

j j j P j jP j j P j

j j

Δ = − = −

= − =
∑ ∑ ∑

               

（注： j 是一个常数，在求和中是不变的，所以可以提到求和号外）你也许认为对 jΔ 的

绝对值求平均可以避开这种问题，但是绝对值是不方便使用的也达不到我们的目的。所以

我们通过在求平均值前先平方来解决的问题： 

                            
2 2( ) .jσ ≡ Δ                                [1.11] 

0
( ) ( ) ( ).f j f j P j

∞

= ∑



 
图 1.5: 具有同样的中值、平均值、最可几值，但是不同的标准方差的两个直方图。 

 

这个量称为分布方差；σ 本身（对平均值偏差平方的平均的平方根 － 好绕嘴！）

称为标准差。σ 是关于对 j 弥散的惯用量度。 

   对方差有一个很有用的小定理： 

                 

2 2 2 2

22

22

2 22 2

( ) ( ) ( ) ( ) ( )

( 2 ) ( )

( ) 2 ( ) ( )

2 .

    

    

    

j j P j j j P j

j j j j P j

j P j j jP j j P j

j j j j j j

σ = Δ = Δ = −

= − +

= − +

= − + = −

∑ ∑
∑
∑ ∑ ∑

 

取平方根，标准差可以写作 

                       
22 .j jσ = −                                  [1.12] 

实用上，这是最快得到σ 的方法：计算
2j 和

2j ，二者相减，然后开平方根。同前面一

样再一次提醒，一般来讲
2j 不等于

2j 。由于
2σ 显然是非负值的（从它的定义 1.11 式

可以看出， 1.12 式意味着 

                          
22 ,j j≥                                    [1.13] 

等号仅当 0=σ 时才成立,也就是说仅对没有弥散的分布(每一个元素有相同的值)成立。 

 

1.3.2 连续变量 
 

到目前为止,我假定我们处理的仅是分立变量⎯即所取的值仅是某些孤立值(在上面的例子

中,由于我以年为单位给出年龄，所以 j 是一个整数)。但是以上结果可以非常简单地推广

到连续的分布。如果我在大街上随机挑选出一个人，他的年龄精确地是 16 岁 4 小时 27 分

3.333...秒的几率是零。在这种情况下，有意义的是他的年龄位于某个区间内⎯比方说，

在 16 和 17 岁之间的几率是多少。如果这个区间足够小，这个几率是正比于区间的长度的。

例如他的年龄是在 16 到 16 岁另两天的机会大概是在 16 到 16 岁另一天的两倍。（除非，我

们假定某些极不寻常的婴儿在 16 年前的这一天大量出生⎯在这种情况下要应用这个规则，

我们选择的时间间隔太长了。如果婴儿的大量出生维持六小时，为安全起见，间隔应该选

为 1 秒或更短。技术上，我们讲的是无限小间隔。）这样 

{一个个体(随机选择的)处在 x 和 )( dxx + 之间的几率 dxx)(} ρ=         [1.14] 

比例因子， )(xρ ，常被不严格的称为“取值为 x 的几率”，但是这是一种不规范的语言；一

个更好的术语是几率密度。 x 位于 a 和b （有限间隔）之间的几率由几率密度 )(xρ 的积分

给出： 

                            ( ) ,
b

ab
a

P x dxρ= ∫                               [1.15] 

很显然,我们对分立分布导出的规则,现在为: 



                             1 ( ) ,x dxρ
∞

−∞

= ∫                                [1.16] 

                           ( ) ,x x x dxρ
∞

−∞

= ∫                              [1.17] 

                       ( ) ( ) ( ) ,f x f x x dxρ
∞

−∞

= ∫                            [1.18] 

                       
22 2 2( ) .x x xσ ≡ Δ = −                         [1.19] 

 

 

例1.1 假设我从高度为 h 的悬崖上释放一块石头。当石头下落时，以随机的间隔，我摄取

了一百万张照片。在每一张照片上我测量石头已经落下的距离。问：所有这些距离的平均

值是多少？也就是说，下降距离的时间平均是多少？
10
 

解：石头从静止开始下落，下落过程中逐渐加速；它在靠近悬崖顶端处所花费的时间较多，

所以平均距离一定比 2/h 小。忽略空气阻力，距离 x 与下降时间的关系为 

                               
21( ) .

2
x t gt=  

速度为 gtdtdx =/ ，总下降时间为 ghT /2= 。照相机在时间间隔 dt 拍照的几率是

Tdt / ，所以一个照片是在处于 dx间隔内被拍照的几率是 

                         
1 .

2 2
dt dx g dx
T gt h hx

= =  

很明显几率密度（1.14 式）是 

                       
1( ) ,

2
x

hx
ρ =      )0( hx ≤≤  

（当然，超出这个区间，几率密度是零）。 

 

 

图 1.6 例题 1.1 中的几率密度: )2/(1)( hxx =ρ 。 

                                                        
10一个统计学家可能会抱怨我混淆了有限样本（本例中为一百万）的平均和“真正”的平均（对整个的连

续区间）。对实验学家这是个棘手的问题，特别是当样本的尺度很小时， 但是这里我当然考虑的是真实的

平均，所用样本的平均是一个很好的近似。 



我们可以用公式 1.16 检验这个结果: 

                     ( )1/ 2

0
0

1 1 2 1.
2 2

h h
dx x

hx h
= =∫  

平均距离是（1.17 式） 

                   
3 / 2

0 0

1 1 2 ,
3 32 2

hh hx x dx x
hx h

⎛ ⎞= = =⎜ ⎟
⎝ ⎠∫  

象预期的那样,比 2/h 小。 

    图 1.6 给出 )(xρ 的图形。注意到尽管几率本身（ ρ 的积分）必是有限的（小于

或等于 1），几率密度在某些点处是可以无限大。 

 

 

*习题 1.1 对 1.3.1 节中所给的年龄分布: 

(a)计算
2j 和

2j 。 

(b)对每一个 j 确定其 jΔ ,利用公式 1.11 计算标准差。 

(c)利用(a)和(b)所得结果验证公式 1.12。 

 

习题 1.2  

(a) 求出例 1.1 中所给分布的标准差. 

(b) 随机拍照一张照片其显示距离 x 比平均值大一个标准差的几率是多少? 

 

*习题 1.3 考虑高斯(Gaussian)分布 

                 
2)()( axAex −−= λρ  

其中 ,  A a和λ为正的实数。(查阅你所需要的积分公式) 

(a) 利用公式 1.16 确定 A。 

(b) 求出
2,  x x 和σ 。 

(c) 画出 )(xρ 的草图。 

 

 

 

1.4 归一化 

我们现在回到波函数的统计诠释(1.3 式),这个诠释指出
2),( txΨ 是 t 时刻发现

粒子在 x 的几率密度。这样(由 1.16 式)
2Ψ 的积分必须为 1(粒子一定出现在空间某

处)： 

                                                           

                                                              [1.20] 

 

 

 

没有这个要求, 波函数的统计诠释将没有意义。 

可是，这个要求可能困惑你：首先, 由我们的假设波函数是由薛定鄂方程所决定

的 ⎯ 在没有检查两者是否协调之前我们不能对Ψ附加上额外的条件。但是,考察方

程1.1会发现如果 ),( txΨ 是1.1的解,那么 ),( txAΨ 也是, 这里 A是一个任意的(复)

常数。我们所需做的是选择这个还没有确定的乘子使 1.20 式得到满足。对某些薛定

鄂方程的解，它的积分会是无限大；在这种情况下没有乘子可以使积分为 1。对平庸

解 0=Ψ 也存在同样问题。这样不能归一化的解是不能描述粒子的，必须舍弃。物理

1),( 2 =Ψ∫
∞

∞−

dxtx



上可实现的解对应着薛定鄂方程平方可积的解。
11 

但是稍慢！假定我在 0=t 时刻归一化了波函数。如何我能知道当Ψ随时间演化

时它能保持归一化？（你不能让 A变成时间的函数来保持波函数的归一化，那样的话

它就不是薛定鄂方程的解了。）幸运的是，薛定鄂方程有不同寻常的特性，它会自动

保持波函数的归一化 ⎯ 没有这个关键的性质薛定鄂方程将会同统计诠释不相容，整

个理论将会崩溃。 

由于上述特性的重要性，我们最好给出一个仔细的证明。计算， 

                   
2 2( , ) ( , ) .d x t dx x t dx

dt t

∞ ∞

−∞ −∞

∂
Ψ = Ψ

∂∫ ∫                 [1.21] 

(注意积分后仅是 t 的函数，所以我在第一个表示式用了全导数 )/( dtd ，而被积函数即是 x
的函数也是 t 的函数，所以在第二个表示式中用了偏导数 )/( t∂∂ 。)由求导规则， 

                       Ψ
∂
Ψ∂

+
∂
Ψ∂

Ψ=ΨΨ
∂
∂

=Ψ
∂
∂

tttt

*
**2

.               [1.22] 

薛定鄂方程可以写作 

                            

2

2 ,
2
i i V

t m x
∂Ψ ∂ Ψ

= − Ψ
∂ ∂

                      [1.23] 

及其共轭式(取方程 1.23 的复共轭) 

                          

* 2 *
*

2 ,
2
i i V

t m x
∂Ψ ∂ Ψ

= − + Ψ
∂ ∂

                    [1.24] 

所以 

         

2 2 * *
2 * *

2 2 .
2 2
i i

t m x x x m x x
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ Ψ ∂ Ψ ∂ ∂Ψ ∂Ψ

Ψ = Ψ − Ψ = Ψ − Ψ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
    [1.25] 

现在 1.21 式的积分可以直接写出: 

                

*
2 *( , ) .

2
d ix t dx
dt m x x

∞∞

−∞ −∞

⎛ ⎞∂Ψ ∂Ψ
Ψ = Ψ − Ψ⎜ ⎟∂ ∂⎝ ⎠

∫                [1.26] 

但是当 x 趋于 )(± 无限大时 ),( txΨ 必须趋于零 ⎯ 否则波函数是不可归一化的。
12
 这样有 

                           
2( , ) 0,d x t dx

dt

∞

−∞

Ψ =∫                           [1.27] 

因此积分是一个常数(不依赖时间)；如果Ψ在 0=t 时是归一化的，它在以后所有时刻保持

归一化。证毕 
 

习题 1.4 在 0=t 时刻一粒子由下面的波函数描述 

                 

, 0 ,

( )( ,0) , ,
( )

0,

                        

                

                           

xA x a
a
b xx A a x b
b a

⎧ ≤ ≤⎪
⎪

−⎪Ψ = ≤ ≤⎨
−⎪

⎪
⎪⎩

其它地方,

 

式中 baA 和 , , 是常数。 

                                                        
11显然,当 x → ∞ , ( , )x tΨ 必须比1/ x 更快趋于零。附带提及，归一化仅能确定 A 的模；仍有一个相因

子不能确定。不过，将会看到，这个相因子没有任何物理上的影响。 
12数学家们可以给出一些奇特的反例，但是物理中没有这样的情况；对我们来讲波函数在无限远处总是趋

于零的。 



(a) 归一化Ψ (即求出以 a 和b 表示的 A )。 

(b) 作为 x 的函数画出 )0,(xΨ 的草图。 

(c) 在 0=t 时刻在那里最有可能发现粒子？ 

(d) 在 a 的左边发现粒子的几率是多少? 对 ab = 和 ab 2= 两种极限情况验证你的结果。 

(e) x 的期待值是多少? 

 

*习题 1.5  考虑波函数 

                         ( , ) ,x i tx t Ae eλ ω− −Ψ =  

式中 λ ,A 和ω是正的实数。(在第二章我们将会看到什么样的势 )(V 会导致这样的波函数。) 

(a) 归一化Ψ。 

(b) 求出 x 和
2x 的期待值。 

(c) 求出 x 的标准差。作为 x 的函数,画出
2Ψ ，并在图上标出点 ( )x σ+ 和 ( )x σ− ，

解释在何种意义上σ 代表 x 的“弥散”。在这个区域之外发现粒子的几率是多少？ 

 

 

1.5 动量 
 

对处于Ψ态的一个粒子，其 x 的期待值是 

                

 

                                       .                          [1.28] 

 

 

这个式子到底意味着什么？它明显不是意味着如果你一次又一次的重复测量这个粒子的位

置， dxx
2

∫ Ψ 是你所得到结果的平均值。而是相反：第一次测量(其结果是不确定的)将使

波函数坍塌至位于实际获得的测量值处的一个尖峰，以后的测量(如果它们立即进行)将得

到同样的结果。而 x 是所有测量都是对处在Ψ态的粒子所进行的平均值，这意味着你要

么发现某种方法使测量后粒子的状态回到Ψ态，要么你准备一个系综,其中每个粒子都处在

Ψ态，然后测量每个粒子的位置, x 是所有结果的平均值。(我喜欢想象在一个书架上放

一行瓶子,每个瓶子中放一个处在Ψ态(相对瓶子的中心)的粒子，每一个学生被分配拿一把

尺子测量一个瓶子中粒子的位置，一声令下他们同时开始测量自己瓶子中粒子的位置。我

们用所得结果画一个直方图，它应该符合
2Ψ ，计算平均值,它应该符合 x 。(当然,由于

仅用了有限个样本,我们不能指望完美的符合,但是当用的瓶子越多,结果就符合的越好。) 

简短而言，期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对

同一个体系的重复测量的平均值。 

当时间演化时, x 将发生变化(因为Ψ是依赖时间的),我们可能对它运动的有多快感

兴趣。按 1.25 和 1.28 式，有
13 

  

 dx
xxx

x
m

idx
t

x
dt
xd

∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ

∂
Ψ∂

−
∂
Ψ∂

Ψ
∂
∂

=Ψ
∂
∂

=
*

*2

2
           [1.29] 

 

 

 

                                                        
13简单起见,略去了积分的上下限。 

2( , ) .x x x t dx
∞

−∞

= Ψ∫



利用分部积分公式,上式可以写为
14 

                 dx
xxm

i
dt
xd

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ

∂
Ψ∂

−
∂
Ψ∂

Ψ−=
*

*

2
                      [1.30] 

(我利用了 1/ =∂∂ xx ,并丢掉了边界项,因为在 )(± 无限大处Ψ趋于零。)对第二项再进行一

次分部积分,有 

                      dx
xm

i
dt
xd

∫ ∂
Ψ∂

Ψ−= *
                            [1.31] 

    我们拿这个结果做什么? 注意我们讨论的是 x 期待值的“速度”，它同粒子的速度不

是一回事。在量子力学中速度意味着什么都不是很清楚的：如果粒子没有一个确定的位置

(在测量之前)，那么它也不会有一个明确定义的速度。我们只能合理问的是得到一个特定

值的几率是多少。我们在第三章将会看到对一个给定的Ψ如何构造速度的几率密度；对我

们目前的目的假设速度的期待值等于位置期待值对时间的导数就足够了： 

                              .
d x

v
dt

=                                [1.32] 

1.31 式告诉我们如何从Ψ计算 v 。 

    实际中,习惯使用动量 )( mvp = ,而不是速度： 

          

                                                                               

[1.33] 

 

 

 

让我们把 x 和 p 的表示式写作更有启发意义的形式： 

                            ( )* ,x x dx= Ψ Ψ∫                           [1.34] 

                          
* .p dx

i x
∂⎛ ⎞= Ψ Ψ⎜ ⎟∂⎝ ⎠∫                          [1.35] 

我们说在量子力学中算符
15 x “表示”位置，算符 )/)(/( xi ∂∂ “表示”动量；计算期待值

时我们把适当的算符放在
*Ψ 和Ψ之间，然后积分。 

这很漂亮，但是其它量怎么办？事实上，所有经典力学量都可以表示为坐标和动量的

函数。例如，动能是 
2

21 ,
2 2

pT mv
m

= =  

角动量是 

                            prvrL ×=×= m  

                                                        
14
由求导规则 

                              ( ) ,
d dg df

fg f g
dx dx dx

= +  

有 

                            .
b b b

aa a

dg df
f dx gdx fg

dx dx
= − +∫ ∫ . 

所以在积分号下,你可以把对一个函数的求导改为对另一个函数的求导 ⎯ 代价是一个负号和边界

项的出现。 
15一个“算符”是对其后函数做某些事的一种指令。位置算符告诉你乘以 x ；动量算符告诉你对 x 求导（对

结果再乘以 i− ）。本书中，所有算符是导数 ,/ ,/ ,/( 222 yxdtddtd ∂∂∂ 等。）或乘子 , , ,2( 2xi 等），

或者它们的结合。 

* .
d x

p m i dx
dt x

∂Ψ⎛ ⎞= = − Ψ⎜ ⎟∂⎝ ⎠∫



(当然,角动量对一维运动不存在)。要计算任何这样的量， ),( pxQ ，的期待值,我们简单地

用 )/)(/( xi ∂∂ 取代每一个 p ，再把得到的算符放在
*Ψ 和Ψ之间，然后积分。 

 

 

             

                                                                        [1.36] 

 

 

例如,动能的期待值是 

                         

2 2
*

2 .
2

T dx
m x

∂ Ψ
= − Ψ

∂∫                          [1.37] 

    对一个给定态Ψ，1.36 式是计算任何动力学量期待值的方法；它包含了 1.34 和 1.35

式作为特殊情况。在本节我们给出了波恩的统计诠释,并试图说明 1.36 式的合理性，这种

描述对我们来讲是一种全新的方法(和经典力学相比)，在我们重回这个话题 (第三章)和把

它建立在一个牢固的理论基础上之前，先进行一些应用也不失为一种较好想法。此时,我也

不介意，如果你愿意你也可以把它先作为公理。 

 

习题1.6 为什么你不能直接对1.29式的中间一步进行分部积分 ⎯ 转化为对 x 的时间导数,

利用 0/ =∂∂ tx 得到 / 0d x dt = 的结论？ 

 

习题 1.7 计算 /d p dt 。答案： 

                        .
d p V

dt x
∂

= −
∂

 

1.32(或 1.33 式的第一部分)和 1.38 式是 Ehrenfest 定理之例，这个定理告诉我们期待值遵

从经典定律。 
 

习题 1.8 假定你在势能中增加了一个常数势 0V (这里常数表示它不依赖 x 和 t )。在经典力

学中这不改变任何事情,但是在量子力学中如何? 证明波函数将增加一个依赖时间的相因

子： )/exp( 0tiV− 。这对力学量的期待值有什么影响? 

 

 

 

1.6 不确定原理 
 

假设你握着一根长绳的一端，有节奏地上下摆动产生一个波(图 1.7)。如果有人问：“精确

来讲波在那里？”你可能会认为此人有点不合时宜：精确来讲波不在任何地方 ⎯ 它分布

在 50 英尺或更长的范围。另一方面，如果他问波长是多少，你可以给他一个合理的答案：

大约是 6 英尺。反过来,如果你突然抖动一下绳子,可以得到一个沿绳子传播的孤峰。对这

种情况,第一个问题(精确来讲波在那里)就有意义了，但是第二个(波长是多少?) 就有点不

合时宜了 ⎯ 它并没有一个明确的周期，所以如何你能赋予它一个周期？当然，你也可以

给出介于两者之间的情况，波是可以相当好的定域的，波长也可以相当好定义的，但是这

里存在一个不可避免的权衡选择：波的位置越精确，波长就越不精确，反过来也一样。
16

傅立叶(Fourier)分析中的一个定理给出这种情况的一个严格证明，不过目前我仅涉及定性

的讨论。 

                                                        
16这就是为什么一个短笛演奏者必须准确按键，而一个重低音贝斯演奏者则可以带普通手套。对一个短笛，

64 分音符含有许多完整的周波，频率（我们现在是谈论时间的范畴，而不是空间）是明确定义的，而对一

个贝斯，具有一个很低的音域，64 分音符仅含有少量周波,你所听到的仅是一个没有很清晰音调的节奏“佟

佟佟”。 

*( , ) , .Q x p Q x dx
i x
∂⎛ ⎞= Ψ Ψ⎜ ⎟∂⎝ ⎠∫



 
图 1.7 具有(很好) 波长定义,但是位置无法定义的波. 

 
图 1.8 具有(很好) 位置定义,但是波长无法定义的波. 

 

    上面的讨论当然适合任何波动现象，特别是对量子力学的波函数。粒子的动量同Ψ波

长的联系由德布罗意（de Broglie）公式给出：
17
 

                             
2 .hp π

λ λ
= =                               [1.39] 

这样波长的弥散对应动量的弥散，对我们通常的观测有：粒子的位置确定的越精确,它的动

量就越不精确。定量上有, 

               

                                                                        [1.40] 

 

式中 xσ 是 x 的标准差, pσ 是 p 的标准差.这就是海森伯(Heisenberg)著名的不确定原理。

(我们将在第三章证明它，但是我想现在就提及它，所以你可以在第二章的例题中验证它。) 

    请确切理解不确定原理的意义：象位置的测量一样，动量的测量导致确定的结果 ⎯ 这

里“弥散”是指对全同体系的测量而不会产生同样结果这样一个事实。如果你想，你可以

构造一个态，对其位置的重复测量的结果非常接近（通过使Ψ为一个局域的波包），这样做

的代价是对这个态进行动量的测量结果将是非常弥散的。或者你也可以构造一个态，对其

动量的测量的结果是可以重复的（使Ψ为一个很长的正弦波），但是代价是位置的测量结果

是非常弥散的。当然，如果你心情非常不好，你也可以构造一个态，对其而言坐标和动量

都不是很确定的。方程 1.40 是一个不等式,对 xσ 和 pσ 的上限并无限制 ⎯ 可通过使Ψ为

一个很长的没有周期性的具有很多高低起伏的曲线来获得大的 xσ 和 pσ 。 

 

*习题 1.9 一个质量为m 的粒子处于态 

                         
2[( / ) ]( , ) ,a mx itx t Ae− +Ψ =  

式中 A和 a 为正的实数。 

(a) 求出 A。 

(b) 对什么样的势能函数 )(xV ,这个Ψ满足薛定鄂方程。 

(c) 计算 x ,
2x , p 和

2p 的期待值。 

(d) 求出 xσ 和 pσ .它们的积满足测不准关系吗? 

 

                                                        

第一章补充题 
 

习题 1.10 考虑π 的头 25 位数(3,1,4,1,5,9,…) 

                                                        
17

在适当的时候我将证明这个公式。许多作者把德布罗意公式作为公理，由此他们导出动量和算符

)/)(/ xi ∂∂ 的对应。虽然这在概念上比较清楚，但引起数学上复杂性，我还是把这种复杂性留到以后。 

,
2x pσ σ ≥  



(a)如果你随机从这套数字中选取一个,得到 10 个数字(0-9)中每一个的几率是多少? 

(b)最可几的数字是那一个? 

(c)给出这个分布的标准差。 

 

习题 1.11 一个破损汽车的速度表指针可以自由摆动, 并且当碰到表盘指示两端柱时理想

返回，所以如果你拨动指针后它可能停止在 0到π 之间的任何角度。 

(a) 求出几率密度 )(θρ 。提示： θθρ d)( 是指针将停留在θ 到 )( θθ d+ 之间的几率。作为θ
的函数画出 2/π− 到 2/3π 之间的 )(θρ 。(当然这个区间内部分地方指针是不能到达的,

所以这些地方的 0=ρ 。)注意总几率是 1。 

(b) 对这个分布计算 θ ,
2θ 及 θσ 。 

(c) 计算 sinθ , cosθ 及
2cos θ 。 

 

习题 1.12 同上一题的问题,不过我们现在对指针的 x 坐标感兴趣,也就是说指针在水平线

上的投影位置。 

(a) 求出几率密度 )(xρ 。画出从 r2− 到 r2 之间的 )(xρ ,其中 r 是指针的长度。确认总几率

是 1。提示： dxx)(ρ 是指针投影处在 x 到 dxx + 之间的几率。从上题你已经知道了θ 处

在某个范围的几率；现在的问题是,对应 θd 间隔的 dx间隔是什么? 

(b) 对这个分布计算 x ,
2x 及 xσ 。解释如何从上题的(c)的结果得到现在的结果。 

 

**习题 1.13 Buffon 针。一张纸上画有间距为 l 的平行线,一个长度为 l 的针随机掷向纸面。

问针和一条线相交的几率是多少？参考习题 1.12。 

 

习题 1.14 设 )(tPab 是在 t 时刻发现粒子处在区间 )( bxa << 内的几率。 

（a）证明 

                          ( , ) ( , ),abdP J a t J b t
dt

= −  

其中 

                     
*

*( , ) .
2
iJ x t
m x x
⎛ ⎞∂Ψ ∂Ψ

≡ Ψ −Ψ⎜ ⎟∂ ∂⎝ ⎠
 

),( txJ 的单位是什么? 注： J 称为几率流,因为它告诉你“流”过 x 点的几率的速率。

如果 )(tPab 随时间增加，则在一端流进这个区域的几率比在另一端流出的大。 

（b）求出习题 1.9 中波函数的几率流。(这并不是一个非常简单的例子,恐怕；以后课程中

我们会遇到更多具体问题。) 

 

**习题 1.15 假设你要描述一个自发衰变的不稳定的粒子，其寿命是τ 。在这种情况下在整

个空间发现粒子的几率不是常数，而是(比如说)按指数衰减： 

                         
2 /( ) ( , ) .tP t x t dx e τ

∞
−

−∞

≡ Ψ =∫  

下面是得到这个结果的粗略方法。在方程 1.24 中我们不言而喻的假设了V (势能)是实的。

这假设当然是有道理的，但是它导致了 1.27 式隐含着“几率守恒”。如果我们在V 中添加

上一个虚数部分： 

                              0 ,V V i= − Γ  

式中 0V 是真实的势能，Γ是一个正的实数，将会怎么样？ 

（a） 证明（取代 1.27 式）我们现在有 



                          
2 .dP P

dt
Γ

=−  

（b）求出 )(tP ,并给出以Γ表示的粒子的寿命。 

 

习题 1.16 证明对任何两个满足薛定鄂方程(归一化的)的解 1Ψ 和 2Ψ 有 

                           
*
1 2 0.d dx

dt

∞

−∞

Ψ Ψ =∫  

 

习题 1.17 一个粒子由下述波函数描述( 0=t 时刻) 

            

2 2( ), ,
( ,0)

0, .
A a x a x a

x
⎧ − − ≤ ≤

Ψ = ⎨
⎩ 其它地方

 

(a) 确定归一化常数 A。 

(b) x 的期待值( 0=t 时刻)是多少? 

(c) p 的期待值( 0=t 时刻)是多少?(注意你不能从 /p md x dt= 得到它,为什么?) 

(d) 求出
2x 的期待值。 

(e) 求出
2p 的期待值。 

(f) 求出 x 的不确定（即 xσ ）。 

(g) 求出 p 的不确定（即 pσ ）。 

(h) 验证你所得到的结果符合不确定原理。 

 

习题 1.18 一般来讲，当粒子的德布罗意波长 )/( ph 比体系的特征长度 )(d 大时,就要涉及

量子力学。在温度T )(K 处于热平衡时，粒子的平均动能是 

                              Tk
m

p
B2

3
2

2

=  

(其中 Bk 是波尔兹曼常数)，所以对应的德布罗意波长为 

                              
Tmk

h

B3
=λ .                             [1.41] 

本题的目的是去预测什么样的体系必须用量子力学的方法处理，什么样的体系可以可靠地

用经典力学处理。 

(a) 固体。典型固体的晶格间距大约是 nmd 3.0= 。求在什么温度以下固体中的自由电子
18

是量子力学的。什么温度以下固体中的核子是量子力学的(以钠为例)? 原则上：固体中

的自由电子总是量子力学的；核子几乎从不是量子力学的。对液体也有同样的结果（原

子之间的间隔和固体情况差不多），但是 4 K 以下的氦是个例外。 

(b) 气体。什么温度以下压强为 P 的理想气体中原子是量子力学的? 提示：利用理想气态方

程 )( TNkPV B= 导出原子之间的间距。答案:
5/25/32 )3/)(/1( PmhkT B< 。显然(为了

使气体显示量子行为)m 应当尽可能的小，而 P 尽可能的大。把一个大气压下氦的数据

代入上式。遥远宇宙中的氢(温度大约 3 K ,原子间距大约 cm1 )是量子力学的么? 

 

                                                        
18在固体中内壳层的电子是附属某一个原子核的，对它们而言涉及的尺度是原子的半径。但是外壳层的电

子是不附属某一个原子核的，对它们而言涉及的尺度是晶格间距。本题是指外壳层的电子。 



第二章 
定态薛定谔方程 
 
 
2.1 定态 
 
在第一章我们讲了很多有关波函数的问题以及如何用它来计算各种有兴趣的量。我们不能再

拖延，必须面对逻辑上的首要的问题：如何首先得到 ( , )x tΨ 。我们需要根据一个特定的势

函数 1 ( , )V x t 解出薛定谔方程 
2 2

2 ,
2

i V
x m x

∂Ψ ∂ Ψ
= − + Ψ

∂ ∂
==                            [2.1] 

在这一章（以及本书的绝大部分内容）中会假设V 是不依赖时间的。在这种情况下薛定谔

方程可以通过分离变量法来求解（这是物理学家解任何偏微分方程的首选）：我们寻求简单

乘积形式的解， 
( , ) ( ) ( ),x t x tψ ϕΨ =                               [2.2] 

这里的ψ （小写）是一个只与 x 有关的函数，ϕ是一个只与 t 有关的函数。表面看来，这是

一个不合理的限制，除了一个很小的解集，也不能指望这种方法可以得到所有的解。但是不

要泄气，因为这样方法得到的解对我们很有意义。而且（这也是分离变量的典型例子）我们

还可以用所得到的分立解迭加出更一般的解。 
    对分离变量解，有 

                       ,d
t dt

ϕψ∂Ψ
=

∂
  

2 2

2 2

d
x dx

ψ ϕ∂ Ψ
=

∂
 

（现在是普通的导数），薛定谔方程变为  
2 2

2 .
2

d di V
dt m dx
ϕ ψψ ϕ ψϕ= − +

==  

或者，两边同时除以ψϕ ： 
2 2

2

1 1 .
2

d di V
dt m dx
ϕ ψ

ϕ ψ
= − +

==                           [2.3] 

现在，左边仅是 t 的函数，而右边仅是 x 的函数 2。这样方程成立的唯一可能就是两边都是

常数，否则，通过改变 t 左边将发生变化，而不改变右边，这样两边将不再相等。（这一点

很微妙但是非常关键，如果它对你是陌生的，最好化点时间把它想清楚。）这个常数我们将

记做E，用 E 的原因以后会清楚。这样 

                                 
1 ,di E

dt
ϕ

ϕ
==  

或者 
d iE
dt
ϕ ϕ= −

=
                                  [2.4] 

以及 
2 2

2

1 ,
2

d V E
m dx

ψ
ψ

− + =
=

 

或者 
                                                        
1老说势能函数有时有点费力，所以大多数人称V 为“势”，即便这种叫法有时会和电势混淆，电势实际上

是每单位电荷的势能。 
2注意如果V 不仅是 x 的函数而且也是 t 的函数时，这个论断将不成立。 



 
 
 
 
                                                  [2.5] 

 
 
分离变量把偏微分方程变成了两个普通的微分方程（2.4 和 2.5 式）。第一个方程（2.4

式）很容易求解（只需两边同时乘以 dt 然后积分）；它的一般解是 exp( / )C iEt− = ，但是我

们也可以把常数C 合并到ψ 里，（因为我们感兴趣的是乘积ψϕ ）。这样 

( ) .iEtt eϕ −= =                                   [2.6] 
第二个方程（２.５式）称为定态（time-independent）薛定谔方程；如果不指定 ( )V x 我们

将无法继续求它的解。 
本章的剩下内容主要是解几个具有简单势的定态薛定谔方程。但是在这之前你也许会问

为什么如此强调分离变量法呢？毕竟，大多数含时间的薛定谔方程的解并不是 ( ) ( )x tψ ϕ 这

种形式。下面讲三个原因，其中两个是从物理上的，另一个是数学上的。 
１．它们是定态(stationary states)。尽管波函数本身 

( , ) ( ) ,iEtx t x eψ −Ψ = =
                   [2.7] 

明显和时间有关，但是几率密度 
2 2( , ) ( ) ,iEt iEtx t e e xψ ψ ψ∗ ∗ + −Ψ = Ψ Ψ = == =

         [2.8] 

却不依赖时间 ⎯ 时间因子被相互抵消 3。计算任何动力学变量的期望值也是同样；1.36 式

变为 

( , ) ( , ) .dQ x p Q x dx
i dx

ψ ψ∗〈 〉 = ∫
=

               [2.9] 

任何一个期待值都是不依赖时间的；我们可以完全去掉 ( )tϕ ，简单的用ψ 来代替Ψ。（的

确，通常都称ψ 为“波函数”，但是这是草率的会引起危险的语言，重要的是要记住真正的

波函数总是含有指数时间因子的。）特别是， x〈 〉是常数，因此 0p〈 〉 = （１.３３式）。定态

不发生任何事情。 
２．它们是具有确定总能量的态。在经典力学中，总能量（动能加势能）称为哈密顿

（Hamiltonian）： 
2

( , ) ( ).
2
pH x p V x
m

= +                  [2.10] 

对应的哈密顿算符可以通过标准的的替换规则 ( )( )p i x→ ∂ ∂= 得到 4 

                      
2 2

2 ( ).
2

H V x
m x

∧ ∂
= − +

∂
=

               [2.11] 

这样定态薛定谔方程可以写为 

                        H Eψ ϕ
∧

= ．                     [2.12] 
总能量的期望值是 

2 .H H dx E dx Eψ ψ ψ
∧

∗〈 〉 = = =∫ ∫               [2.13] 

（注意因为是Ψ归一化的，所以ψ 也是归一化的。）另外， 

             2 2( ) ( ) ( ) ,H H H H E E H Eψ ψ ψ ψ ψ
∧ ∧ ∧ ∧ ∧

= = = =  
所以 

                                                        
3对归一化的解, E 必须为实数(见习题 2.1(a))。 
4当可能产生混淆时，我将在算符头部加一个 ∧，以区别它所代表的力学量。 

2 2

2 .
2

d V E
m dx

ψ ψ ψ− + =
=



22 2 2 2.H H dx E dx Eψ ψ ψ
∧

∗〈 〉 = = =∫ ∫  

所以 H 的标准差是 
2 2 2 2 2 0.H H H E Eσ = 〈 〉 − 〈 〉 = − =              [2.14] 

但是回忆一下，如果 0σ = ，那么每个样本有同样的值（分布没有弥散）。结论：分离变量

解有这样一种性质，总能量的每次测量结果是确定的值 E（这也是为什么把分离常数用 E 标

记的原因。） 
3. 一般解是分离变量解的线性迭加。因为我们将会讨论到，定态薛定谔方程（2.5 式）

给 出 一 个 无 限 的 解 集 1 2 3( ( ), ( ), ( ), )x x xψ ψ ψ " ， 每 一 个 解 有 相 应 的 分 离 常 数

1 2 3( , , , )E E E " ；这样对应每个允许的能量有不同的波函数： 
1

1 1( , ) ( ) ,iE tx t x eψ −Ψ = =
  2

2 2( , ) ( ) ,iE tx t x eψ −Ψ = = "  
（含时）薛定谔方程有这样的性质，多个解的线性迭加仍然是它的解 5（你可以自己验证这

一点）。一旦得到分离解，便可以立即构造一个一般解，其形式为 

1
( , ) ( ) .niE t

n n
n

x t c x eψ
∞

−

=

Ψ =∑ =
               [2.15] 

这样每一个薛定鄂方程（含时的）解都能写成这样的形式 ⎯ 余下的事情就是简单找出满足

具体问题初始条件的适当常数 1 2 3( , , , )c c c " 。在下面一节中你将看到如何应用以上公式，并

且在第三章我们将中还会用更优美的语言来描述，但是主要的要点是：一旦你解出了定态薛

定谔方程，这是必不可少的，就可以从它们得到含时薛定谔方程的一般解，这在原则上是简

单明了的。 
前面 4 页介绍了很多内容，我从另一侧面扼要重述一下。我们的一般问题是：给定一个

势（不含时的） ( )V x 和一个初始波函数 ( ,0)xΨ ；求出任何时刻的波函数 ( , )x tΨ 。这样你

必须解含时间的薛定谔方程（2.1 式）。我们的方法是首先求解定态薛定谔方程（2.5 式）6；

一般来说，我们会得到一个无限解集 1 2 3( ( ), ( ), ( ), )x x xψ ψ ψ " ，每个解有对应的能量

1 2 3( , , , )E E E " 。为了满足 ( ,0)xΨ ，写出这些解的线性组合： 

1
( ,0) ( );n n

n
x c xψ

∞

=

Ψ =∑                              [2.16] 

奇妙的是你总能选择出合适的常数 1 2 3, , ,c c c "使之与初始状态相匹配。要得到 ( , )x tΨ ，再

对每一项简单加上它特征的时间指数因子 exp( )niE t− = ：  
 
 

[2.17] 
 
 

 
分离解自身是定态解， 

( , ) ( ) ,niE t
n nx t x eψ −Ψ = =                           [2.18] 

需要强调的是尽管定态解的几率和期望值都不依赖时间，但是一般解（2.17 式）并不具备这

个性质；因为不同的定态具有不同的能量，在计算
2Ψ 的时候，时间指数因子不能相互抵

消。 
                                                        
5
函数 1( ),f z  2 ( ),f z ….线性迭加的表示式为   

 1 1 2 2( ) ( ) ( ) ...,f z c f z c f z= + +  

其中 1 2, ,...c c 任意(复)常数。 
6 有时你可能可以直接解含时薛定鄂方程而无需用分离变量法⎯习题 2.49 和 2.50 给出这样的例子，但是这

样的情况很少。 

1 1

( , ) ( ) ( , )niE t
n n n n

n n

x t c x e c x tψ
∞ ∞

−

= =

Ψ = = Ψ∑ ∑=



 
例题 2.1  假设一个粒子的初始状态是两个定态的线性迭加： 

                        1 1 2 2( ,0) ( ) ( )x c x c xψ ψΨ = + . 

(为使题目简单化，假设常数 nc 和 ( )n xψ 是实数。）那么任意时刻的波函数 ( , )x tΨ 是什么？

求出几率密度并描述其运动形式。 
解：第一问很简单： 

                 1 2
1 1 2 2( , ) ( ) ( )iE t iE tx t c x e c x eψ ψ− −Ψ = += =

， 

这里的 1 2,E E 是 1 2,ψ ψ 相应的能量，由此 

1 2 1 2
2

1 1 2 2 1 1 2 2( , ) ( ( ) ( ) )( ( ) ( ) )iE t iE t iE t iE tx t c x e c x e c x e c x eψ ψ ψ ψ− −Ψ = + += = = =  

                 = 1 1 2 2 1 2 1 2 2 12 cos[( ) ]c c c c E E tψ ψ ψ ψ+ + − = . 
（这里用了欧拉公式，exp cos sini iθ θ θ= + ，来化简。）很显然，几率密度以正弦形式振

动，角频率是 2 1( )E E t− =；这当然不是一个定态。但是注意它是（具有不同能量的）定态

的线性迭加，并且这种迭加会产生运动。7 

 

 

*习题 2.1 证明下列三个定理 
（a ）对归一化的解，其分离常数 E 必定是实数。提示：把 2.7 式中的E 写成 0E i+ Γ的形

式（ 0E 和Γ都是实数），然后证明如果对任何 t 1.20 式都成立，Γ必定为零。 
（ｂ）定态波函数 ( )xψ 总可以取作实数的，（不像 ( , )x tΨ 一定是复数的）。这里并不是说

任何定态薛定谔方程的解一定都是实数的，它的意思是说，如果你得到解不是实数的，总可

以用这些解(具有相同能量)的线性组合得到实数的解。所以可以说解总可以取作实数。提示：

对于一个给定的 E ，如果 ( )xψ 满足２.５式，那么它的共轭复数也满足，这样它们的线性组

合ψ ψ ∗+ 和 ( )i ψ ψ ∗− 是实数的解，它们也满足２.５式。 
（ｃ）如果 ( )V x 是偶函数（也就是说， ( ) ( )V x V x− = ）那么 ( )xψ 总可以取作偶函数或奇

函数。提示：对于一个给定的 E 如果 ( )xψ 满足 2.5 式，那么 ( )xψ − 也满足方程，因此它们

的奇偶组合 ( ) ( )x xψ ψ± − 也满足。 
 
*习题 2.2 证明对于定态薛定谔方程的每一个归一化的解， E 必定要大于 ( )V x 的最小值。

其经典类比是什么？提示：把 2.5 式写为 

[ ]
2

2 2

2 ( )d m V x E
dx
ψ ψ= −

=
； 

如果 minE V< ，那么ψ 和它的二次导数有同样的符号，在这种情况下函数是不可归一化的。 
 

 
2.2 一维无限深方势阱 
 
假设 

0 , 0 ,
( )

,
x a

V x
≤ ≤⎧

= ⎨ ∞⎩ 其 它 地 方
                         [2.19]  

(图 2.1)。一个粒子在这样的势能中除了在两个端点（ 0,x x a= = ）外都是自由的，在

端点处有无穷大的力限制它逃逸。一个经典的例子就是一个小车在水平光滑的空气轨道上运

动，在两端发生完全弹性碰撞，使得它在轨道上永远不停的来回运动。（这个势能当然是虚

构的，但是需要认真对待它，尽管它很简单，确切的说由于简单使它成了以后的很多机理的

                                                        
7在网页 http://thorin.adnc.com/~topquark/quantum/deepwellmain.html. 对此有很好的阐述。 



很好的佐证模型。我们还会经常提到它。） 
在势阱外 ( )xψ =0（在这里找到粒子的几率为零）。在势阱内， 0V = ，定态薛定谔方程 

图 2.1：一维无限深方势阱（2.19 式）。 
 
（2.5 式）为 

 
2 2

2 ,
2

d E
m dx

ψ ψ− =
=

                          [2.20] 

或者 
2

2
2

2, .d mEk k
dx
ψ ψ= − ≡

=
其中                  [2.21]  

（之所以写成这样的形式是假设了 0E ≥ ；因为从习题 2.2 中知道 0E < 是没意义的。）2.21
式是经典谐振子的运动方程；其一般解是 

( ) sin cos ,x A kx B kxψ = +                       [2.22] 
这里的 A和 B 是任意的常数。这些常数一般是由问题的边界条件决定。 ( )xψ 的边界条件是

什么呢？一般来说，ψ 和 d dxψ 都是连续的，但是，当势函数是无穷大，只能用第一个边

界条件。（将在 2.5 节中证明这些边界条件，并且讨论当V = ∞时的例外。现在希望你们相

信我。） 
( )xψ 的连续性要求 

                              (0) ( ) 0,aψ ψ= =                             [2.23] 
以使势阱内外的解连续。这告诉我们 A和 B 应该取什么值呢？由 

(0) sin 0 cos0A B Bψ = + = ， 
所以 0B = ，因此 

( ) sin .x A kxψ =                            [2.24] 
这样 ( ) sina A kaψ = ，要么 0A = （这样会得到平庸的不可归一化的解 ( ) 0xψ = ），或者

sin =0ka ，这就意味着 
=0, , 2 , 3 ,ka π π π± ± ± "                          [2.25] 

 

 
图 2.2：一维无限深势阱的前三个定态（2.28 式）。 
 
但是 0k = 没有意义（它同样意味着 ( ) 0xψ = ），而且负的解并不给出新解，因为

sin( ) sinθ θ− = − ，我们可以把负号合并到 A 中。所以可区分的解为 



= =1, 2, 3, ...n
nk n
a
π
,                         [2.26] 

非常奇妙，在 x a= 处的边界条件没有确定常数 A，却确定了常数 k ，因此 E 的可能值是： 
 
 

                                             [2.27] 
 
 
 
这和经典情况完全不同，一个量子化的粒子在一维无限深势阱中的能量不能是任意的，它只

是这些特殊的许可值。8 为了求出 A，我们归一化ψ ： 
2 2 22

0

2sin ( ) 1 .
2

a aA kx dx A A
a

= = =∫ ，所以  

这仅决定了 A的模，我们可以简单的取其正实根： 2A a= （ A的相位没任何物理意义）。

这样，阱内的解是 
 
 

                                     [2.28] 
 
 
 
如前所述，解定态薛定谔方程会得到一个无限的解集（每一个正整数n 对应一个解）。前

几个函数画在２.２图中。它们看起来像在一个长度为 a 的弦上的驻波； 1ψ 具有最低的能量，

称为基态，其它态的能量正比于
2n 增加，称为激发态。总结一下函数 ( )n xψ 的重要有趣性

质： 
１． 它们相对于势阱的中心是奇偶交替的： 1ψ 是偶函数， 2ψ 是奇函数， 3ψ 是偶函数，

依次类推。9 
２． 随着能量的增加，态的节点（与 x 轴交点）数逐次增 1； 1ψ 没有（端点不计）， 2ψ

有一个， 3ψ 有两个，依次类推。 
３． 它们是相互正交的，也就是说当m n≠ 时 

                  m n(x) (x) 0.dxψ ψ∗ =∫                    [2.29] 

证明： 

m n 0

2 n( ) ( ) sin( )sin( )
a mx x dx x x dx

a a a
π πψ ψ∗ =∫ ∫  

                 =
0

1 cos( ) cos( )
a m n m nx x dx

a a a
π π− +⎡ ⎤−⎢ ⎥⎣ ⎦∫  

=
0

1 1sin( ) sin( )
( ) ( )

a
m n m nx x

m n a m n a
π π

π π
⎧ ⎫− +⎪ −⎨ ⎬− + ⎭⎪⎩

 

=
1 sin[( ) ] sin[( ) ] 0

( ) ( )
m n m n
m n m n

π π
π
⎧ ⎫− −

− =⎨ ⎬− −⎩ ⎭
. 

注意上述证明对m n= 不成立。（你能否找出问题所在？）在这种情况下，归一性告诉我们

                                                        
8注意能量量子化的出现是定态薛定鄂方程解的边界条件的一个非常技术要求的结果。 
9 为了使这个对称性更明显，某些作者把势阱的中心放在原点（势阱从 a− 到 a+ ）。这时余弦是偶函数，

正弦是奇函数。见习题 2.36。 

2 2 2 2 2

2 .
2 2

n
n

k nE
m ma

π
= =
= =

2( ) sin( ).n
nx x

a a
πψ =



积分应该等于 1。事实上，我们可以把正交性和归一性写在一起：10 

 

，                        [2.30] 
 
 
这里的 mnδ （所谓的 Kronecker delta 符号）是这样定义的， 

0,
1,mn

m n
m n

δ
≠⎧

= ⎨
=⎩

如果

如果
                              [2.31] 

我们说诸ψ 是正交归一的。 
4. 它们是完备的，也就是说任意一个函数 ( )f x ，都可以用它们的线性迭加来表示： 

1 1

2( ) ( ) sin( )n n n
n n

nf x c x c x
a a

πψ
∞ ∞

= =

= =∑ ∑ .                      [2.32] 

关于 sin( / )n x aπ 的完备性不再证明。如果学过高等微积分的话，不难看出 2.32 式其实就是

( )f x 的傅立叶展开式，任何函数 ( )f x 都可以用这种方法展开称为 Dirichlet 定理。11 

对于给定的 ( )f x ，其展开系数 nc 可以用我称之为傅立叶技巧的方法得到，其优美地展

示了{ }nψ 的正交归一性：在 2.32 式两端同时乘以 mψ ∗
然后积分。 

* *

1 1

( ) ( ) ( ) ( )m n m n n mn m
n n

x f x dx c x x dx c cψ ψ ψ δ
∞ ∞

= =

= = =∑ ∑∫ ∫ 。           [2.33] 

（注意是如何用 Kroneckerδ 把除了 n m= 以外的项消除的。）这样 ( )f x 展开式中的第 n 个

待定系数就是 12 

                 
                                           。                             

[2.34] 
 
    

以上四个性质非常有用，而且它们不是一维无限深方势阱所特有的。只要势是对称就具

备第一个性质；第二个性质是普适的，无论势是什么形状都成立。13 正交归一性也是相当普

遍的⎯我将在第三章中给出证明。完备性对你所遇到的所有势都成立，但是其证明比较费力；

恐怕大多数物理学家只是怀着美好的愿望而简单的假定其成立。 

    很明显一维无限深方势阱的定态（2.18 式）是 

                    
2 2 2( 2 )2 n( , ) sin( ) .i n ma t

n x t x e
a a

ππ −Ψ = =                    [2.35] 

我曾讲过（2.17 式）含时薛定谔方程的最一般的解是定态解的线性迭加： 
2 2 2( 2 )

1

2( , ) sin( ) .i n ma t
n

n

nx t c x e
a a

ππ∞
−

=

Ψ =∑ =                   [2.36] 

（如果你怀疑这是否是解，务必验证它！）余下的事我仅需论证的是可以通过选择适当的 nc

                                                        
10现在情况下复共鄂号是没有必要的，因为ψ 是实数，但是为了以后的目的，养成用复共鄂号是个好习惯。 
11例如，参见 Mary Boas 所著“物理学中的数学方法”，第二版（NewYork：John Wiley 出版社，1983），第

313 页； ( )f x 甚至可以含有有限不连续的数 
12 这里使用 m 还是 n 作为“哑指标”没有关系（当然，方程两边必须一致）；无论你使用那个字母，它都

是表示“任何正整数”。 
13 参见，例如，John L. Powell 和 Bernd Crasemann, 量子力学(Addison Wesley, Reading, MA1961), p. 126。 

( ) ( )m n mnx x dxψ ψ δ∗ =∫

n (x ) ( ) .nc f x dxψ ∗= ∫



使之能拟合任何指定的初始波函数 ( ,0)xΨ ：  

1

( ,0) ( ).n n
n

x c xψ
∞

=

Ψ =∑  

{ }nψ 的完备性（对现在的情况由 Dirichlet 定理证实）保证了总能用这种形式表示 ( ,0)xΨ ，

它们的正交归一性允许我们通过傅立叶技巧得到需要的待定系数： 

0

2 sin ( ,0) .
a

n
nc x x dx

a a
π⎛ ⎞= Ψ⎜ ⎟

⎝ ⎠∫                       [2.37] 

也就是说：对于给定的一个波函数 ( ,0)xΨ ，首先用 2.37 式求出展开式的系数 nc ，然

后代入 2.36 式得到 ( , )x tΨ 。有了这个波函数，就可以用第一章所学的方法来计算任何一个

我们有兴趣的力学量。这种步骤对任何势能函数都是一样的，所不同的仅是ψ 的函数形式

和所允许的能量值满足的方程。 
 

例题 2.2 在一维无限深方势阱中运动的粒子，其初始波函数是 
( ,0) ( ), (0 ),x Ax a x x aΨ = − ≤ ≤  

A是常数（如图 2.3）。当然，在阱外Ψ =0。求 ( , )x tΨ 。 
解：首先需要归一化 ( ,0)xΨ 求出 A：  

5
2 2 22 2

0 0
1 ( ,0) ( )

30
a a ax dx A x a x dx A= Ψ = − =∫ ∫ ， 

所以 

                         5

30= .A
a

 

第 n 项的系数（2.37 式）是 

50

2 30sin( x) ( )
a

n
nc x a x dx

a a a
π

= −∫  

         2
3 0 0

2 15 sin( ) sin( )
a an na x x dx x x dx

a a a
π π⎡ ⎤= −⎢ ⎥⎣ ⎦∫ ∫  

         2
3

0

2 15 ( ) sin( ) cos( )
a

a n ax na x x
a n a n a

π π
π π

⎧ ⎡ ⎤= −⎨ ⎢ ⎥⎣ ⎦⎩
 

2
2

3
0

( ) 22( ) sin( ) cos( )
( )

a
a n n x a nx x x

n a n a a
π π π

π π

⎫⎡ ⎤− ⎪− − ⎬⎢ ⎥
⎣ ⎦ ⎪⎭

 

3 2
3 3

3 3 3

2 15 ( ) 2 2cos( ) cos( ) cos(0)
(n ) ( )

a nn a n a
a n n

ππ π
π π π

⎡ ⎤−
= − + +⎢ ⎥

⎣ ⎦
 

[ ]3

4 15 cos(0) cos( )
( )

n
n

π
π

= −  

3

0

8 1 5 /( )

n

nnπ
⎧⎪= ⎨
⎪⎩

如 果 为 偶 数 ,

如 果 为 奇 数 .

，

，
 

这样（2.36 式）： 

         
2 2 23 2

3
1,3,5,

30 2 1( , ) sin( ) .in t ma

n

nx t x e
a n a

ππ
π

−

=

Ψ = ∑ =

…
（ ）  

 



 
 
图 2.3：例题 2.2 中的初始波函数。 
 

不严格讲，可以说 nc 告诉你“Ψ中含有 nψ 的数量”。某些人喜欢说
2

nc 是“发现粒子

处在第 n 定态的几率”，但是这不是一个好的说法；粒子是处在Ψ态，而不是 nψ 态，无论

如何，在实验室你不会“发现一个粒子是处在一个特定的态”⎯ 你测量某个可观测量，得

到一个数值。我们将在第三章看到，
2

nc 告诉你的是对能量的一个测量得到结果是 nE 的几

率（一个适当的测量所得到的结果总是一个所允许的可能值⎯ 因此命名 ⎯ 所以 
2

nc 是

得到 nE 的几率。） 
当然，所有几率的之和一定为 1， 
 
         .                                                

[2.38]  
 
 
 
的确，从Ψ的归一性可以导出上式（ nc 不依赖时间，所以我只证明 0t = 的情况；如果这让

你不解，你可以很容易把证明推广到任意 t ）。 

2

1 1

1= ( ,0) ( ) ( )m m n n
m n

x dx c x c x dxψ ψ
∗∞ ∞

= =

⎛ ⎞ ⎛ ⎞Ψ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑∫ ∫  

             
1 1

( ) ( )m n m n
m n

c c x x dxψ ψ
∞ ∞

∗ ∗

= =

= ∑∑ ∫  

             
2

1 1 1
m n mn n

m n n
c c cδ

∞ ∞ ∞
∗

= = =

= =∑∑ ∑ . 

（仍然是 Kronecker δ 从对m 求和的项中挑选出m n= 的项。） 

此外，能量的期望值一定是 

 

，                                             [2.39] 
 
 
 
这也可以直接验证：由定态薛定谔方程（2.12 式） 

,n n nH Eψ ψ=                               [2.40] 
所以 

2

1

1.n
n

c
∞

=

=∑

2

1
,n n

n
H c E

∞

=

〈 〉 = ∑



( ) ( )m m n nH H dx c H c dxψ ψ ψ ψ
∗∗〈 〉 = = ∑ ∑∫ ∫  

             
2* .m n n m n n nc c E dx c Eψ ψ∗

= =∑∑ ∑∫  

注意到得到某个特定能量的几率是不依赖时间的，这样一来， H 的期望值也是不依赖时间

的。这就是能量守恒在量子力学中的体现。 
 

例题 2.3 在例题 2.2 中的初始波函数（图 2.3）与基态 1ψ （图 2.2）很相似，这意味着 
2

1c 将

是主要的，事实上 

                        

2
2

1 3

8 15 0.998555....c
π

⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠

 

其余的系数之和为与 1 的差额：14 

2
2

3 6
1 n 1,3,5,

8 15 1 1.n
n

c
nπ

∞ ∞

= =

⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑
…

 

在本题中能量的期待值是 
2 2 2 2 2 2

3 3 2 4 2 4 2
1,3,5, 1,3,5,

8 15 480 1 5
2n n

nH
n ma ma n ma

π
π π

∞ ∞

= =

⎛ ⎞
〈 〉 = = =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

… …

= = =
. 

可以预期这很接近于
2 2 2

1 2E maπ= =  ⎯ 比它稍微大一点，这是由于与激发态的混合造成

的。 
 
         
 
习题 2.3 证明在 0E = 或 0E < 的情况下，一维无限深方势阱的（定态）薛定谔方程没有（物

理）可接受的解。（这是习题 2.2 中一般定理的一个特殊例子，但这次你要直接解薛定谔方

程，并且证明无法满足边界条件。） 

 
*习题 2.4 对一维无限深势阱的第 n 个定态计算

2 2, , , , x px x p p σ σ〈 〉 〈 〉 〈 〉 〈 〉 和 。验证不确定原

理。那个态最接近不确定原理的极限？ 
 
*习题 2.5 在一维无限深势阱中一个粒子的初始波函数由前两个定态迭加而成： 

[ ]1 2( ,0) ( ) ( )x A x xψ ψΨ = + . 

（a） 归一化 ( ,0)xΨ （即求出 A。如果用 1 2ψ ψ和 的正交归一性计算会很简单。记住，

在 0t = 时归一化的Ψ在其他时间也是归一化的 ⎯ 如对此点有疑问，在做完（b）
后验证一下。 

（b）  求 ( , t)xΨ 和
2( , t)xΨ 。像例题 2.1 一样，把后者用时间的正弦函数展开。为了简

化结果，令
2 22maω π≡ = 。 

                                                        
14在数学手册“Riemann Zeta 函数”或“倒数幂次方之和”条目下，你可以查到级数     

6

6 6 6

1 1 1

1 3 5 960

π
+ + + ⋅ ⋅ ⋅ =  

和 
4

4 4 4

1 1 1

1 3 5 96

π
+ + + ⋅ ⋅ ⋅ = 。 



（c） 计算 x〈 〉 的值。注意它是随时间的震荡。角频率是多少？振幅是多少？（如果你得

到的振幅大于 / 2a ，一定有错。） 
（d） 计算 p〈 〉的值。 
（e） 如果你测量粒子的能量，可能得到什么值？得到各个值的几率是多少？求出 H 的期

望值。并与 1E 和 2E 比较。 
 
习题 2.6 尽管波函数的总的普乘相因子都没有任何物理意义（在计算可观测量的时候可以

抵消），但是在 2.17 式中的相对相因子却起作用。例如：假定把习题 2.5 变为： 
[ ],)()()0,( 21 xexAx i ψψ φ+=Ψ   

其中φ是常数。求出 ( , t)xΨ ，
2( , t)xΨ 和 x〈 〉，并与上题的结果比较。研究 / 2φ π= 和φ π=

的具体情况。（这个问题的一个图示可在脚标 7 给出的网页找到。） 
 
*习题 2..7 一个处在一维无限深势阱中的粒子，其初始波函数是 15 

, 0 / 2,
( ,0)

( ), / 2 .
Ax x a

x
A a x a x a

≤ ≤⎧
Ψ = ⎨ − ≤ ≤⎩

 

（ａ）画出 ( ,0)xΨ 的图形然后求出Ａ。 
（ｂ）求出 ( , t)xΨ 。 
（ｃ）测量能量得到结果为 1E 的几率是多少？ 
（ｄ）求出能量的期望值。 
 
习题２.８ 一个质量为m 的粒子，处在一维无限深方势阱（宽度为 a ）中从势阱的左半边

开始运动，并且在这个区域中（ 0t = 时）的每一点找到粒子的几率相同。 
（ａ）求出初始波函数 ( ,0)xΨ ？（假设它为实数，并且不要忘记归一化。） 

（ｂ）测量能量得到值为
222 2ma=π 的几率是多少？ 

 
习题２.９ 对例题２.２中的波函数，用公式： 

( ,0) ( ,0)x H x dx
∧

∗Ψ Ψ∫ ， 

求 0t = 时 H 的期待值。同例题 2.3 用 2.39 式求出结果比较。注意：因为 H 不依赖时间，

所以用 0t = 也不失普遍性。 
 
 
 

2.3 谐振子 
 
经典谐振子的模型是一个质量为 m 物体挂在一个力常数为 k 的弹簧上。其运动由胡克

(Hooke)定律决定， 
2

2

d xF kx m
dt

= − =  

（忽略摩擦力），它的解是 
( ) sin( ) cos( )x t A t B tω ω= + ， 

                                                        
15
原则上对初始波函数的形状没有限制,只要它是归一化的。特别是， ( , 0)xΨ 不必有一个连续的导数 ⎯ 事

实上它甚至不必是一个连续函数。不过，在这种情况下，如果你试图用 *( , ) ( , )x t H x t dxΨ Ψ∫ 计算 H ，会

遇到技术上的困难，因为 ( , 0)xΨ 的二次导数不能很好定义。对习题 2.9 没有问题因为不连续发生在端点处

其波函数在此为零。在习题 2.48 中你将看到如何处理类似习题 2.7 的情况。 



 
 
 

 
图 2.4： 对任意势能极小值点附近的抛物线形近似（虚线）。 
 
其中 

k
m

ω ≡                                 [2.41] 

是谐振子的角频率。势能为 
21( ) ;

2
V x kx=                               [2.42] 

其图形是抛物线状的。 
   当然，没有完全理想的谐振子，如果弹簧伸长的太多，就会被破坏，而且在远未达到破

坏点之前胡克定律就已经失效。但是在实际中，任何势能在其极小值附近都可以用抛物线近

似（2.4 图）。形式上，如果我们将 ( )V x 在极小值附近做泰勒展开： 

2
0 0 0 0 0

1( ) ( ) ( )( ) ( )( ) ,
2

V x V x V x x x V x x x′ ′′= + − + − +"  

减去 0( )V x （可以给 ( )V x 加上一个常数，因为这不改变力），由于 0( )V x′ =0（因为 0x 是极

小值）忽略高次项（只要（ 0x x− ）很小就可以忽略），得到 

2
0 0

1( ) ( )( )
2

V x V x x x′′≅ − ， 

这正是描述谐振子的势（对于 0x 点），其有效弹性常数是 0( )k V x′′= 。16 事实上，任何振动，

只要振幅足够小，都可以近似看作简谐振动，这就是谐振子为什么如此重要的原因。 
量子力学的问题是要解势能为 

2 21( )
2

V x xω=                                [2.43] 

时的薛定谔方程。（按照惯例，由 2.41 式，用经典频率代替弹性常数）。我们已经知道，只

需解定态薛定谔方程就足够了： 

                    
2 2

2 2
2

1 .
2 2

d m x E
m dx

ψ ω ψ− + =
=

                        [2.44] 

                                                        
16注意到既然假定 0x 是极小点，所以 0

'' ( ) 0V x ≥ 。仅有 0
'' ( ) 0V x = 的极少情况下振动不能平滑地被简谐

振动近似。 



对此问题在文献中你会发现两种完全不同的处理方法。第一种是用幂级数法直接去解微分方

程；它的优点是在解其它很多势方程时都能够适用（事实上，我们将在第四章中用它去解库

仑势）。第二种是一种巧妙的代数方法，使用所谓的阶梯算符。我首先要讲的是代数方法，

因为它比较快而且简单（而且很有趣）；17 如果你现在想要跳到幂级数法，也行，但是你应

该计划在某个阶段去学习它。        
 

2.3.1  代数法                                                                        
 

现在，让我们以更加启发性的形式重写方程 2.44： 
 

2 21 ( ) ,
2

p m x E
m

ω ψ ψ⎡ ⎤+ =⎣ ⎦                          [2.45]  

其中 ( ) /p i d dx≡ = 是动量算符。求解的基本的思想是分解哈密顿算符，                                  

2 21 ( ) .
2

H p m x
m

ω⎡ ⎤= +⎣ ⎦                            [2.46]  

如果这些只是数字，那比较容易了：                                                                 
                       2 2 ( )( )u v iu v iu v+ = + − +                                                  
但是现在的情况没那么简单，因为 p 和 x 是算符，而算符的次序一般来说是不能彼此交换 
的（ xp 和 px 是不一样的）。这促使我们检验下列量                                                   
                          

 
[2.47]   

 
 
 
（前面因子是为了使最后的结果看起来更优美）。                                            

那么，积a a− +是什么呢？ 

                     
2 2

1 ( )( )
2

1       [ ( ) ( )].
2

a a ip m x ip m x
m

p m x im xp px
m

ω ω
ω

ω ω
ω

− + = + − +

= + − −

=

=

                                  

正如预期，有一个额外项，其涉及 ( )xp px− 。我们称它为 x 与 p 的对易子；这是衡量它们

是否能够交换的量度。一般有，算符 A和 B 的对易子（用一个方括号表示）是：                         
                                [ , ] .A B AB BA= −                          [2.48]                  
用这种符号来表示，则：                                                                           

2 21 [ ( ) ] [ , ].
2 2

ia a p m x x p
m

ω
ω− + = + −

= =
                [2.49]

我们需要求出 x 和 p 对易子。请注意：当用这种抽象的表示运算时，算符需非常小心对待，

除非把它作用在一个测试函数 ( )f x ，要不然极易产生错误。最后，你可以把测试函数去掉，

只剩下关于算符的方程。对目前的例子，我们有：                                  

    [ , ] ( ) ( ) ( ) ( ).d d df dfx p f x x f xf x x f i f x
i dx i dx i dx dx

⎡ ⎤ ⎛ ⎞= − = − − =⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

= = = =        [2.50]                  

为了得出所要结果，我们去掉测试函数，则： 
 
 
 
                                                        
17 我们将在角动量理论中遇到同样的方法（第 4 章），这种技术在超对称量子力学中可推广到一类广泛的

势（见，例如，Richard W. Robinett, 量子力学, (Oxford U.P., New York,1997), Section 14.4）。 

1 ( )
2

a ip m x
m

ω
ω± ≡ +∓

=



 
                 

[2.51]  
 

 
这个可爱的无处不在的结果就是所谓的正则对易关系。18  

利用上面式子，方程 2.49 可写为                                                               
1 1 ,

2
a a H

ω− + = +
=

                             [2.52] 

 或   
1 .
2

H a aω − +
⎛ ⎞= −⎜ ⎟
⎝ ⎠

=                              [2.53]                  

显然哈密顿的分解还不够完美 ⎯ 在右边还有一个额外的-1/2。注意a+ 和a− 次序非常重要，

如果a+ 在左边，则有                                    

1 1 .
2

a a H
ω+ − = −
=

                              [2.54]                  

特别有                                                                                           
                              [ , ] 1.a a− + =                                  [2.55]    
所以哈密顿量还可以等价的写成：                                                                   

                           
1 .
2

H a aω + −
⎛ ⎞= +⎜ ⎟
⎝ ⎠

=                             [2.56]                  

利用a± ，谐振子的薛定谔方程 19 可写为如下形式：                                                   

                         
1 .
2

a a Eω ψ ψ±
⎛ ⎞± =⎜ ⎟
⎝ ⎠

∓=                            [2.57]                  

现在，下面是关键步骤：我断言如果ψ 能够满足能量为 E 的薛定谔方程（即

H Eψ ψ= ），则a ψ+ 满足能量为（ ( )E ω+ = ）的薛定谔方程： ( ) ( )( )H a E aψ ω ψ+ += + = 。 
证明：                                                                                         

             

1 1( ) ( )
2 2

1 1              = 1
2 2

              = ( ) ( ) ( )( ).

H a a a a a a a a

a a a a a a

a H a E E a

ψ ω ψ ω ψ

ω ψ ω ψ

ω ψ ω ψ ω ψ

+ + − + + − + +

+ − + + + −

+ + +

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞+ = + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
+ = + = +

= =

= =

= = =

                               

（上式第二行中我利用 2.55 式用 1a a+ − + 替换了a a− +。注意虽然a+ 与a− 的次序很重要，a±

与任何常数的次序⎯比如 , , Eω= 等却没关系；一个算符和任何常数都是对易的。） 
同样可证， aψ− 是能量为 ( )E ω− = 的解：                                                      

                                                        
18

在更深的意义上，量子力学的所有神奇都可以追述到坐标和动量的不对易这个事实。确实也有作者把正

则对易关系作为量子理论的公理，并用它导出 ( / ) /p i d dx= = 。 
19

我对总写“定态薛定鄂方程”感到疲倦，所以当课文的内容是清晰不会引起混淆时，我仅用“薛定鄂方

程”。  

[ , ] .x p i= =



         

1 1( ) ( )
2 2

1             1 = ( ) ( )
2

             ( )( ).

H a a a a a a a

a a a a H a E

E a

ψ ω ψ ω ψ

ω ψ ω ψ ω ψ

ω ψ

− − + − − + −

− − + − −

−

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞= − − − = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= −

= =

= = =

=

                           

所以这是一种生成新解的极好方法，如果我们得到了一个解，通过升降能量就可以得到其它

的解。我们把 a± 叫作阶梯算符，因为它们能使我们升降能级；a+ 是升阶算符，a− 是降阶算

符. 图 2.5 说明了这样的能态“梯子”。      

 
                                          
图 2.5：谐振子的能态“梯子”。  
                                                 

 
 



但是请等一下，如果我反复应用降阶算符，那又会怎样呢？最终，我会到达一个低于零

的能量状态，而（根据习题 2.2 中的一般定理）这根本是不存在！在某个地方这个机制必定

是失效的。为什么会出现这种情况？我们知道 aψ− 是薛定谔方程的一个新解，但这并不能

保证它是归一化的⎯它可能是零或者它的平方积分可能是无限大的。事实上它是前者：有一

个最低的阶梯（称为 0ψ ）使得                                                                     

                               0 0.aψ− =                                   [2.58]                  

我们可以利用这个确定 0 ( )xψ ：                                                                     

                     0
1 0,

2
d m x
dxm

ω ψ
ω
⎛ ⎞+ =⎜ ⎟
⎝ ⎠
=

=
                                               

或                        

                           0
0.

d m x
dx
ψ ω ψ= −

=
                                                    

这个微分方程很容易解：                                                                          

             20
0    ln

2
d m mxdx x
dx
ψ ω ωψ= − ⇒ = − +∫ ∫= =

常数，                                    

所以                                                                                           

                           
2

2
0 ( ) .

m x
x Ae

ω

ψ
−

= =                                                
我们现在对它进行归一化：                                                                         

                    
22 2/1 ,m xA e dx A

m
ω π

ω
∞ −

−∞
= =∫ = =

                                             

所以
2 /A mω π= =，因此                                                                        

                                                                           
 
[2.59]                 

 
 
 
我 们 把 它 代 入 薛 定 谔 方 程 以 确 定 相 应 的 能 量 （ 以 方 程 2.57 的 形 式 ），

0 0 0( 1/ 2)a a Eω ψ ψ+ − + == ，利用 0 0aψ− = ，有：                                                 

                            0
1
2

E ω= =                                     [2.60]                  

现在我们安全地站在梯子的最底部（量子谐振子的基态），从而我们可以                  
反复应用升阶算符生成激发态,20 每一步增加能量 ω= ：                                       
                                                                                                
                                                                

[2.61]                  
                                                                                                 
 
 
这里 nA 是归一化常数。通过将升阶算符（反复）作用于 0ψ ，我们能够（原则上）得出谐振

子所有的 21定态。同时，不用另外计算，就可以确定所允许的能量.  

                                                        
20
对谐振子问题，由于某些理由，与以往不同，我们习惯上从 0 开始标记态，而不是从 1 开始。显然，2.17

式求和的下限也要相应改变。 
21注意由这种方法我们可以得到所有的(归一化的)解。如果还有另外的某些解，我们可以由第二个阶梯通过

反复应用升降阶算符生成它们。但是这个新的梯子的最低阶应当满足方程 2.58，这必定导致 2.59 式的解，

21/ 4
2

0 ( ) .
m xmx e
ωωψ

π
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
=

=
 

0
1( ) ( ) ( ), ,
2

n
n n nx A a x E nψ ψ ω+

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

=



 
 
例 2.4  求出谐振子的第一激发态。                                                                  
解：利用方程 2.61                                                                                

                 

2

2

1/ 4
1 2

1 1 0

1/ 4
2

1

( )
2

2          = .

m x

m x

A d mx A a m x e
dxm

m mA xe

ω

ω

ωψ ψ ω
πω

ω ω
π

−

+

−

⎛ ⎞⎛ ⎞= = − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=

=
==

= =

    [2.62]                   

我们可以直接“手算”对它进行归一化：  

               
22 2 22

1 1 1
2 ,

m xm mdx A x e dx A
ωω ωψ

π
−∞

−∞

⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ ∫ =

= =
                                  

恰好， 1 1A = 。                                                                                   

我不想用这种方法去计算 50ψ （那需要应用升阶算符 50 次！），但不必介意：原则上方

程 2.61 可以做到⎯除了归一化常数外。    
 
                                                                                

你甚至可以用代数的方法得到归一化常数，不过需要一些精巧的步骤，请留意。我们知

道 na ψ± 是正比于 1nψ ± 的.                                                                           

                      1 1,n n n n n na c a dψ ψ ψ ψ+ + − −= =                       [2.63]                  

但是比例因子 nc 和 nd 是什么？首先注意到对于“任何”22 函数 ( )f x 和 ( )g x ，                              

                      * *( ) ( ) .f a g dx a f gdx
∞ ∞

±−∞ −∞
=∫ ∫ ∓                         [2.64]  

（用线性代数的语言，a∓是 a± 的厄密共轭。）                                       
证明：                                                                                          

              * *1( ) ,
2

df a g dx f m x gdx
dxm

ω
ω

∞ ∞

±−∞ −∞

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ ∫ ∓=

=
                             

分部积分使
*( / )f dg dx dx∫ 转变为

*( / )df dx gdx−∫ （由脚标 22 所述原因，边界项为零），

所以：                                                            

       
*

* *1( ) ( ) .
2

df a g dx m x f gdx a f gdx
dxm

ω
ω

∞ ∞ ∞

±−∞ −∞ −∞

⎡ ⎤⎛ ⎞= ± + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∓=

=
 

证毕。                               
特别有：                                                                                     

                    * *( ) ( ) ( ) .n n n na a dx a a dxψ ψ ψ ψ
∞ ∞

± ± ±−∞ −∞
=∫ ∫ ∓             

                                          
但是（由 2.57 和 2.61 式）：                                                                         
                     , ( 1) ,n n n na a n a a nψ ψ ψ ψ+ − − += = +                   [2.65]                  
所以：                                                                                           

           

2 22*
1

2 22*
1

( ) ( ) ( 1) ,

( ) ( ) .

n n n n n

n n n n n

a a dx c dx n dx

a a dx d dx n dx

ψ ψ ψ ψ

ψ ψ ψ ψ

∞ ∞ ∞

+ + +−∞ −∞ −∞

∞ ∞ ∞

− − −−∞ −∞ −∞

= = +

= =

∫ ∫ ∫

∫ ∫ ∫
 

                                                                                                                                                               
新的梯子的最低阶与原来是一样的，所以两个梯子是等同的。 
22当然，它的积分必须存在，这意味着在±∞处 ( )f x 和 ( )g x 必须趋于零。 



                                     

但是由于 nψ 和 1nψ ± 已是归一化的，可知
2 1nc n= + ，

2
nd n= ，因此：                               

                                                                                               
                                                                         

[2.66]   
                          
 
这样  

                2
1 0 2 1 0

1 1, ( ) ,
2 2

a a aψ ψ ψ ψ ψ+ + += = =   

    3 4
3 2 0 4 3 0

1 1 1 1( ) , ( ) ,
3 3 2 4 4 3 2

a a a aψ ψ ψ ψ ψ ψ+ + + += = = =
⋅ ⋅ ⋅

                        

依此类推。显然有   
                                                                                             
                                                                         

[2.67]  
                           
 
 
也就是说 2.61 式中的归一化因子是： 1/ !nA n= （特别有， 1 1A = ，和例题 2.4 的结果一

致）。                                                                     
同无限深方势阱情况一样，谐振子的定态是相互正交的：                                           

                           * .m n mndxψ ψ δ
∞

−∞
=∫                               [2.68]                   

利用 2.65 及 2.64 式两次 ⎯ 首先移动a+ 然后再移动a− 就可以证明上述公式：                      

          

* *

* *

*

( )

                             = ( ) ( ) ( )

                             = .

m n m n

m n m n

m n

a a dx n dx

a a dx a a dx

m dx

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

∞ ∞

+ −−∞ −∞

∞ ∞

− − + −−∞ −∞

∞

−∞

=

=

∫ ∫
∫ ∫
∫

                               

除非m n= ,否则
*
m ndxψ ψ

∞

−∞∫ 必须为零。而正交性意味着，当我们将 ( ,0)xΨ 按定态展开时

（2.16 式），我们同样可以用傅立叶技巧（方程 2.34）去确定展开系数，
2

nc 同样是测量能

量得到 nE 的几率。                                                                               
                                                                                                 
例题 2.5  求出谐振子第 n 态势能的期待值。                                                       
解：                                                                                            

                    2 2 2 * 21 1 .
2 2 n nV m x m x dxω ω ψ ψ

∞

−∞
= = ∫                                        

计算这类积分有非常简洁的办法（有关 x 和 p 的幂次的）：根据定义（方程 2.47）利用升降

阶算符来表示 x 和 p ：                                                                             

                ( ); ( ).
2 2

mx a a p i a a
m

ω
ω + − + −= + = −
= =

               [2.69]                   

在目前这个例子中，我们对
2x 感兴趣：                                                              

                 2 2 2( ) ( ) ( ) ( ) .
2

x a a a a a a
mω + + − − + −⎡ ⎤= + + +⎣ ⎦
=

                               

所以 

1 11 , .n n n na n a nψ ψ ψ ψ+ + − −= + =

0
1 ( ) ,

!
n

n a
n

ψ ψ+=  



             * 2 2( ) ( ) ( ) ( ) .
4 n nV a a a a a a dxω ψ ψ+ + − − + −⎡ ⎤= + + +⎣ ⎦∫
=

                                   

但是
2( ) na ψ+ （除了归一化常数外）等于 2nψ + ，它和 nψ 是正交的，同样

2( ) na ψ− 正比于 2nψ −

是。所以这些项被去除，我们可以利用方程 2.65 计算余下的两项：                                      

                   
1 1( 1) .

4 2 2
V n n nω ω⎛ ⎞= + + = +⎜ ⎟

⎝ ⎠

= =                                            

可以看出，势能的期待值正好是总能量的一半（另一半当然是动能），这是线性谐振子的一

个特征，后面我们还会看到。                                                                       
                                                                                                 
                                                                                              
 
*习题 2.10                                                                                       
（a）构造出 2 ( )xψ 。                                                                              

（b）画出 0ψ ， 1ψ 和 2ψ 。 

（c）通过直接积分，检验， 0ψ ， 1ψ 和 2ψ 的正交性。提示：如果你利用函数的奇偶性，仅

需做一个积分。  
 
*习题 2.11                                                                                     
（a）通过直接积分计算 0ψ （2.59 式）和 1ψ  (2.62 式) 态的 x ， p ，

2x 及
2p 。注：

在涉及谐振子的问题中，如果你引入变量 /m xξ ω≡ = 和常数
1/ 4( / )mα ω π≡ = ，可以简化

问题。                                             
（b）对这些态验证不确定原理。  
（c）计算这些态的 T （平均动能）和 V （平均势能）。（无需再积分）你预期它们的和

会是什么？    
                                                
*习题 2.12                                                                                 
利用例题 2.5 中的方法，计算谐振子第 n 态的 x ， p ，

2x ，
2p 及 T 。验证它们

满足不确定原理。 
                                                                                  
习题 2.13  一个处于谐振子势的粒子的初始态为：                                                  
                         0 1( ,0) [3 ( ) 4 ( )].x A x xψ ψΨ = +                                            
（a）求出 A  。                                                                                   

（b）给出 ( , )x tΨ 和
2( , )x tΨ 。                                                                    

（c）计算 x 和 p 。如果它们是在以经典的频率在震荡，也不要太兴奋；如果用 2 ( )xψ 代

替 1( )xψ ，结果会怎样？验证 Ehrenfest 定理（1.38 式）对此波函数成立。                            
（d）如果测量这个粒子的能量，有哪些可能值？出现的几率是多少？  
                               
习题 2.14                                                                             
一个粒子处在有经典频率ω的基态，若突然改变频率：

' 2ω ω= ，而不改变原本的波函数（当

然，由于哈密顿的改变，波函数的演化要发生变化）。测量能量得到 / 2ω= 的几率是多少？

得到 ω= 的几率又是多少？[答案：0.943]                                                             
                                                                                                 
 
2.3.2 解析法                                                                         
 



我们现在重新回到谐振子的薛定谔方程                                                             

                       
2 2

2 2
2

1 ,
2 2

d m x E
m dx

ψ ω ψ ψ− + =
=

                       [2.70]                  

并用级数的方法直接去求解。如果我们引入一个无量纲的变量，公式会变得更加清晰                       

                              ;m xωξ ≡
=

                                [2.71]                   

用ξ ，薛定谔方程可以写为                                                                       

                            
2

2
2 ( ) ,d K

d
ψ ξ ψ
ξ

= −                             [2.72]                   

式中 K 是以 (1/ 2) ω= 为单位的能量：                                                                

                                
2 .EK
ω

≡
=

                                 [2.73]                  

我们的问题是解方程 2.72，并在求解过程中得到 K 可能值（从而 E ）。                                   
首先注意到，对于很大的ξ（即很大的 x ），含

2ξ 项起决定作用，相比之下可以略去含

K 的项，所以在这样的区域                                     

                               
2

2
2 ,d

d
ψ ξ ψ
ξ

≈                                [2.74]                  

其近似解为（验证它！）                                                                            

                           
2 2/ 2 / 2( ) .Ae Beξ ξψ ξ − +≈ +                        [2.75]                  

含 B 的项是不能归一化的（ x →∞时，它趋于无限大）；所以，物理上可接受的解应具有

的渐进形式为                                                                

                       
2 / 2( ) ( ) ,e ξψ ξ −→   当ξ 很大时.                      [2.76]                  

这意味着如果我们去掉                                                                           

                             
2 / 2( ) ( ) ,h e ξψ ξ ξ −=                            [2.77]                   

中的指数部分，可以期望 ( )h ξ 会有比 ( )ψ ξ 本身更简单的函数形式。23                                   
对方程 2.77 求导， 

                          
2 / 2 ,d dh h e

d d
ξψ ξ

ξ ξ
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

                     
2

2 2
2 / 2

2 2 2 ( 1) ,d d h dh h e
d d d

ξψ ξ ξ
ξ ξ ξ

−⎛ ⎞
= − + −⎜ ⎟
⎝ ⎠

                                      

薛定谔方程（方程 2.72）变为                                                                       

                          
2

2 2 ( 1) 0.d h dh K h
d d

ξ
ξ ξ

− + − =                       [2.78]                 

我们来寻求方程 2.78 的ξ 幂级数解 24                                                                

                      2
0 1 2

0

( ) .jj
j

h a a a aξ ξ ξ ξ
∞

=

= + + + ⋅ ⋅ ⋅ = ∑                  [2.79]                   

                                                        
23
尽管我们在写出 2.77 式时利用了某些近似结果，但是其后的过程是严格的。利用渐进结果的方法是用幂

级数方法解微分方程标准的第一步 ⎯ 参见，例如，Boas（脚标 11），第十二章。 
24
这是就是所谓的解微分方程的 Frobenius 方法。依据泰勒定理，任何有理无奇异行为的函数都可以展开为

幂级数，所以 2.79 式不失普遍性。关于应用这种方法的条件，参见 Boas（脚标 11）或 George B. Arfken 和

Hans-Jurgen Weber，物理学家的数学方法，第五版，Academic 出版社，Orlando（2000），8.5 节。 



对这个级数逐项求导,                                                                             

                    2 1
1 2 3

0

2 3 ,j
j

j

dh a a a ja
d

ξ ξ ξ
ξ

∞
−

=

= + + + ⋅ ⋅ ⋅ = ∑  

           
2

2
2 3 4 22

0

2 2 3 3 4 ( 1)( 2) .jj
j

d h a a a j j a
d

ξ ξ ξ
ξ

∞

+
=

= + ⋅ + ⋅ + ⋅ ⋅ ⋅ = + +∑  

把这些代入 2.78 式，可以得到：  

                 2
0

( 1)( 2) 2 ( 1) 0.j
j j j

j

j j a ja K a ξ
∞

+
=

⎡ ⎤+ + − + − =⎣ ⎦∑              [2.80]   

要使上式成立，（由幂级数展开的唯一性 25）每一个ξ 幂次前的系数必须为零，                            
                    2( 1)( 2) 2 ( 1) 0,j j jj j a ja K a++ + − + − =                  

因此：                                                                                          

                          2
(2 1 ) .
( 1)( 2)j j

j Ka a
j j+

+ −
=

+ +
                          [2.81]                  

这个递推公式完全等价于薛定谔方程。从 0a 开始，它能给出所有的偶系数：                              

             2 0 4 2 0
(1 ) (5 ) (5 )(1 ), , ,

2 12 24
K K K Ka a a a a− − − −

= = = ⋅ ⋅ ⋅                             

从 1a 开始，它能够给出所有的奇系数：                                                             

             3 1 5 3 1
(3 ) (7 ) (7 )(3 ), , ,

6 20 120
K K K Ka a a a a− − − −

= = = ⋅ ⋅ ⋅                            

我们把完整的解写作：                                                                           
                         ( )h h hξ ξ ξ= 偶 奇（ ）＋ （ ），                         [2.82]                  

其中                                                                                           
                       2 4

0 2 4( )h a a aξ ξ ξ≡ + + + ⋅ ⋅ ⋅
偶

                                           

是建立在 0a 之上的ξ 的偶函数，                                                            

                       3 5
1 3 5( )h a a aξ ξ ξ ξ≡ + + + ⋅ ⋅ ⋅

奇
                         

是建立在 1a 之上的ξ 的奇函数。所以方程 2.81 以两个任意常数（ 0a 和 1a ）确定了 ( )h ξ  ⎯
这正是我们解一个二阶微分方程所期待的。                                                           

然而，这样所得到的所有的解并非都是可归一化的。对于非常大的 j , 递推公式变为（近

似地）                                 

                                2
2 ,j ja a
j+ ≈                                     

其（近似）解为                                                                                   

                                ,
( / 2)!j

Ca
j

≈                             

这里C 是某个常数，这将导致（对很大的ξ ，高次项是主要的）                                         

                    
221 1( ) .

( / 2)! !
j jh C C Ce

j j
ξξ ξ ξ≈ ≈ ≈∑ ∑                              

现在，如果 h 的行为像
2exp( )ξ ，那么ψ 的行为就应该是

2exp( / 2)ξ （见 2.77 式），这种渐

进行为是我们所不希望的。26 这里仅有一种方法可以摆脱这种行为：对归一化的解，级数必

                                                        
25参见，例如，Arfken（脚标 24），5.7 节。 
26
不必惊讶，方程 2.81 仍然包含这些不良行为的解；这个递推关系等价于薛定鄂方程，所以它把我们在方

程 2.75 发现的两类渐进形式都包括在内。 



须在某处中断。这里必须存在某个“最高的”j（记它为n ），使得递推公式导致 2 0na + = （这

样可以切断h
偶
的级数或者h

奇
的级数；没有切断的一个必须从零开始：如果n 是偶数，则设

1 0a = ，如果n 是奇数，则设 0 0a = ）。所以对物理可接受的解，方程 2.81 要求                           
                                 2 1,K n= +                                        
其中 n 为非负的整数，也就是说（参见 2.73 式）能量必须是：                                          

                       
1 , 0,1,2,.....
2nE n nω⎛ ⎞= + =⎜ ⎟

⎝ ⎠
=                     [2.83]                  

这样，通过一种完全不同的方法,我们又一次得到了代数法所给出的 2.61 式所表示的重要的

量子化条件。                                                     
能量量子化产生于用幂级数解薛定谔方程的技术细节，这看起来十分惊讶，但是让我们

从一个不同的方面来讨论这个问题。当然，方程 2.70 对于任何值的 E 都是有解的（事实上，

对每个 E ，都有两个线性独立的解）。.但是绝大多数的解在 x 很大时呈指数增长，因此不能

归一化。例如，设想用一个比所允许值略小的 E （比如说0.49 ω= ），画出这个解（图 2.6
（a））；其“尾部”高起趋于无限大。若 E 略大（比如说0.51 ω= ），其“尾部”向下趋于无

限大（图 2.6(b)）。 当你从 0.49 到 0.51 以极小的间隔调节参数，当通过 0.5 时,尾巴倒转⎯
只有在精确 0.5 时尾部为零，成为一个可归一化的解。27                                               

 
图 2.6： 薛定谔方程的解（a） 0.49E ω= = ，(b) 0.51E ω= = 。 
                                                        
27

有可能在计算机上来做这件事，在“实验上”发现允许的能量。你可以称它为摇摆狗方法：当尾巴摇摆

时，你知道你刚好经过一个允许值。参见习题 2.54-2.56。 



对允许的 K 值，递归公式为                                                                        

                           2
2( ) .

( 1)( 2)j j
n ja a

j j+

− −
=

+ +
                         [2.84]                  

如果 0n = ，级数仅有一项（我们必须选择 1 0a = 去掉 h
奇
所有项，2.84 中令 0j = 导致

2 0a = ）：                                                                        

                                 0 0( ) ,h aξ =                        
因此：                                                                                           

                               
2 / 2

0 0( ) a e ξψ ξ −=                             

(除了归一化外，正是 2.59 所给结果)。对 1n = ，我们取 0 0a = ，28 在方程 2.84 中取 1j = 导

致 3 0a = ，所以                                                      

                                1 1( ) ,h aξ ξ=                                    
因此                                                                                            

                              
2 / 2

1 1( ) a e ξψ ξ ξ −=                                                   

（这与 2.62 式一致）。又 2n = ， 0j = 给出 2 02a a= − ， 2j = 给出 4 0a = ，所以  

                             2
2 0( ) (1 2 ),h aξ ξ= −                      

                          
22 / 2

2 0( ) (1 2 ) ,a e ξψ ξ ξ −= −                                               

其余可以类似得到。（和习题 2.10 比较，那里 2ψ 是用代数法得到的。）                                   

一般讲， ( )nh ξ 是一个最高幂次为 n 的ξ 的多项式，如果 n 是偶数，那么多项式中仅含

有偶次幂项，如果n 是一个奇数，那么多项式中仅含有奇次幂项。除了最前面的因子（ 0a 或

1a ）称它们为厄密多项式 ( )nH ξ 。292.1 表中给出了前几个厄密多项式。由惯例，已选择了

一个乘数因子以保证ξ 最高幂次的系数是2n
。这样一来，归一化的 30 谐振子定态是                        

                       
2

1/ 4
/ 21( ) ( ) .

2 !
n nn

mx H e
n

ξωψ ξ
π

−⎛ ⎞= ⎜ ⎟
⎝ ⎠=

                 [2.85]                 

它们同用代数法得到的结果 2.67 式是（当然）完全一样的。 
 

 
表 2.1 前几个厄米多项式 ( )nH ξ 。 

 
 
 

 
 
 
 
 
 
 
 
 

                                                        
28
注意对每个n 所对应的一套 ja 是完全不同的。 

29
在数学文献中厄密多项式已经有很深入的研究，有很多工具和技巧利用它们。在习题 2.17 中涉及到一些。 

30
我在这里将不给出归一化常数；如果你对如何得出它们有兴趣，参看，例如，Leonard Schiff 的量子力学，

第三版，McGraw-Hill，纽约 (1968), 第 13 节。 

0

1
2

2
3

3

4 2
4

5 3
5

1,
2 ,

4 1,

8 12 ,

16 48 12,

32 160 120 .

H
H

H

H

H

H

ξ

ξ

ξ ξ

ξ ξ

ξ ξ ξ

=
=

= −

= −

= − +

= − +



在图 2.7（a）中，我画出了对应前几个 n 的 ( )n xψ 。量子谐振子与它的经典伙伴完全不

同 ⎯ 不仅能量是量子化的，其位置分布也有新奇的特点。例如，在经典理论允许的范围之

外（即坐标 x 比能量确定的经典振幅大的地方）发现粒子的几率不为零（见习题 2.15），对

所有的奇数态在中心发现的粒子的几率为零。只有在 n 较大的情况下，我们才开始发现一些

与经典类似的情况。在图 2.7（b）中( 100)n = ，我把经典的位置分布和量子分布叠放在一

起；如果你平滑量子的峰谷，会发现两者拟合的很好（但是，在经典情况我们讨论的是一个

振子坐标对时间的分布，而在量子力学中我们讨论的是全同系综的分布）。31    

                      
 
图 2.7 (a) 谐振子的前四个定态. 此图的使用得到了 John Wiley & Sons, Inc. 的许可; Stephen 

Gasiorowicz, 量子物理, John Wiley & Sons, Inc., 1974. (b) 
2

100ψ 的图形, 虚线是经典几率分

布。 

                                                        
31

如果你把经典的分布也看成具有相同能量振子的系综，但是每个振子的开始时间是随机的，与量子的比

较会更直接。 



                                    
习题 2.15 在谐振子的基态发现粒子处于经典理论所允许的范围之外的几率是多少（精确到

三位数）？ 提示：经典上，谐振子的能量是
2 2 2(1/ 2) (1/ 2)E ka m aω= = ，其中a 是振幅。

所以一个具有能量 E 的振子的“经典允许范围”是从
22 /E mω− 到

22 /E mω 。参考数学

手册中“正态分布”或“误差函数”的数值积分。                                                         
                                                                                            
习题 2.61 利用递归公式（方程 2.84）计算出 5 ( )H ξ 和 6 ( )H ξ 。按照惯例选择常数使ξ 最高

幂次的系数是2n
。 

                                                                           
**习题 2.17 在这个问题中我们探讨一些有关厄密多项式的有用定理(不加证明)                            
(a) Rodrigues 公式指出：                                                                          

                       
2 2

( ) ( 1) .
n

n
n

dH e e
d

ξ ξξ
ξ

−⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
                        [2.86]                  

由它导出 3H 和 4H 。                                                                            

(b) 下面的递归关系式给出以相邻的两个厄密多项式表示的 1nH +                                         

                      1 1( ) 2 ( ) 2 ( ).n n nH H nHξ ξ ξ ξ+ −= −                       [2.87]                  

利用它和（a）中的结果，得出 5H 和 6H 。                                                           
(c) 如果你对一个n 阶多项式求导，可以得到一个 1n − 阶的多项式。对厄密多项式，事实上

有：                                                                                    

                            12 ( ).n
n

dH nH
d

ξ
ξ −=                              [2.88] 

通过对 5H 和 6H 求导检验上式。                                                                   

(d) ( )nH ξ 是母函数
2exp( 2 )z zξ− + 对 z 求 n 次导数后取 0z = 时的值，换句话说，它是母

函数的泰勒展开式中 / !nz n 项的系数：                                                              

                          
2 2

0
( ).

!

n
z z

n
n

ze H
n

ξ ξ
∞

− +

=

= ∑                            [2.89]  

利用这个公式导出 0 1,H H 和 2H 。 
 
                                 
2.4  自由粒子                                                           
 
接下来我们介绍在所有情况中本应当是最简单的情况：自由粒子（处处 ( ) 0V x = ）。                  
在经典理论中它意味着等速运动，但是在量子力学中这个问题相当微妙。定态薛定谔方程为:                  

                            
2 2

2 ,
2

d E
m dx

ψ ψ− =
=

                              [2.90]                  

或者                                                                                            

                    
2

2
2 ,d k

dx
ψ ψ= −  其中 

2 mEk ≡
=

                     [2.91]                  

目前为止，它与无限深方势阱里面是相同的（方程 2.21），势阱内势能也是零；现在，由下

面将看到的原因，我将用指数形式来表示其一般解：                                                  
                          ( ) .ikx ikxx Ae Beψ −= +                             [2.92]                  
与无限深方势阱不同，现在没有边界条件去限制 k 的取值（E 的取值）；自由粒子可以具有

任何（正的）能量值。加上标准的时间因子， exp( / )iEt− = ， 



                     2 2( , ) .
k kik x t ik x t
m mx t Ae Be

⎛ ⎞ ⎛ ⎞− − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠Ψ = +

= =

                      [2.93]                  
我们知道，任何函数以特定的组合 ( )x vt± 依赖变量 x 和 t （对某个常数 v ）都代表一

个具有固定波形的在 x∓ 方向传播的波。波形上一个固定点（例如，最高点或最低点）对应

着宗变量的一个固定值，使得变量 x 和 t 满足 
               x vt± =常数，或者  x vt= +∓ 常数  

既然波形上的每一点都以同样的速度运动，波形的形状在转播的过程中是不改变的。这样

2.93 式右边的第一项代表一个向右转播的波，而第二项代表一个向左的波(能量相同)。顺便

提及，既然这两个波的区别仅在于 k 前面的正负号，我们也可以写作 

                          
2

( )
2( , ) ,
ki kx t
m

k x t Ae
−

Ψ =
=

                            [2.94] 
并让 k 可以取负值以包括向左传播的波： 

                   
02 ,
0

       
kmEk
k
> ⇒⎧

≡ ± ⎨ < ⇒⎩=
向右传播，

向左传播.
                    [2.95] 

显然，自由粒子的“定态”是传播着的波；它们的波长是 2 / kλ π= ，按照德布罗意公式

（1.39 式）它们具有动量 
                            .p k= =                                       [2.96] 

这些波的速度( t 前面的系数除以 x 前面的系数)是 

                    .
2 2

k Ev
m m

= =
=

量子                                [2.97] 

另一方面，一个具有能量
2(1/ 2)E mv= （纯动能，既然势能 0V = ）的经典自由粒子的速

度是 

                        
2 2 .Ev v
m

= = 量子经典
                               [2.98] 

表面看来量子力学波的传播速度只有它所代表的粒子经典速度的一半！我们马上会回到这个

佯谬 ⎯ 这里还有一个更严重的问题需要我们首先面对：这个波函数是不可归一化的。因为 

                    
2 2* ( ).k kdx A dx A

∞ ∞

−∞ −∞
Ψ Ψ = = ∞∫ ∫                       [2.99] 

对自由粒子来讲，分离变量解并不代表物理上可实现的态。一个自由粒子不能存在于一个定

态；或者，换句话说，不存在一个自由粒子具有确定能量这样的事情。 
但是这个并不意味着分离变量解对我们没有用途，因为它们的数学地位是完全不依赖

于它们的物理解释的。含时薛定鄂方程的一般解仍旧是分离变量解的线性迭加（此时对连续

变量 k 的一个积分取代了对分立指标n 的求和）： 
                
 

[2.100] 
 
 
 

(引入因子1/ 2π 是为了方便；在 2.17 式中 nc 所扮演的角色现在是组合 (1/ 2 ) ( )k dkπ φ 。)
现在这个波函数是可以归一化的（对适当的 ( )kφ ）。但是必须是对 k 的一个范围，因此能量

和速度也有一个范围。我们称这样的波为波包。32 

       在一般的量子力学问题中，是给出 ( ,0)xΨ ，求 ( , )x tΨ 。对自由粒子的 2.100 式形式

的解，仅有的问题是如何确定匹配初始波函数的 ( )kφ ： 

                                                        
32

正弦波扩展到无限远，它们是不可归一化的。但是这样波的迭加会产生干涉，从而是可以局域化和归一

化的。 

2
( )

21( , ) ( ) .
2

ki kx t
mx t k e dkφ

π

−∞

−∞
Ψ = ∫

=



                  
1( ,0) ( ) .
2

ikxx k e dkφ
π

∞

−∞
Ψ = ∫                        [2.101] 

这是傅立叶变换中的一个经典问题；答案由 Plancherel 定理提供（见习题 2.20）： 
     
 

[2.102] 
 
 

 
( )F k 称为 ( )f x 的傅立叶变换； ( )f x 称为 ( )F k 的逆傅立叶变换（仅有的不同是指数上的

正负号）。当然，对所允许的函数要有某些限制：积分必须存在。33 对我们的目的而言，这

个可由 ( ,0)xΨ 本身是归一化的物理要求保证。所以，对 2.100 式中自由粒子一般问题的解, 
               
               

[2.103] 
 
 
 

 

 
例题 2.6 一个自由粒子初始时刻是局域在区间 a x a− < < ，然后在 0t = 释放： 

                      
,,

( ,0)
         
                 

a x aA
x

− < <⎧
Ψ = ⎨

⎩

若 

其余地方,0，
 

式中 A和 a 是正的实数。求 ( , )x tΨ 。 
解：首先我们需要归一化 ( ,0)xΨ ： 

             
2 2 2 11 ( ,0) 2 .

2
  

a

a
x dx A dx a A A

a
∞

−∞ −
= Ψ = = ⇒ =∫ ∫  

其次我们利用 2.103 式计算 ( )kφ ： 

                 

1 1 1( )
2 2 2

1 1 sin( ) .
2

       

aikxa ikx

a
a

ika ika

ek e dx
ika a

e e ka
i kk a a

φ
π π

π π

−
−

−
−

−

= =
−

⎛ ⎞−
= =⎜ ⎟

⎝ ⎠

∫
 

最后把 ( )kφ 代回 2.100 式中： 

               
2

( )
21 sin( )( , ) .

2

ki kx t
mkax t e dk

kaπ

−∞

−∞
Ψ = ∫

=

                  [2.104] 

不幸的是，尽管这个积分可以用数值积分演算（图 2.8），但是它不能积成基本函数。(事实

上， ( , )x tΨ 的积分只有很少情况可以严格积出；一个特别优美的例子参见习题 2.22。) 
探讨极限情况很有启发。如果 a 非常小，初始波函数为很窄的针状（图 2.9(a)）。在这

种情况下，有 sin( )ka ka≈ ，因此有 

                          ( ) ;akφ
π

≈  

k 不出现， ( )kφ 很平坦（图 2.9(b)）。这是不确定原理的一个例子：如果坐标的弥散很小，

动量的弥散（因此 k 的⎯见 2.96 式）必须很大。在另一种极限下（ a 很大），坐标的弥散很

                                                        
33
对 ( )f x 充分必要条件是积分

2
( )f x dx∞

−∞∫ 为有限的。（在这种情况下
2

( )F k dk∞
−∞∫ 也是有限的，事实上

两个积分是相等的。）参见 Arfken（脚标 24），15.5 节。 

1 1( ) ( ) ( ) ( ) .
2 2

ikx ikxf x F k e dk F k f x e dx
π π

∞ ∞ −

−∞ −∞
= ⇔ =∫ ∫  

1( ) ( ,0) .
2

ikxk x e dxφ
π

∞ −

−∞
= Ψ∫



大（图 2.10(a)，而 

                            
sin( )( ) .a kak

ka
φ

π
=   

现在，sin /z z的最大值在 0z = ，并当 z π= ± 时为零（这对应 /k aπ= ± ）。所以对较大的

a ， ( )kφ 是以 0k = 为中心的一个窄峰（图 2.10(b)）。此种情况下，有一个较确定的动量，

但是坐标不再很好确定。 
 

 

 

图 2.8：
2( , )x tΨ 在 0t = （矩形）和

2 /t ma= =（曲线）时的图形。 
 

 
 
图 2.9：对小a 情况下，例题 2.6 中 ( ,0)xΨ 的图形（a）， ( )kφ 的图形（b）。 
 
 
 
 
 
 



 
图 2.10：例题 2.6 中对大a 情况下（a） ( ,0)xΨ 的图形，（b） ( )kφ 的图形。 
 

 
现在我们回到前面提到的佯谬：2.94 式中的表示一个粒子的分离变量解 ( , )k x tΨ 以一

个”错误”的速度传播。严格来讲，这样的问题是不存在的，因为我们发现 kΨ 不代表一个物

理上可实现的态。不过，发现自由粒子的波函数（2.100 式）包含有速度的什么信息是令人

感兴趣的。基本的思想是：一个波包是正弦函数的迭加，其振幅由 ( )kφ 调制（图 2.11）；在

一个“包络线”内含有“波纹”。对应粒子速度的不是一个个别波纹的速度（所谓的相速度），

而是包络线的速度（群速度）⎯ 这个速度，取决于波包的本质，可以比组成波包的波纹的

速度大或小。对一个弦波，群速度等于相速度。对水波，当你向水塘扔进一块石头，也许曾

注意到，群速度是相速度的一半（如果你注意一个个别波纹，你会发现它在后部生成，向前

运动越过群体，在前面衰减，而群体则以个别波纹的一半速度传播）。我现在要证明的是在

量子力学中自由粒子波函数的群速度是相速度的两倍 ⎯ 正好代表经典粒子的速度。 
现在的问题是确定一般形式波包 

                   ( )1( , ) ( )
2

i kx tx t k e dkωφ
π

∞ −

−∞
Ψ = ∫  

的群速度。（对我们的情况
2( / 2 )k mω = = ，但是我现在讲的对所有种类的波包都适用，无

论它的色散关系 ⎯ ω对 k 的依赖关系 ⎯ 如何。）让我们假定 ( )kφ 是在某个 0k 处的一个

狭窄分布。（一个宽的分布也是允许的，但是这样的波包波形变化很快 ⎯ 因为不同的组分

有不同的速度 ⎯ 所以具有一个很好定义的速度的“群” 的整体概念就会失去意义。）既然

除了 0k 附近外积分可以被忽略，我们可以在这一点对 ( )kω 做泰勒展开，并仅保留到一次项： 

                    '
0 0 0( ) ( ),k k kω ω ω≅ + −  

式中
'
0ω 是ω对 k 的导数在 0k 的值。 

    做变量变换从 k 到 0s k k≡ − （使积分区间的中心在 0k ），我们有 

                  
'

0 0 0[( ) ( ) )
0

1( , ) ( ) .
2

i k s x tx t k s e dsω ωφ
π

∞ + − +

−∞
Ψ ≅ +∫  

在 0t = 时， 

                       0( )
0

1( ,0) ( ) ,
2

i k s xx k s e dsφ
π

∞ +

−∞
Ψ = +∫  

在以后时刻 



                
' '

0 0 0 0 0( ) [( )( )
0

1( , ) ( ) .
2

i t k t i k s x tx t e k s e dsω ω ωφ
π

∞− + + −

−∞
Ψ ≅ +∫  

除了 x 变换到
'
0( )x tω− 外，这个积分同 ( ,0)xΨ 的积分是一样的。所以 

                       
'

0 0 0( ) '
0( , ) ( ,0).i k tx t e x tω ω ω− +Ψ ≅ Ψ −                    [2.105] 

 
图 2.11： 一个波包。“包络线”以群速度传播；“波纹”以相速度传播。 
 

除了前面的一个相因子(它在任何方面都不影响
2Ψ )外，这个波包显然以速度

'
0ω 运动： 

                               
dv
dt
ω

=群
                                 [2.106] 

（在 0k k= 取值）。这和普通的相速度 

                               v
k
ω

=相                                   [2.107] 

是不一样的。在我们情况中，
2( / 2 )k mω = = ，所以 / ( / 2 )k k mω = = ，而 / ( / )d dk k mω = = ，

正好是相速度的 2 倍。这证实了与经典粒子速度相匹配的是波包的群速度而不是定态的相速

度： 
                            2 .v v v= =

经典 群 相
                             [2.107] 

 
习题 2..18 证明[ ]ikx ikxAe Be−+ 和[ cos sin ]C kx D kx+ 是写 x 相同函数的等价方式，用 A和

B 表示C 和 D ，及用C 和 D 表示 A和 B 。注：在量子力学中，指数形式代表一个行波，

在讨论自由粒子时最为方便，而正弦和余弦对应于驻波，它们在无限深方势阱问题中自然出

现。 
 
 
习题 2..19 求出自由粒子波函数 2.94 式的几率流，J（习题 1.14），几率流朝那个方向流动？ 
 
 
**习题 2..20 本题的目的是指导你们熟悉 Plancherel 定理的证明，从在一个有限区间的普通

傅立叶级数理论出发扩展到无限区间。 
（a） Plancherel 定理说“任何”在区间[ , ]a a− 的函数 ( )f x 可以展开为傅立叶级数： 

                   
0

( ) [ sin( / ) cos( / )].n n
n

f x a n x a b n x aπ π
∞

=

= +∑  

证明这可以等价写为 

                            /( ) .in x a
n

n

f x c e π
∞

=−∞

= ∑  



      以 na 和 nb 表示， nc 为什么？ 
（b） 证明（由傅立叶技巧的适当改变） 

                          /1 ( ) .
2

a in x a
n a

c f x e dx
a

π−

−
= ∫  

（c） 引入新变量 ( / )k n aπ= 和 ( ) 2 / nF k acπ= 取代 n 和 nc 。证明（a）和（b）现在成

为 

                
1 1( ) ( ) ; ( ) ( ) ,
2 2

        
aikx ikx

a
n

f x F k e k F k f x e dx
π π

∞
−

−
=−∞

= Δ =∑ ∫  

     其中 kΔ 是 n 变化 1 时 k 的增量。 
（d）取a →∞得到 Plancherel 定理。注：鉴于它们非常不同的起源，很惊奇（也很有趣）

两个公式 ⎯ 一个是以 ( )f x 表示的 ( )F k ，另一个是以 ( )F k 表示的 ( )f x  ⎯ 在
a →∞时有相同的结构。 

 
习题 2..21  一个自由粒子的初始波函数为 
                            ( ,0) ,a xx A−Ψ =  
其中 A和 a 是正的实常数。 
（a） 归一化 ( ,0)xΨ 。 
（b） 求出 ( )kφ 。 
（c） 以积分形式写出 ( , )x tΨ 。 
（d） 讨论极限情况（ a 很大，a 很小）。 
 
*习题 2..22 高斯波包。一个自由粒子的初始波函数为 

                           
2

( ,0) ,axx A−Ψ =  
其中 A和 a 是常数（a 是正的实数）。 
（a） 归一化 ( ,0)xΨ 。 
（b） 求出 ( , )x tΨ 。提示：积分 

                           
2( )ax bxe dx

∞ − +

−∞∫  

可 以 由 “ 配 平 方 ” 的 方 法 处 理 ； 令 [ ( / 2 )]y a x b a≡ + ， 并 注 意 到
2 2 2( ) ( / 4 )ax bx y b a+ = − 。答案： 

                 
22 /[1 (2 / )]2( , ) .

1 (2 / )

ax i at ma ex t
i at mπ

− +⎛ ⎞Ψ = ⎜ ⎟ +⎝ ⎠

=

=
 

（c） 求出
2( , )x tΨ ，以量 

                          2 .
1 (2 / )

a
at m

ω ≡
+ =

 

      画出 0t = 时和 t 很大时的
2Ψ （作为 x 的函数）。定性上，当时间增加时，

2Ψ 有什

么变化？ 
（d） 求出

2 2, , , ,    xx p x p σ 和 pσ 。部分答案：
2 2p a= = ，但是得到这个简

单形式需要做一些代数运算。 
（e） 不确定原理成立吗？在什么时间体系最接近不确定原理的极限。 
 
 
 



2.5 δ 函数势 
 
2.5.1 束缚态和散射态 
 
我们已经遇到定态薛定鄂方程的两类非常不同的解：对无限深方势阱和谐振子它们是可归一

化的，解由分立的指标 n 标记；对自由粒子它们是不可归一化的，解用一个连续的变量 k 标

记。前者本身就代表物理上可实现的态，而后者不是；但是在两种情况下含时薛定鄂方程的

一般解都是定态解的线性迭加 ⎯ 对第一类这种迭加是求和的形式（对n ），而对第二类这

种迭加是一个积分（对 k ）。这种区别的物理意义是什么？ 
   在经典力学中一个一维不含时的势可以给出两种非常不同的运动。如果 ( )V x 在两边都比

粒子的总能（ E ）高（图 2.12(a)），则粒子被限制在势阱内 ⎯ 它在两个拐点之间运动，但

是它不能逃逸掉（除非，当然，你给它提供额外的能量源，比如一个马达，但是我们不讨论

这种情况）。我们称这种情况为束缚态。在另一方面，如果 E 在一边（或两边）超过 ( )V x ，

则从“无限远”过来的粒子在势的影响下减速或加速，然后折回无限远处（图 2.12(b)）。（它

不能被囚禁在势中，除非存在某种机制，比如说摩擦，引起能量的耗散，但是同样，我们也

不讨论这样的情况。）我们称这种情况为散射态。某些势仅允许束缚态（例如，谐振子）；某

些势仅允许散射态（例如，一个逐渐升高而没有低谷的势）；依据粒子的能量，还有一些势

两者都允许。 
   薛定鄂方程的两类解恰好对应束缚态和散射态。这种区分在量子的范畴甚至更清晰，因

为隧道效应（我们会马上讨论到）允许粒子“渗透”穿过任何有限的势垒，所以最关键的是

无限远处的势（图 2.12（c））： 

                 
[ ( ) ( )]
[ ( ) ( )]

    
    

E V V
E V V
< −∞ ∞ ⇒⎧

⎨ > −∞ ∞ ⇒⎩

和 束缚态，

或 散射态.
                       [2.109] 

在“真实世界”大多数势在无限远处趋于零，在这种情况下上面的判据变得更为简化： 

                        
0
0
  
  

E
E
< ⇒⎧

⎨ > ⇒⎩

束缚态，

散射态.
                               [2.110] 

由于无限深方势阱和谐振子势在 x →±∞趋于无限大，它们仅允许束缚态；由于自由粒子的

势是处处为零，它仅允许散射态。34在本节（及下节）我们将探讨能给出两类态的势。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        
34
如果你观察的很细心，你也许已经注意到，由于不可归一化，要求 minE V> 的一般定理对散射态不适用。

如果你有疑问，尝试对自由粒子解 0E ≤ 的薛定鄂方程，会发现即便是这些解的线性迭加也不能被归一化。

正能量解自身构成一个完备集。 



 
图 2.12：（a）束缚态。（b）散射态。（c）一个经典的束缚态，但是是量子的散射态。 
 
2.5.2 δ -函数势阱 

 
狄拉克(Dirak)δ 函数是原点处一个无限高，无限窄的峰尖，其面积是 1（图 2.13）： 

            
0, 0

( ) , ( ) 1.
, 0 -

  
        

     
       

x
x x dx

x
δ δ

∞

∞

≠⎧ ⎫
≡ =⎨ ⎬∞ =⎩ ⎭

∫
如果

且
如果

                 [2.111] 

技术上讲，它根本就不是一个函数，因为它在 0x = 不是有限的（数学家称它为推广函数，

或广义函数）。35 不过，它在理论物理中非常有用。（例如，在电动力学中一个点电荷的电荷

密度就是一个δ 函数。）注意到 ( )x aδ − 是在点 a 面积为 1 的一个尖峰。如果你把 ( )x aδ −
乘以一个普通函数 ( )f x ，这与乘以 ( )f a 是一样的， 
                     ( ) ( ) ( ) ( ),f x x a f a x aδ δ− = −                         [2.112] 
因为除了点 a 外乘积处处为零。特别有， 

               ( ) ( ) ( ) ( ) ( ).f x x a dx f a x a dx f aδ δ
∞ ∞

−∞ −∞
− = − =∫ ∫              [2.113] 

这是δ 函数最重要的性质：在积分号下它“挑选出” ( )f x 在 a 点的值。（当然，积分不必

                                                        
35 δ 函数可以认为是一个序列函数的极限，比如高度不断增加，宽度不断减小的矩形（或三角形）。 



从−∞到∞；重要的是积分要包含点a ，所以对任何 0ε > ，从 a ε− 积到a ε+ 就行。） 
让我们考虑下列形式的势 
                         ( ) ( ),V x xαδ= −                             [2.114] 

其中α 为某个正的常数。36 固然，这是一个模拟势（同无限深方势阱一样），但是它十分

简单便于处理，可以以最少的数学来阐明基本理论。δ 函数势阱的薛定鄂方程为 

                       
2 2

2 ( ) ;
2

d x E
m dx

ψ αδ ψ ψ− − =
=

                       [2.115] 

由它可以得到束缚态（ 0E < ）和散射态（ 0E > ）。 
首先来看束缚态。在 0x < 区域， ( ) 0V x = ，所以 

                    
2

2
2 2

2 ,d mE
dx
ψ ψ κ ψ= − =

=
                         [2.116] 

式中 

                             
2 .mEκ −

≡
=

                              [2.117] 

（由假设 E 为负值，所以κ 是正的实数。）方程 2.116 的一般解是 
                        ( ) ,x xx Ae Beκ κψ −= +                              [2.118] 
但是当 x →−∞时第一项趋于无限大，所以我们必须令 0A = ： 
                       ( ) , ( 0).     xx Be xκψ = <                            [2.119] 
 

图 2.13：δ 函数（2.111 式）。 

 
 
图 2.14：δ 函数势的束缚态波函数（2.122 式） 

                                                        
36 δ 函数本身具有量纲 1/长度(见 2.111 式)，所以α 的量纲为能量×长度。 



在 0x > 区域， ( )V x 同样为零，一般解的形式时
x xFe Geκ κ− + ；不过此时当 x →+∞时第

二项趋于无限大，所以 
                       ( ) , ( 0).    xx Fe xκψ −= >                            [2.120] 
   现在仅需利用在 0x = 的适当边界条件把两个函数结合在一起。我引用前面讲过的ψ 应

满足的标准边界条件： 
 
                 

 
[2.121] 

 
 
 
在现在的情况下，第一个边界条件告诉我们 F B= ，所以 

                       
, ( 0),

( )
, ( 0);
    
   

x

x

Be x
x

Be x

κ

κ
ψ

−

⎧ ≤
= ⎨

≥⎩
                           [2.122] 

图 2.14 画出 ( )xψ 。第二个边界条件不告诉我们任何事情；这是V 在结合处为无穷大的例外

情况（同无限深方势阱一样），从图中可以清楚看出函数在 0x = 处有一个弯折。另外，除

了 0x = 点外，δ 函数对我们的问题没有任何影响。显然ψ 的导数在 0x = 的不连续是由δ
函数决定的。现在来看 δ 函数的作用，作为一个副产物我们将明白为什么通常情况下

/d dxψ 是连续的。 
    基本思想是对薛定鄂方程从 ε− 到ε 积分，然后取 0ε → 的极限： 

              
2 2

2 ( ) ( ) ( ) .
2

d dx V x x dx E x dx
m dx

ε ε ε

ε ε ε

ψ ψ ψ
− − −

− + =∫ ∫ ∫
=

               [2.123] 

第一个积分是 /d dxψ ，并在两个端点处取值；最后一个积分在ε →0 极限下为零，因为它

是一个高度有限宽度为零的长条的面积。这样 

             2 0

2 lim ( ) ( ) .d m V x x dx
dx x x

ε

εε
ε ε

ψ ψ ψ ψ
−→

+ −

∂ ∂⎛ ⎞Δ ≡ − =⎜ ⎟ ∂ ∂⎝ ⎠ ∫=
             [2.124] 

一般的，右边的极限也是零，这就是为什么在通常情况下 /d dxψ 是连续的。但是，当 ( )V x
在边界上是无穷大时，这个结论不再成立。具体有，如果 ( ) ( )V x xαδ= − ，2.113 式给出 

                        2

2 (0).d m
dx
ψ αψ⎛ ⎞Δ = −⎜ ⎟

⎝ ⎠ =
                           [2.125] 

对现在的情况(2.122 式), 

           
/ , ( 0), / ,
/ , ( 0), / ,

     
     

x

x

d dx B e x d dx B
d dx B e x d dx B

κ

κ

ψ κ ψ κ
ψ κ ψ κ

−
+

+
−

⎧ = − > = −⎪
⎨ = + < = +⎪⎩

所以

所以
 

因此 ( / ) 2d dx Bψ κΔ = − 。代入 (0) Bψ = ，2.125 式给出 

                              2 ,mακ =
=

                                  [2.126] 

允许的能量值(2.117 式)是 

                         
2 2 2

2 .
2 2

mE
m
κ α

= − = −
=

=
                            [2.127] 

最后,我们归一化ψ ： 

               
22 2 2

0
( ) 2 1,x B
x dx B e dxκψ

κ
∞ ∞ −

−∞
= = =∫ ∫  

所以（方便起见，选择正的实根）： 

.

1.
2. /

                                      
     d dx
ψ
ψ

⎧
⎨
⎩

总是连续的

除了势是无穷大点外是连续的

；



                            .mB ακ= =
=

                             [2.128] 

显然对δ 函数势阱，无论它的“强度”α 如何，仅有一个束缚态： 
 
                  

[2.129] 
 
 
 

0E > 的散射态如何？当 0x < 薛定鄂方程为 

                     
2

2
2 2

2 ,d mE k
dx
ψ ψ ψ= − = −

=
 

其中 

                               
2mEk ≡
=

                              [2.130] 

是实的和正的。一般解是 
                            ( ) ,ikx ikxx Ae Beψ −= +                          [2.131] 
这一次两项都不能丢掉，因为它们都不趋于无穷大。类似的，对 0x < ， 
                            ( ) .ikx ikxx Fe Geψ −= +                          [2.132] 

( )xψ 在 0x = 处的连续性要求 
                             .F G A B+ = +                              [2.133] 
导数为 

      
/ ( ), ( 0), / ( ),
/ ( ), ( 0), / ( ),

            
             

ikx ikx

ikx ikx

d dx ik Fe Ge x d dx ik F G
d dx ik Ae Be x d dx ik A B
ψ ψ
ψ ψ

−
+

−
−

⎧ = − > = −⎪
⎨ = − < = −⎪⎩

对 所以

对 所以
 

所以 ( / ) ( )d dx ik F G A BψΔ = − − + 。另外， (0) ( )A Bψ = + ，所以，第二个边界条件（2.125
式）为 

                     2

2( ) ( ),mik F G A B A Bα
− − + = − +

=
                   [2.134] 

或者，更紧凑些， 

            2(1 2 ) (1 2 ), .         mF G A i B i
k
αβ β β− = + − − ≡
=

其中              [2.135] 

 

图 2.15 δ函数势阱的散射. 
 
 
 

2
2

/
2( ) ; .

2
       m xm mx e Eαα αψ −= = −=

= =



     考虑边界条件后，我们得到关于 4 个未知数（ , ,  A B F 和G ）⎯ 如果 k 也计入是 5
个 ⎯ 的两个方程。归一化不会有任何帮助 ⎯ 这不是可归一化的态。也许我们最好暂停一

下，考察一下这些常数的物理意义。我们已经知道 exp( )ikx 是（和含时因子 exp( / )iEt− = 结

合在一起时）一个向右传播的波，exp( )ikx− 是向左传播的波。这样 A（在 2.131 式中）是

从左边过来的波的振幅，B 是返回左边的波的振幅，F（2.132 式）是向右离开的波的振幅，

G 是从右边过来的波的振幅（见图 2.15）。在通常的散射实验中，粒子是由一个方向入射的

⎯ 比如说，从左边。在这种情况下，从右边来的波的振幅将为零： 
                       0, ;             G = 对从左边入射（ ）                    [2.136] 
A是入射波的振幅，B 是反射波的振幅，F 是透射波的振幅。对B 和 F 解方程 2.133 和 2.135,
我们有 

                      
1, .

1 1
        iB A F A

i i
β
β β

= =
− −

                      [2.137] 

(如果你想研究从右边入射情况，令 0A = ；则G 是入射波振幅，F 是反射波振幅，B 是透

射波振幅。) 

现在，在一个特定区域发现粒子的几率是
2ψ ，所以入射粒子将被反射回的相对几率 37

是 

                       
2 2

2 2 .
1

B
R

A
β
β

≡ =
+

                             [2.138] 

R 被成为反射系数。（如果有一束粒子，它告诉你入射粒子中被反射回的比例。）同样，透

射几率由透射系数给出 

                           
2

2 2

1 .
1

F
T

A β
≡ =

+
                             [2.139] 

当然，这两个几率之和应当为 1 ⎯ 也就是： 
                               1.R T+ =                                 [2.140] 
注意到 R 和T 是 β 的函数，从而是 E （2.130 和 2.135 式）的函数： 
 
 

[2.141] 
 
 
 

可以看出，能量越高，透射几率就越大（这当然是合理的）。 
    这些结果非常不错，但是还有一个原则上的棘手问题我们不能忽略：这些散射波函数是

不可归一化的，所以它们实际上不代表可能的粒子态。但是我们知道如何解决这个问题：我

们必须构造定态解的可归一化的线性迭加，正如我们对自由粒子做的那样 ⎯ 真实的物理粒

子是由迭加而成的波包所表示的。尽管原理上直截了当，但是在实际中做起来却不太容易，

此时使用计算机也许是最好的方法。38 另外，如果不涉及能量的一个范围，构造可归一化的

自由粒子波函数是不可能的， R 和T 应当被理解为粒子的能量在 E 附近时的近似的反射和

透射系数。 
    顺便提及，你们可能感到奇怪，我们怎么能够用定态去分析一个本质上是含时的问题（粒

子入射过来，被势散射，然后又回到无限远处）。首先，ψ （在 2.131 和 2.132 中）只是一

个复的、不依赖时间的正弦函数，在两个方向上都扩展（有着常数振幅）到无限远。其次，

                                                        
37

这不是一个可归一化的波函数，所以发现一个粒子处在一个特定区域的绝对几率没法定义；不过，入射

波同反射波的几率之比却是有意义的。下一节会给出更多讨论。 
38
波包由势阱和势垒散射的数值研究可给出非常丰富的结构。经典的分析可见 A. Goldberg, H.M. Schey,  

J.L. Schwartz, Am. J. Phys. 35,177(1967); 更近期的工作可以在 Web 找到。  

2 2 2 2

1 1, .
1 (2 / ) 1 ( / 2 )

      R T
E m m Eα α

= =
+ += =



对这个波函数加上适当的边界条件，我们能够决定一个粒子（由一个局域化的波包表示）被

势反射或透射的几率。隐藏在背后的数学秘密是，事实上，由分布在整个空间态的线性迭加

以及通常的行波时间依赖关系，我们可以构造局域在一（运动着的）点有相当完善的时间行

为的波函数。 
只要我们已经理解了相关问题，让我们来简短讨论一下δ 函数势垒情况（图 2.16）。形

式上,我们只需要改变α 前的−号为+号。当然，这样一来束缚态就不存在了（见习题 2.2）。
另一方面，由于反射和透射系数仅依赖于

2α ,它们是不改变的。说也奇怪，粒子越过势垒就

像它通过势阱一样！当然，经典上，一个粒子无论其能量如何是不能越过一个无限高势垒的。

事实上，经典的散射问题相当单调：如果 maxE V> 则 1, 0T R= =  ⎯ 粒子越过势垒；如果

maxE V< 则 0, 1T R= =  ⎯ 它爬上山坡动能耗尽，然后按原路返回。而量子散射现象却非

常丰富：即使是在 maxE V< 情况下，粒子也有越过势垒的几率。我们称这种现象为隧道效应；

这是许多现代电子学技术成为可能的基础 ⎯ 更不用说在电子显微镜方面的进展。反过来也

一样，即使 maxE V> ，也存在粒子被反射的几率 ⎯ 尽管如此我也不建议你驶下悬崖指望

量子力学能够救你（见习题 2.35）。 

图 2.16 δ函数势垒。 
 
 

 
*习题 2.23 计算下列积分: 

(a) 
1 3 2

3
( 3 2 1) ( 2) .x x x x dxδ

+

−
− + − +∫  

(b) 
0

[cos(3 ) 2] ( ) .x x dxδ π
∞

+ −∫  

(c) 
1

1
exp( 3) ( 2) .x x dxδ

+

−
+ −∫  

 
习题 2.24 称两个涉及δ 函数的表示式 1( )D x 和 2 ( )D x 是相等的，如果对任何（普通）函数

( )f x 都有 

                 1 2( ) ( ) ( ) ( ) .f x D x dx f x D x dx
+∞ ∞

−∞ −∞
=∫ ∫  

（a） 证明 

                          
1( ) ( ),cx x
c

δ δ=                                 [2.142] 

式中 c是一个实常数。（一定要检验 c是负的情况。） 
（b） 设 ( )xθ 是阶梯函数： 

                          
1, 0,

( )
0, 0.

          
          

x
x

x
θ

>⎧
≡ ⎨ <⎩

如果

如果
                      [2.143] 

（在少数情况下，我们需要 (0)θ ，我们定义 (0) 1/ 2θ = ）证明 / ( )d dx xθ δ= 。 



 
**习题 2.25 对 2.129 式中的波函数验证不确定原理。提示：计算

2p 要当心，因为ψ 的导

数在 0x = 有一个阶梯形的不连续。利用习题 2.24(b)的结果。部分答案：
2 2( / )p mα= = 。 

 
*习题 2.26 ( )xδ 的傅立叶变换是什么?利用 Plancherel 定理证明 

                          
1( ) .

2
ikxx e dxδ

π
∞

−∞
= ∫                             [2.144] 

注：这个公式会使很多数学家困惑。虽然这个积分在 0x = 明显为无限大，但是当 0x ≠ 它

并不收敛（0 或其它），因为积分永远振荡。一些方法可以修补这个问题（例如，你可以从 L−
到 L积分，然后令 L →∞，并把 2.144 式解释为有限积分的平均值）。问题的根源是由于δ
函数不满足 Plancherel 定理所要求的平方可积性（见脚标 33）。尽管如此，如果小心对待，

2.144 式是极其有用。 
 
*习题 2.27 考虑双δ 函数势 
                       ( ) [ ( ) ( )],V x x a x aα δ δ= − + + −  
其中α 和 a 正的常数。 
（a） 画出这个势。 
（b） 存在多少个束缚态？当

2 / maα = = 和
2 / 4maα = = 时，求出允许的能级，并画出  

出波函数。 
 

 
**习题 2.28 对于问题 2.27 中的势能，求出透射系数。 

 
 
2.6 有限深方势阱                                                         
 
作为最后一个例子，考虑有限深方势阱： 

                     
0,       ,

( )
0,            x ,
V a x a

V x
a

− − < <⎧⎪= ⎨ >⎪⎩
                 [2.145] 

其中 0V 是(正的)常数（图 2.17）。和 δ 函数势阱一样，这个势允许有束缚态（ 0E < ）以及

散射态（ 0E > ）。我们首先来看束缚态。 

图 2.17 有限深方势阱(2.145 式). 
 

在 x a< − 区域，势为零，所以薛定谔方程为： 



2 2

2 ,
2

d E
m dx

ψ ψ− =
=

  或  
2

2
2 ,d

dx
ψ κ ψ=     

其中 

2mEκ −
≡

=
                               [2.146] 

是正的实数。一般解是 ( ) exp( ) exp( )x A x B xψ κ κ= − + ，但是，当 x → −∞时，解的第一

项趋于无穷大，所以物理所许可的解（如同以前⎯见 2.119 式）是 
( ) exp( ),x B xψ κ=       x a< −                  [2.147] 

在 a x a− < < 区域， 0( )V x V= − ，薛定谔方程为： 
2 2

02 ,
2

d V E
m dx

ψ ψ ψ− − =
=

   或    
2

2
2 ,d l

dx
ψ ψ= −         

其中 

02 ( )
.

m E V
l

+
≡

=
                             [2.148] 

尽管 E 是负的，但对于束缚态，由前述定理（习题 2.2），它必定大于 0V− ；因此， l 是一个

正的实数。一般解是 39 
( ) sin( ) cos( ),x C lx D lxψ = +     ,a x a− < <                [2.149] 

其 中 C 和 D 是 任 意 常 数 。 最 后 ， 在 x a> 区 域 ， 势 仍 然 为 零 ； 其 一 般 解 是

( ) exp( ) exp( )x F x G xψ κ κ= − + ，但是当 x →∞，第二项趋于无穷大，所以解为 

( ) ,xx Fe κψ −=        .x a>                        [2.150] 
下一步是加上边界条件：ψ 和 /d dxψ 在 a− 和 a 处连续。但是注意到势能是一个偶函

数，不失一般性，我们可以假设解要么是奇函数要么是偶函数来简化问题（习题 2.1（c））。
这样做的优点是我们仅需要考虑一侧的边界条件（比如说在 a+ 处）即可；由于

( ) ( )x xψ ψ− = ± ，另一侧自动满足边界条件。这里我们仅讨论偶函数解，你们可在习题 2.29
讨论奇函数解。由于余弦是偶函数（正弦是奇函数），所以我们要求的解可以写为： 

,                 ,
( ) cos( ),          0 ,

( ),              0.

xFe x a
x D lx x a

x x

κ

ψ
ψ

−⎧ >
⎪= < <⎨
⎪ − <⎩

                     [2.151] 

由波函数 ( )xψ 在 x a= 处的连续性可得，  

     cos( ),xFe D laκ− =                               [2.152]
由 /d dxψ 连续性可得，        

sin( ).xFe lD laκκ −− = −                            [2.153] 
[2.153]式除以[2.152]，我们得到 

       tan( ).l laκ =                                [2.154] 
由于κ 和 l 都是 E 的函数，这是一个关于所允许能量的公式。要求出 E ，我们首先采

用一些简洁的记号：令   

       ,z la≡    及  0 02 .az mV≡
=

                     [2.155] 

由 2.146 和 2.148 式，有
2 2 2

0( ) 2 /l mVκ + = = ，所以 2 2
0ka z z= − ，而 2.154 式可写为 

                           2
0tan ( / ) 1.z z z= −                            [2.156] 

                                                        
39
如果你愿意，你也可以把解写作指数形式

' '( )ilx ilxC e D e−+ 。最终结果是一样的，但是由于势的对称性，

我们知道解要么是偶的，要么是奇的，正弦余弦的形式有利于直接探讨奇偶性。 



这是一个 z （因此 E ）的作为 0z 函数的一个超越方程（ 0z 描述势阱“大小”）。它可以用计

算机求出数值解，或者也可以用作图法求解，在同一坐标系中画出 tan z和 2
0( / ) 1z z − 曲

线，找到它们的交汇点（见图 2.18）。下面讨论两种特别有趣的极限情况： 

 
图 2.18 方程 2.156 的图解, 0 8z = 情况(偶态)。 
 

1、 宽深势阱。如果 0z 非常大，交汇点在略小于 / 2nz nπ= （ n 为奇数）处；所以有 
2 2 2

0 2 .
2 (2 )n
nE V
m a
π

+ ≅
=

                        [2.157] 

但是 0E V+ 是比势阱底部能量高的一个值，在上式右边正好是阱宽为 2a的一维无限深势阱

能级（见 2.27 式）⎯ 或者它们中的一半，因为现在n 仅为奇数。（当然，你们将会在习题

2.29 中发现，另一半来自于奇函数。）因此，当 0V →∞时，有限深势阱转化为无限深势阱；

但是，对任何有限的 0V ，仅有限多个束缚态。 

    2、浅窄势阱。  当 0z 降低时，束缚态越来越少，直到最后（当 0 / 2z π< 时，最低奇

态消失）仅存在一个束缚态。尽管如此，值得注意的是无论势阱多么“浅小”，总是至少存

在一个束缚态。 
如果感兴趣的话，欢迎你们对ψ （2.151 式）归一化（习题 2.30），但是我现在要讨论

散射态（ 0E > ）。在势阱左边， ( ) 0V x = ，我们有 

( ) e e ,ikx ikxx A Bψ −= +    （ x a< − ）                 [2.158] 
其中（和通常一样）              

2 .mEk =
=

                                  [2.159]          

在势阱内， 0( )V x V= − ，     

( ) sin( ) cos( )x C lx D lxψ = +    （ a x a− < < ）           [2.160]
其中，和前面一样  

                

        02 ( )
.

m E V
l

+
≡

=
                               [2.161] 

在势阱右边，假设在此区域没有入射波。我们有， 

                             ( ) .ikxx Feψ =                              [2.162] 
这里 A是入射波振幅， B 反射波振幅， F 是透射波振幅。40 

                                                        
40

就像在束缚态情况一样，我们可以用奇函数或偶函数，但是由于波仅从一侧入射，散射问题本质上是不

对称的，在此用指数函数（代表行波）更自然一些。 



有四个边界条件： ( )xψ 在 a− 连续应满足 

sin( ) cos( ),ika ikaAe Be C la D la− + = − +                     [2.163] 
( ) /d x dxψ 在 a− 处连续应满足， 

[ ] [ cos( ) sin( )],ika ikaik Ae Be l C la D la− − = +                  [2.164] 
( )xψ 在 a+ 处连续应满足， 

sin( ) cos( ) ,ikaC la D la Fe+ =                         [2.165] 
( ) /d x dxψ 在 a+ 处连续应满足 

[ cos( ) sin( )] .ikal C la D la ikFe− =                        [2.166] 
我们可以用其中的的两个方程消去 D和C ，然后用剩余的两个解出 B 和 F （见习题 2.32）： 

 
2 2sin(2 ) ( ) ,

2
laB i l k F

kl
= −                          [2.167]  

2

2 2 .
( )cos(2 ) sin(2 )

2

ikae AF
k lla i la

kl

−

=
−

−
                    [2.168] 

透射系数（
2 2/T F A= ），用最初的变量可表示为： 

2
1 20

0
0

21 sin 2 ( ) .
4 ( )

V aT m E V
E E V

− ⎛ ⎞= + +⎜ ⎟+ ⎝ ⎠=
               [2.169] 

注意当上式中的正弦函数为零时，即 

       0
2 2 ( ) ,n
a m E V nπ+ =
=

                           [2.170] 

时，其中 n 为任意整数， 1T = （势阱成为“透明”的）。完全透射时的能量为： 
 

 
 
图 2.19：作为能量函数的透射系数（2.169 式）。 
 
 

2 2 2

0 2 ,
2 (2 )n
nE V
m a
π

+ =
=

                            [2.171]  

这恰好是一维无限深方势阱所允许的能量。T 作为能量的函数在图 2.19 中画出。41 

 

                                                        
41

这个值得注意的现象已在实验室中发现，称为 Ramsauer-Townsend 效应，详细阐述可参看 Richard W. 
Robinettsuo，量子力学，Oxford U.P., 1997, 12.4.1 节。 



 
*习题 2.29：分析一维有限深方势阱的奇束缚态波函数。求出允许能级满足的超越方程，并

用做图法求解。考察两种极限情况。是否总是至少存在一个奇束缚态？ 
 
 
习题 2.30：归一化 2.151 式中的 ( )xψ ，确定常数 D和 F 。 
 
 
习题 2.31：狄拉克δ 函数可看作是面积为 1 的矩形当高度趋于无限高，宽度趋于零的极限

情况。证明在 0 0z → 情况下， δ 势阱（2.114 式）是个“弱”势（即便它是无限深）。把它

作为有限深方势阱的极限情况来确定δ 势阱的束缚态能级。验证你的结果与 2.129 式一致。

同时证明在取适当极限情况下 2.169 式成为 2.141 式。 
 
 
习题 2.32：推导出 2.167 和 2.168 式。提示：用 2.165 式和 2.166 式求出用 F 表示的 C 和 D： 

sin( ) cos( ) ;ikakC la i la e F
l

⎡ ⎤= +⎢ ⎥⎣ ⎦
    cos( ) sin( ) .ikakD la i la e F

l
⎡ ⎤= −⎢ ⎥⎣ ⎦

 

然后代入到 2.163 式和 2.164 中。求出透射系数、验证 2.169 式。 
 
 
**习题 2.33：求出矩形势垒的透射系数（与 2.145 式相似，只不过在 a x a− < < 区域

0( ) 0V x V= + > ）。按 0E V< 、 0E V= 和 0E V> 三种情况来分开处理。（注意，在三种情况

下，势垒区中的波函数是不同的）。部分答案：对于 0E V< ，42 

                
2

1 20
0

0

21 sinh 2 ( ) .
4 ( )

V aT m V E
E E V

− ⎛ ⎞= + −⎜ ⎟− ⎝ ⎠=
 

*习题 2.34：考虑“阶梯”势： 

0

0,             0,   
( )

,           0.
x

V x
V x

≤⎧
= ⎨ >⎩

 

（a）当 0E V< 时，求出反射系数，并对结果进行讨论。 

（b）当 0E V> 时，求出反射系数。 

（c）对于这样一个右边没有回到零的势垒，透射系数并非简单的等于
2 2/F A （ A是入射

波振幅， F 是透射波振幅），这是由于透射波的波速与入射波不同。对于 0E V> ，证

明       
2

0
2 ,

FE VT
E A
−

=                          [2.172] 

提示：你可以利用 2.98 式计算出来，或者更简洁但不太正规 ⎯ 利用几率流来算（习

题 2.19）。对于 0E V< 情况下，T 是多少？ 

（d）对 0E V> 情况，求出“阶梯”势的透射系数，并验证 1T R+ = 。 
 

习题 2.35：一个质量为m 动能为 0E > 的粒子靠近一个突然下降 0V 的势（图 2.20）。 

（a）如果 0 / 3E V= ，粒子被“反射”回来的几率是多大？提示：这与习题 2.34 相似，只 
不过阶梯由向上变为向下 

                                                        
42这是一个隧道效应的很好例子 ⎯ 经典上粒子将会被弹回。 



（b）画图的目的是让你们想象到一辆靠近一个悬崖的汽车，但是显然汽车被悬崖边缘弹回

来的几率要比（a）中得到的要低的多 ⎯ 除非你是 Bugs Bunny(卡通动物，疯狂的兔

子)。解释为什么这个势不能正确的表示一个悬崖。提示：在图 2.20 中， 当通过 0x =
时，汽车势能不连续地降到 0V− ；这与实际情况下汽车坠落一样吗？ 

（c）当一个自由中子进入一个原子核，它将经历一个势能的突然下降，从外面 0 0V = 到内

部大约 12Mev− （兆电子伏）。假设由裂变产生的一个中子，其动能为 4Mev ，轰击上

述的原子核。它被吸收的几率是多大？能否触发新的裂变？提示：你可以像（a）中先

计算出反射几率；用 1T R= − 求出穿透表面的几率。 

 
图 2.20: 从一个”悬崖”边的散射(习题 2.35)。 
 
 
第 2 章补充习题                                                        
 
习题 2.36：对于“中心”无限深方势阱： ( ) 0V x =   ( )a x a− < < ， ( )V x = ∞   (其它地方)。
在适当边界条件下，求出定态薛定谔方程。验证你求得的允许能量与我们已知的（2.27 式）

是一致的，证实你所得到的ψ 可以由对已知的（2.28）式做代换 ( ) / 2x x a→ + 得到（并适

当归一化）。画出你的前三个解并与图 2.2 对比。注意现在的势阱宽度是 2a。 
 
 
习题 2.37：一维无限方势阱（2.19 式）中的一个粒子具有初始波函数： 

3( ,0) sin ( / )x A x aψ π=    (0 )x a≤ ≤  

求出 A 和 ( , )x tψ ，并计算作为时间函数的 x 。能量的期待值是多少？提示： sinnθ 和

cosnθ 可以通过重复利用三角公式化简为 sin( )mθ 和 cos( )mθ ( 0,  1,  2,  ,  )m n= " 的线性

迭加。    
 
*习题 2.38：一个质量为m 的粒子处在一维无限深方势阱的基态（2.19 式）。势阱突然扩展

为原来尺寸的 2 倍 ⎯ 右阱壁从 a 移到 2a⎯ 波函数（暂时）没受干扰。此时测量粒子的

能量。 
（a）最有可几结果是什么？得到此结果的几率是多大？ 
（b）次最有可结果是什么？几率是多大？ 
（c）能量的期望值是什么?  提示：如果你发现遇到一个无穷级数，尝试其它方法。 
 
 
习题 2.39： 
（a）证明：对于任何态（不仅仅限于定态），一维无限势阱的波函数在经历一个量子恢复周



期
24 /T ma π= =后，恢复到初始形式。即： ( , ) ( ,0)x T xψ ψ= 。 

（b）对于一个在势阱内在两阱壁之间来回碰撞能量为 E 的粒子，经典恢复时间是多少？ 
（c）何种能量条件下两种恢复时间相等？43 

 
 
习题 2.40：一个质量为m 的粒子，处在势能 

2 2

                        ( 0),
( ) 32 /          (0 ),

0                         ( ),

x
V x ma x a

x a

∞ <⎧
⎪= − ≤ ≤⎨
⎪ >⎩

=  

中。 
（a）存在多少束缚态？ 
（b）对最高束缚态能级，粒子在阱外（ x a> ）被发现的几率是多少？答案：0.542 ，可见，

即使它被“束缚”在阱内，它在阱外被观察到的可能性比阱内还要大。 
 
 
习题 2.41：一个质量为m 的粒子处在谐振子势（2.43 式）中，初始态为： 

2
2

2( ,0) 1 2 ,
m xmx A x e
ωωψ

−⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
=

=
 

其中 A为某个常数。 
（a）能量的期望值是什么？ 
（b）经过一段时间T 后，波函数变为： 

2
2

2( , ) 1 2 ,
m xmx T B x e
ωωψ

−⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
=

=
 

B 为某个常数。T 的最小可能值是多少？ 
 
 
习题 2.42：求半谐振子势 

2 2(1/ 2) ,         0,
( )

,                         0,
m x x

V x
x

ω⎧ >
= ⎨

∞ <⎩
 

的允许能级。 
（这个代表，例如，一个弹簧只能被拉伸而不能被压缩。）提示：本题仅需要一些细致的思

考，很少实际运算。 
 
 
**习题 2.43：在习题 2.22 中，已经分析了静态高斯自由粒子波包。现在对传播的高斯波包

解决同样问题。初始波函数为： 
2

( ,0) ,ax ilxx Ae eψ −=  
其中 l 是一个实常数。 
 
 
习题 2.44：对于中间存在一个δ 函数势垒的中心一维无限深势阱： 

                                                        
43经典和量子的恢复时间之间没有明显的关系（量子恢复时间甚至不依赖于能量）是一个不寻常的疑题；

参看 Daniel Styer，Am.J.Phys. 69,56(2001)。 



( ),            ,
( )

,                     ,
x a x a

V x
x a

αδ − ≤ ≤⎧⎪= ⎨∞ ≥⎪⎩
 

求解定态薛定鄂方程。对偶和奇波函数分开处理。不必去归一化这些波函数。找出允许的能

量值（必要时可用做图法）。同没有 δ 函数存在时的情况相比，相应的能级有何不同？解释

为什么奇函数解不受δ 函数影响?并对 0α → 和α →∞两种极限情况进行讨论。 
 
 
习题 2.45：如果两个（或更多）定态薛定谔方程的不同的解具有同一个能量 E ，44 我们说这

些态是简并的。例如：自由粒子态是二度简并的 ⎯ 一个解代表向右运动，另一个解代表向

左运动。但是我们从未遇到过可归一化的简并解，这并非偶然。证明如下定理：一维情况下，
45 不存在简并束缚态。提示：假设两个解 1ψ 和 2ψ ，具有同样的能量， 1ψ 乘上关于 2ψ 的薛

定谔方程， 2ψ 乘上关于 1ψ 的薛定谔方程，然后两式相减，去证明（ 2 1 1 2/ /d dx d dxψ ψ ψ ψ− ）

是个常数。利用归一化解在±∞应有 0ψ → 的事实，去证明这个常数为零。从而得出结论 2ψ
是 1ψ 乘以一个常数，因此两个解没有区别。 
 
习题 2.46：设想一个质量为m 的小珠，绕着一个周长为 L 的圆线环作无摩擦滑动(这与自由

粒子相似，只不过 ( ) ( )x L xψ ψ+ = 。找出它的定态（并适当归一化）和相应的允许能量。

注意对于每一个能级 nE 都有两个独立的解，分别对应顺时针和逆时针运动情况；称它们为

( )n xψ +
和 ( )n xψ −

。鉴于习题 2.45 中的定理，如何解释此种简并（为什么在此种情况下定

理失效了）？ 
 
 
习题 2.47：注意：这是一个严格定性问题 ⎯ 不允许做任何计算!考虑“双方势阱”（图 2.21）。
假设阱深 0V 和阱宽a 固定，并且足够大到至少存在几个束缚态。 

（a）对（i） 0b =   (ii) b a≈   (iii)b a≥  三种情况，画出基态波函数 1ψ 和第一激发态波

函数 2ψ 。 

（b）定性描述一下当b 从 0 变化到无穷时，相对应的能级（ 1 2,  E E ）是如何变化的？在同

一图中画出 1( )E b 和 2 ( )E b 。 
（c）双阱模型是一种很重要的一维模型，用来描述一个电子在一个双原子分子中所受到的

势（两个势阱代表两个原子核的吸引力）。如果两核被看做是自由移动的，它们将遵循

最小能量分布。鉴于已在（b）中的结论，电子更趋向使两个核靠在一起，还是使其分

离？（当然两个核之间存在排斥力，不过这是另外一个问题。） 

                                                        
44
如果两个解的差别是一个常数乘子（因此，一旦归一化后，它们的差别仅是一个相因子

ie φ
），它们代表

着同一个物理状态，在这个意义上，它们不是不同的解。技术上，我说的“不同”是意味着“线性独立”。  
45
我们将在第四章中看到，在高维情况下简并是很常见的。假定势并非是被V = ∞的区域分割成一些孤立

部分 ⎯ 如果不是这样，例如：两个孤立的无限深方势阱，就会产生简并束缚态，粒子不在这一个势阱中

就在另一个势阱中。 



 
图 2.21: 双方势阱(习题 2.47)。 
 
 
习题 2.48：在习题 2.7（d）中，通过对 2.39 式中数列的求和可以得到能量的期待值，但是

我曾经警告过你（脚注 15）不要用“老方法” ( ,0)* ( ,0)H x H x dxψ ψ= ∫ ，由于 ( ,0)xψ
一阶导数的不连续性，会使得二阶导数产生很多问题。实际中，你也许可以用分部积分法，

但是狄拉克δ 函数会提供一个更简洁的方法去处理这些反常问题。 
（a）计算 ( ,0)xψ 一阶微分（习题 2.7），以在 2.143 式中定义的阶梯函数 ( / 2)x aθ − 来表示

结果。（不用操心端点部分 ⎯ 只考虑0 x a< < 区间内。） 
（b）利用习题 2.24（b）已得到的结果，以δ 函数的形式写出 ( ,0)xψ 二阶导数。 

（c）求出积分
*( ,0) ( ,0)x H x dxψ ψ∫ ，并检验与前面得到结果一致。 

 
 
***习题 2.49： 

（a）证明： ( )
1/4 2

2 2 2( , ) exp 1 2i t i tm m a i tx t x e axe
a m

ω ωω ωψ
π π

− −⎡ ⎤⎛ ⎞⎛ ⎞= − + + + −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

=
= =

 

满足谐振子势的含时薛定谔方程。这里 a 是一个具有长度量纲的任意实数。46 

（b）求出
2( , )x tψ ，并描述波包的运动。 

（c）计算 x 和 p ，并检验它们满足 Ehrenfest 定律（1.38 式）。 
 
 
**习题 2.50：考虑运动的δ 函数势阱： 

( , ) ( )V x t x vtαδ= − −  
其中 v（常数）是势阱运动的速度。 
（a）证明含时薛定谔方程有下述严格解 

2 2/ [( (1/ 2) ) ] /( , ) e ,m x vt i E mv t mvxmx t eαωψ − − − + −= = =

=  

其中
2 2/ 2E mα= − = 是静止的δ 函数的束缚态能级。提示：用习题 2.24（b）所得结果，把

此解代入验证。 
                                                        
46含时薛定谔方程这种少有的严格形式的解是薛定谔自己在 1926 年发现的。 



（b）对此态求出哈密顿的期望值，并对结果进行讨论。 
 
***习题 2.51：考虑势能 

2 2

( ) sec ( )aV x h ax
m

= −
=

 

其中 a 是一个正的常数，而“ sech”代表双曲正割。 
（a）画图表示这个势。 
（b）验证这个势存在基态 

0 ( ) sec ( )x A h axψ = ， 

并求出其能量。归一化 0ψ ，并画图表示。 
（c）证明函数：             

 
tanh( )( ) ikx

k
ik a axx A e

ik a
ψ −⎛ ⎞= ⎜ ⎟+⎝ ⎠

 

（其中，像通常一样， 2 /k mE≡ =）对于任何（正的）能量 E 都满足薛定谔方程。

由于当 z →−∞时， tanh 1z →− ， 
( ) ,ikx

k x Aeψ ≈    （ x 为大的负数时）。 
所以，这表示一个从左边入射的的且没有伴生反射波的波（即不存在 exp( )ikx− 项）。对

大的正 x ， ( )k xψ 的渐进形式是什么？对于这个势，R 和 T 是多少？注：这是无反射势

的一个著名的例子 ⎯ 每一个入射的粒子，不论其能量大小，都能穿越势能。47 
 
习题 2.52 散射矩阵。散射理论可以一种非常清晰的方式推广到任意的定域势（图 2.22）。 
在左边（区域 I）， ( ) 0V x = ，所以 

( ) ,ikx ikxx Ae Beψ −= +   其中
2mEk ≡
=

                [2.173] 

在右边（区域 III）， ( )V x 同样为 0，所以 

                           ( ) ikx ikxx Fe Geψ −= +                            [2.174] 
在中间（区域 II），  当然，在指定势前我无法告诉你ψ ，但是由于薛定谔方程是一个线性

的二阶微分的方程，一般解必有如下形式 
( ) ( ) ( )x Cf x Dg xψ = +  

其中 ( )f x 和 ( )g x 是两个线性独立的特解。48 存在 4 个边界条件（区域 I 和区域 II 交汇处两

个，区域 II 和区域 III 交汇处两个）。利用其中的两个方程消去 C 和 D，其它两个可以用来

求出以 A 和 G 表示的 B 和 F： 

11 12 ,B S A S G= +     21 22 .F S A S G= +  

四个依赖于 k（从而 E ）的系数 ijS 组成一个2 2× 矩阵 S，称为“散射矩阵”（简称 S-矩阵）。

S-矩阵告诉你以入射振幅(A 和 G)表示的出射振幅(B 和 F)： 

11 12

21 22

S SB A
S SF G
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

                         [2.175] 

在从左边入射的特定情况下， 0G = ，因此，反射和透射系数为 
2

2
112

0

,l

G

B
R S

A
=

= =    
2

2
212

0

.l

G

F
T S

A
=

= =            [2.176] 

                                                        
47 R.E. Crandall and B. R. Litt, Annals of Physics , 146, 458 (1983)。 
48
参见任意关于微分方程的书籍—例如，J. L. Van Iwaarden, Ordinary Differential  Equations with Numerical 

Techniques.，Harcourt Brace Jovanovich . San Diergo. 1985. Chapter 3。 



对从右边的入射的情况， 0A = ， 
2

2
222

0

,r

A

F
R S

G
=

= =   
2

2
122

0

.r

A

B
T S

G
=

= =             [2.177] 

（a）构造由 δ函数势阱(2.114 式)散射的 S-矩阵； 
（b）构造一维有限深方势阱(2.115 式)的 S-矩阵。提示：如果你仔细分析问题的对称性，无

需重新计算。 

 
图 2.22: 任意局域势的散射(除了区域 II 外, ( ) 0V x = ); 习题 2.52。 
 
 
 

***习题 2.53：变换矩阵。 散射矩阵（习题 2.152）告诉我们了出射振幅（B 和 F）与入射

振幅（A 和 G）的关系 — 2.175 式。有些情况利用变换矩阵，M，是很方便的，变换矩阵

可以给出势能右侧波的振幅（F 和 G）同左侧波的振幅（A 和 B）之间的关系： 

11 12

21 22

M MF A
M MG B
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

                        [2.178] 

（a） 用 S-矩阵的矩阵元表示出 M-矩阵的四个矩阵元，反之亦然，用 M-矩阵的矩阵元表

示出 S-矩阵的矩阵元。用 M-矩阵的矩阵元表示出（2.176 和 2.177 式）中的 ,  ,  l l rR T R
和 rT 。 

（b）假设一个势由两个孤立部分组成（图 2.23）。证明总势的 M-矩阵是由两个部分势的

M-矩阵的乘积： 

2 1.M M M=                             [2.179] 
（显然这可以推广到任意多个部分势的情况情况，这说明了 M-矩阵的用途。） 

（c）对于在点 a 处的一个 δ函数散射势能： 
( ) ( ),V x x aαδ= − −  

求 M-矩阵. 
（d）利用 b 中的方法，求双 δ函数： 

[ ]( ) ( ) ( ) ,V x x a x aα δ δ= − + + −  

的 M-矩阵。这个势的透射系数是什么？ 
 

 
图 2.23: 含有两个孤立部分的势(习题 2.53). 

 

 



习题 2.54：利用“摇摆狗”方法，并保留到 5 位有效数字，求出谐振子的基态能级。即，用

数值法求解 2.72 式，不断改变 K 值，直到在极大ξ 时，能得到一个趋于零的波函数。在

Methematic 中，适当的输入码为： 

    

1
  

2

-8

Plot[Evaluate[u[x]/.[NDSolve[{u''[x] - (x - K)* u[x] == 0, u[0] == ,
u'[0] == 0}, u[x], {x,10 ,10},MaxSteps- > 10000]],{x,a,b},
PlotRange- > {c,d}];

 

（这里 ( , )a b 是图中水平方向取值范围， ( , )c d 是竖直方向的取值范围 — 起始值分别是：

0a = 、 10b = 、 10c = − 、 10d = ）。我们已知正确解满足 1K = ，所以你可以 “猜测”

从 0.9K = 开始。注意观察波函数“尾部”的行为。然后尝试 1.1K = ，注意“尾部”的倒

转。正确解就在这两个值之间的某处。通过调整使两端的 K 值差越来越小，使波函数尾部

逐渐趋于零。同时，你也可以调整 , ,  a b c和 d 的值，使零点出现在交汇处。 
 

 

习题 2.55：利用习题（2.54）中的“摇摆狗”方法求出谐振子的前三个激发态的能量（保留

五位有效数字）。对第一（和第三）激发态你需要设定 [0] 0, '[0] 1u u== == 。 
 
 

习题 2.56：利用“摇摆狗”方法求出一维无限深势阱的前四个能级（保留五位有效数字）。

提示：参看习题（2.54），对微分方程进行适当调整。这次你要寻找的条件是 (1) 0u = 。 
 

 
     



第三章 
形式理论 
 
3.1 希耳伯特（Hilbert）空间 
 
在上两章中，我们已经看到了简单量子体系的一些有趣的特性。其中有些是特定势能的“偶

然”特点（例如：谐振子能级间隔的均匀分布），但是另外一些是普遍的，给它们一个彻底

的一劳永逸的证明是十分必要的（例如：不确定原理和定态正交性）。本章的目的是在一个

更有力的形式上重新讨论我们的理论。从重新讨论的角度来讲，本章没有很多完全是新的内

容，其基本思想是对我们已在特定情况中的发现做更清晰的了解。 
波函数和算符是量子理论的两块基石。体系的状态用波函数表示，可观察量用算符表示。

数学上讲，波函数满足抽象矢量的定义条件，算符作为线性变换作用于矢量之上。因此，量

子力学的自然语言是线性代数。1 
但是我估计它并非是一个你可以很快熟悉的形式。在 N 维空间中，可以简单地用对应

于 N 个正交归一基矢的分量，{ }na ，的一个 N 行列矩阵表示一个矢量 α ，即： 

1

2 .

N

a
a

a

α

⎛ ⎞
⎜ ⎟
⎜ ⎟→ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

a
#

                               [3.1] 

两个矢量的内积（三维空间标量积的推广） α β 是一个复数， 
* * *

1 1 2 2 .N Na b a b a bα β = + +"                     [3.2] 

线性变换T 用矩阵（相应指定的基矢）表示，通过普通的矩阵乘法规则作用于矢量上（得

到新的矢量）： 

111 12 1

21 22 2 2

1 2

.

N

N

N N NN N

at t t
t t t a

T

t t t a

β α

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= → = =
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

b Ta

"
"

# # # #
"

             [3.3] 

但是在量子力学中我们遇到的“矢量”是函数（绝大多数情况下），它们存在于无穷维

空间中，对于它们，用 N 行列矩阵/矩阵的方法有点笨拙，以及在有限维下有很好行为的矩

阵乘法可能存在问题。（其理由是，尽管 3.2 式的有限求和总是存在的，而对于无限求和或

积分可能不收敛，在这种情况下内积将不存在，那么涉及到内积的任何论述都有疑问。）因

此，即使对大多数的术语和符号比较熟悉，仍要十分谨慎。 
所有 x 的函数的集合构成了一个矢量空间，但对于我们的目的来说它太大了。为了表示

可能的物理状态，波函数ψ 必须是归一化： 
2

1dxψ =∫  

所有在特定区域 2 的平方可积函数的集合， 

( )f x   满足   
2( )

b

a
f x dx < ∞∫                    [3.4] 

构成一个（非常小）的矢量空间（参看习题 3.1（a））。数学家称之为 2 ( , )L a b ；而物理学家 
 
 
 
                                                        
1如果你还没有学习过线性代数，你应该在继续阅读之前参看一下附录。 
2对于我们来讲，积分限（ a 和 b ）通常总是（ ±∞ ），但是目前来说，我们保持讨论最一般的情况。 



称它为“希尔伯特空间”。3 因此，在量子力学中， 
               
 
 

[3.5] 
 
 

我们定义两个函数 ( )f x 和 ( )g x 的内积如下： 
*( ) ( ) .

b

a
f g f x g x d x≡ ∫                   [3.6] 

如果 f 和 g 都是平方可积（也就是说，如果两者都在希耳伯特空间中），它们的内积将肯定

存在（3.6 式中的积分收敛于一个有限值）。4 这可从 Schwarz 不等式得出：5 
2 2*( ) ( ) ( ) ( ) .

b b b

a a a
f x g x dx f x dx g x dx≤∫ ∫ ∫                [3.7] 

你自己可以验证一下 3.6 式满足内积所有条件（习题 3.4（b））。注意到特别有 
* .g f f g=                             [3.8] 

此外， ( )f x 与自己的内积： 
2( ) ,

b

a
f f f x dx= ∫                            [3.9] 

它是一个非负实数，仅当 ( ) 0f x = 时为零。6 

如果一个函数与自身的内积为 1，我们称之为归一化的；如果两个函数的内积为 0，那

么这两个函数是正交的；如果一组函数即是归一的也是相互正交的，称之它们为正交归一的。 
.m n mnf f δ=                               [3.10] 

最后，如果存在一组函数，其它任意函数（希尔伯特空间中）都可以表示为这组函数的线性

迭加，那么这组函数是完备的: 

1
( ) ( ).n n

n
f x c f x

∞

=

= ∑                            [3.11] 

如果函数{ }( )nf x 是正交归一的，上式中的常数可以由傅立叶技巧得到： 

,n nc f f=                                [3.12] 

你可以自己验证一下。当然，在第二章中我已提起过这种方法（一维无限深方势阱（2.28
式）的定态在 (0, )a 区间构成了一个完备正交归一系；谐振子（2.67 或 2.85 式）的定态在

( , )−∞ ∞ 区间构成了一个完备正交归一系）。 
 

                                                        
3 技术上讲，一个希尔伯特空间是一个完备的内积空间，平方可积函数的集合只是希尔伯特空间的一个例

子⎯的确，每一个有限维矢量空间明显是一个希尔伯特空间。但是既然 L2是量子力学的表演舞台，这就是

物理学家讲“希尔伯特”空间时的一般意义。顺便说一下，“完备”一词在这里的意思是希尔伯特空间中任何

函数的柯西序列中收敛于一个同样在希尔伯特空间中的函数；这个空间没有“孔洞”，就像所有的实数的集

合没有孔洞一样。（与此相比，例如，所有多项式的空间，像所有有理数的集合一样，的确有孔洞）。空间

的完备性同一组函数的完备性（不幸的是用了同一词）没有任何关系。这组函数的完备性是指任何函数都

可以表示为这组函数的线性组合。 
4在第二章中，在一些场合，我们被迫使用不可归一化的函数。这些函数处在希尔伯特空间之外。你将看到，

我们将特别小心地地对待它们。目前，我将假设，我们遇到的所有函数都是在希耳伯特空间中的。 
5其证明，可参阅 F.Riesz 和 B.Sz.-Nagy 所著，函数分析（Unger,New York,1995），21 节。对一个有限维矢

量空间，Schwarz 不等式
2

α β α α β β≤ 很容易证明（见习题 A.5）。但证明过程假设了内积的存

在，而这严格来说正是我们现在试图建立的。 
6除了几个孤立的点, 一个函数处处是零，那会是怎样？它的积分(3.9 式)仍然是零，尽管函数本身不为零。

如果这使你困惑，你一定是主修数学的。在物理学中并不会出现这种变态函数，但是在任何情况下，希耳

伯特空间中具有相同平方可积的两个函数被称为是等价的。技术上讲，希耳伯特空间中的矢量代表函数的

等价类。 

波函数是处于希耳伯特空间中. 



 

习题 3.1： 
（a） 证明，全体平方可积函数构成一个矢量空间（参考 A.1 节中的定义）。提示：要点是

证明两个平方可积函数之和也是平方可积的，利用 3.7 式。全体可归一化的函数构

成一个矢量空间吗？ 
（b） 证明 3.6 式中的积分满足内积条件（A.2 节）。 
 

 

习题 3.2： 
（a） v范围取什么值时函数 ( ) vf x x= （0 1x≤ ≤ ）是处于希尔伯特空间中的？假设 v是

实数，但不必是正的。 
（b） 对于特定情况 1/ 2v = ， ( )f x 在希尔伯特空间吗？ ( )xf x 呢？ ( )/ ( )d dx f x 呢？ 
 
 
 
3.2 可观测量 
 
3.2.1 厄密算符 
 
一个可观测量 ( , )Q x p 的期望值可以用内积符号简洁表示出来：7 

* ˆ ˆ .Q Q dx Qψ ψ ψ ψ= =∫                          [3.13] 

一次测量的结果应该是实数，这样一来，多次测量值的平均值也应如此： 
* .Q Q=                                [3.14] 

但内积的复共轭颠倒了顺序（3.8 式），因此 
ˆ ˆ ,Q Qψ ψ ψ ψ=                             [3.15] 

任意波函数ψ 都满足此式。因此表示可观测量的算符有非常特殊的性质 
ˆ ˆf Qf Qf f=    对任何 ( )f x 成立.                  [3.16] 

我们称这样的算符为厄密（hermitian）算符。 
    事实上，许多书籍中要求一个表面上看来更强的条件： 

ˆ ˆf Qg Qf g=   对任意 ( )f x 和 ( )g x 成立.               [3.17] 

但是忽略表面上的差异，可以证实它与我的定义(3.16 式)是完全等价的，具体的你可以在习

题 3.3 中证明。因此，两种形式随你用。本质的一点是厄密算符即可以作用于内积的右侧项

也可以作用于左侧项，结果都一样，由于厄米算符的期望值是实数，它们很自然出现在量子

力学中： 
                       

[3.18] 
      

 
让我们来验证一下。例如，动量算符是厄密算符吗？ 

                                                        
7
记住 Q̂ 是算符，它是由在Q 中通过替代 ˆ ( / ) /P P h i d dx→ ≡ 构造的。这些算符是线性的，即对任意函

数 f 和 g 及任意复数 a 和 b ，有 

[ ]ˆ ˆ ˆ( ) ( ) ( ) ( ).Q af x bg x aQf x bQg x+ = +  

它们构成了空间中全部函数的线性变换（A.3 节）。可是，它们有时也会把希尔伯特空间内的函数变换到空

间之外（见习题 3.2（b）），在此种情况下算符的域也许要受到限制。 

可观测量由厄密算符表示. 



*
* *ˆ ˆh dg h h dff pg f dx f g gdx pf g

i dx i i dx
∞ ∞ ∞ ⎛ ⎞= = + =⎜ ⎟−∞ −∞ −∞⎝ ⎠∫ ∫     [3.19] 

当然，我利用了分部积分，并由下列理由去掉了边界项：如果 ( )f x 和 ( )g x 是平方可积的，

它们在±∞必定趋于零。8 注意到在分部积分时 i 的复共轭伴随着一个负号的产生 ⎯ 算符

d dx（没有 i ）不是厄密的，它不能表示可能的可观测量。 
 

*习题 3.3 证明如果对于所有（希耳伯特空间中）的函数 h 都有 ˆ ˆh Qh Qh h= ，那么，对

于所有的 f 和 g 就有 ˆ ˆf Qg Qf g= （即，两种对于厄密算符的定义 — 等式 3.16 和 3.17

— 是等价的）。提示：首先设h f g= + ，然后令h f ig= + 。 
 

习题 3.4 
（a） 证明两个厄密算符之和仍为厄密算符。 
（b） 假设 Q̂是厄密的，α 是一个复数。在什么条件下（α 的） Q̂α 也是厄密的？ 
（c） 在什么条件下两个厄密算符的积也是厄密的？  

（d） 证明坐标算符（ �x x= ）和哈密顿算符（
2 2 2ˆ ( / 2 ) / ( )H m d dx V x= − += ）是厄密算符。 

 
习题 3.5 算符 Q̂的厄密共轭算符（伴随算符）是算符

†Q̂ ，有 

ˆ ˆf Qg Q f g+=       （对所有的 f 和 g ）.                   [3.20] 

（所以一个厄密算符与它的厄密共轭算符相等：
†ˆ ˆQ Q= 。） 

（a）给出 x ， i ，和 /d dx 的厄密共轭算符。 
（b）构建谐振子的升阶算符a+ （等式 2.47）的厄密共轭算符。 

（c）证明 ( )†
† †ˆ ˆˆ ˆQR R Q= 。 

 
3.2.2 定值态（Determinate States） 
 
通常的，当你对全同体系组成的系综测量一个可观测量Q，每个体系都处于相同的状态Ψ，每

次测量并不能得到相同的结果 — 这就是量子力学中的不确定性。9 问题：是否能够制备一个态

使得每一次观测Q都一定得到同样的值（记作q ）？如果你喜欢，可以称这样的态为可观测量Q
的定值态。（实际上，我们已经知道一个例子：哈密顿的定态是定值态；测量一个粒子处于定态

nΨ 时的总能量，必定得到相应的“允许的”能量 nE 。） 
Q的标准差，在定值态下应该是 0，即： 

    2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 0.Q Q Q q Q q Q qσ = − = Ψ − Ψ = − Ψ − Ψ =              [3.21] 

（当然，如果每次测量都给出 q ，它们的平均值也就是 q : Q q= 。我利用了 Q̂以及 Q̂ q− 是

厄密算符的事实，把内积中的一个 Q̂ q− 作用在左侧项上。）但是其内积为零的唯一函数是 0，

                                                        
8事实上，这并非完全正确。正如第一章中提到的，存在平方可积的病态函数，但在无限远处并不为 0。然

而物理学中并不存在这样的函数。如果你担心这个，我们可以简单限制算符的域，把它们排除在外。在有

限区间中，你要特别小心边界项，算符在 ( ),−∞ ∞ 是厄密算符。但在 ( )0,∞ 或 ( ),π π− + 上并非一定是厄

米算符。如果你怀疑一维无限深方势阱，最可靠的是认为这些波函数是定义在整个一维空间—它们只不过

是恰巧在（0， a ）之外等于 0。 
9
我所讨论的是理想状态的测量⎯实际测量当然总有可能出现失误，导致错误的结果，这与量子力学无关。 



所以 
Q̂ qΨ = Ψ .                                       [3.22] 

这称为算符 Q̂的本征值方程；Ψ是 Q̂的一个本征函数，q 是相对应的本征值。因此 
  
                                                                  

[3.23] 
 

 
 
在这种态上测量Q一定能够得到本征值q 。 

注意到本征值是一个数（既不是算符也不是函数）。任意本征函数乘以一个常数，仍然是

一个具有相同本征值的本征函数。零不算作是本征函数（我们由定义排除它 — 否则任何一个

数都成为它的本征值，因为对所有的算符 Q̂和q 都有 ˆ0 0 0Q q= = ）。但是，零作为本征值却没

有任何不妥之处。一个算符所有本征值的集合称为这个算符的谱。有时候两个（或者更多）线

性独立的本征函数具有相同的本征值；这种情况下称作谱的简并。 
例如，总能量的定值态是哈密顿算符的本征函数： 

                          Ĥ Eψ ψ= ，                                      [3.24]  
这正是定态薛定谔方程。在这个意义上我们用字母 E 表示本征值，小写字母ψ 表示本征函数（如

果你喜欢，你可以添加因子 ( )exp iEt− = 得到Ψ；这仍然是 H 的本征函数）。 
 
 
例题 3.1 考虑算符 

                             ,dQ i
dφ

≡                                     [3.25]   

其中φ是通常的二维极坐标。（如果我们研究园环上的珠子，见问题 2.46，可能会遇到这个算符。）

Q̂是厄密算符吗？求出它的本征函数和本征值。 

解：这里我们在有限的区域0 2φ π≤ ≤ 内研究函数 ( )f φ ，并且约定 

                               ( 2 ) ( ),f fφ π φ+ =                                     [3.26]  

因为φ和 2φ π+ 描述的是同一个物理点。用分部积分， 

2 22
00 0

ˆ ˆ ,dg dff Qg f i d if g i gd Qf g
d d

π ππφ φ
φ φ

∗
∗ ∗ ⎛ ⎞⎛ ⎞

= = − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫                         

所以 Q̂是厄密算符（这次边界项由于等式 3.26 的作用而消失）。 
    本征方程， 

( ) ( ),di f qf
d

φ φ
φ

=                            [3.27]  

具有一般解 
                             ( ) .iqf Ae φφ −=                               [3.28] 
等式 3.26 限定了q 的可能值 

                       1iqe φ− =     ⇒   0, 1, 2,...q = ± ±                    [3.29] 
这个算符的谱是一系列所有的整数值，并且是非简并的。 
 
 
 

习题 3.6 考虑算符
2 2Q̂ d dφ= ，其中φ是极坐标中的方位角（同例题 3.1），并且函数同样遵从

定值态是 Q̂的本征函数. 



3.26 式。 Q̂是厄密算符吗？求出它的本征函数和本征值。 Q̂的谱是什么？这个谱是简并吗？ 
 
 

3.3 厄密算符的本征函数 
 
我们的注意力从而指向厄密算符的本征函数（物理上：可观测量的定值态）。分成两类情况：如

果谱是分立的（即，本征值是分开的）则本征函数处于希耳伯特空间中并且构成物理上可实现

的态。如果谱是连续的（即，本征值充满一个范围）那么本征函数是不可归一化的，并且它们

不能代表可能的波函数（尽管它们的线性迭加 — 这必定包括本征值的一个分布 — 可能是可

归一化的）。某些算符仅有分立谱（例如，谐振子的哈密顿），某些仅有连续谱（例如，自由粒

子的哈密顿），还有一些既具有分立谱也有连续谱（例如，有限深方势阱的哈密顿）。分立谱情

况较易处理，因为相关的内积一定存在 — 实际上，这和有限维理论相似（厄密矩阵的本征矢

量）。我们将首先处理分立谱，然后再考虑连续谱。 
 

3.3.1 分立谱 
 

数学上，厄密算符可归一化的本征函数具有两个重要性质： 
 

定理 1：它们的本征值是实数。 
证明：假设 

                             ˆ ,Qf qf=  

（即， Q̂的本征函数是 ( )f x ，本征值为q ）,并且 10 

                         ˆ ˆf Qf Qf f=  

（ Q̂是厄密算符）。那么有 

                         q f f q f f∗=  

（q 是一个数，所以它可以移出积分号外，并且因为内积的左侧是右侧函 

数的复共轭（等式 3.6）所以在右边q 也同样移出）。但是 f f 不能是 0 

（ ( ) 0f x = 不是正当的本征函数），所以 q q∗= ，因此q 是实数。证毕。 
 

这个结果十分惬意：如果你对粒子的一个定值态测量一个可观测量，你至少会得到一个实数。 
 
定理 2：属于不同本征值的本征函数是正交的。 
证明：假设 

                    Q̂f qf= ，  Q̂g q g′=  

Q̂是厄密算符。则有 ˆ ˆf Qg Qf g= ，所以 

                      q f g q f g∗′ =  

（再次，内积是存在的因为假定本征函数是位于希耳伯特空间内）。但是q 是 

实数（由定理 1），所以如果q q′ ≠ 那么必然有 0f g = 。证毕。 

 
这就是为什么无限深方势阱的定态，或者谐振子的定态，都是正交的 — 它们是哈密顿具有不

同本征值的本征函数。但是这个性质不独是它们所有，或者仅仅是哈密顿所特有 — 任何可观

测值的定值态都有这一性质。 
不幸的是，定理 2 没有告诉我们任何关于简并态（q q′ = ）的问题。不过，如果两个（或

                                                        
10
在这里我们假定本征函数是在希尔伯特空间内⎯否则，内积可能根本就不存在。 



者更多）本征函数具有相同的本征值，任何它们线性的组合依然是具有同样本征值的本征函数

（习题 3.7（a）），而且，在每一个简并的子空间，我们可以利用 Gram-Schmidt 正交化步骤（习

题 A.4）构建相互正交的本征函数。(感谢上帝)几乎从不需要直接解这个问题，尽管在原则上我

们总是可以做到的。所以，即使存在简并，本征函数依然可以选择彼此正交，并且在建立量子

力学的体系时我们将假定已是如此。这就允许我们依据基函数的正交归一性使用傅立叶技巧。 
在一个有限维的矢量空间，厄密矩阵的本征矢量具有第三个基本性质：它们张成空间（任

何一个矢量都可以用它们的线性迭加来表示）。不幸的是，其证明不能推广到无限维的空间。但

是这个性质本身对量子力学自洽性是必须的，所以（遵从狄拉克 11）我们把它作为一个公理（或

者，更确切的说，看作是加在表示可观测量的厄密算符上的一个限制条件）： 
 
公理：可观测量算符的本征函数是完备的：（在希尔伯特空间中的）任何函数都 
可以用它们的线性迭加来表达。12 
 

习题 3.7 
（a） 假设 ( )f x 和 ( )g x 是 Q̂算符的两个具有相同的本征值q 的本征函数。证明任何 f 和 g        

的线性迭加也都是 Q̂具有相同本征值q 的本征函数。 

（b） 验证 ( ) ( )expf x x= 与 ( ) ( )expg x x= − 是算符
2 2d dx 具有相同的本征值的两个本征  

函数。构造两个的 f 和 g 的线性的组合，使它们在（-1，1）范围内是正交的。 
 

习题 3.8 
（a） 验证例题 3.1 中厄密算符的本征值是实数。证明（具有不同本征值的）本征函数是正交

的。 
（b） 对习题 3.6 中的算符做同样的验证。 

 
 
3.3.2 连续谱 
 
如果一个厄密算符的谱是连续的，由于内积可能不存在，其本征函数是不可归一化的，定理 1
和 2 的证明就不成立。然而，在某种意义上三个基本的性质（实数性、正交性、完备性）依然

成立。我想最好能通过特殊的例子来探讨这种微妙的情况。 
 
例 3.2 求动量算符的本征值与本征函数。 
解：设 ( )pf x 是本征函数， p 是本征值： 

                      ( ) ( ).p p
d f x pf x

i dx
=

=
                               [3.30] 

一般解是 
                      /( ) .ipx h

pf x Ae=  

对于任何（复数的） p 值，它都不是平方可积的 — 动量算符在希耳伯特空间内没有本征

函数。然而，如果我们限定于实数本征值，我们的确可以得到一个人为的 “正交归一性”。

参看习题 2.24（a）和 2.26， 
2 2( ) /( ) ( ) 2 ( ).i p p x

p pf x f x dx A e dx A p pπ δ
∞ ∞ ′∗ −

′−∞ −∞
′= = −∫ ∫ = =            [3.31] 

如果我们取 1/ 2A π= = ， 有 

                                                        
11 P.A.M.Dirac, 量子力学原理，Oxford University Press， New York（1958）。 
12在一些特殊的情况下完备性是可以证明的（例如，我们知道由于 Dirichlet 定理，无限深方势阱的定态是

完备的）。把一个在有些情况下可以证明的东西叫做“公理”似乎有些不恰当，但是我不知道怎么来更好的

处理它。 



                    /1( ) ,
2

ipx
pf x e

π
= =

=
                                 [3.32]  

那么 

                   ( )p pf f p pδ′ ′= − ，                                 [3.33] 

明显使人联想到真正的正交归一性（等式 3.10—现在的指标是一个连续的变量，并且

Kroneckerδ 符号变为 Driacδ 符号，但是其它方面看起来是相同的。我将把等式 3.33 称为 
Driac 正交归一性。 
    最重要的，其本征函数是完备的，不过是用一个积分代替了（等式 3.11 中的）求和：

任何（平方可积的）函数 ( )f x 都可以写成下列形式 

            /1( ) ( ) ( ) ( ) .
2

ipx
pf x c p f x dp c p e dp

π
∞ ∞

−∞ −∞
= =∫ ∫ =

=
                [3.34] 

仍然可以利用傅立叶技巧得到展开系数（现在是一个函数， ( )c p ）： 

         ( ) ( ) ( ) ( ).p p pf f c p f f dp c p p p dp c pδ
∞ ∞

′ ′−∞ −∞
′ ′= = − =∫ ∫          [3.35] 

另外，你也可以由 Plancherel 定理（2.102 式）得到，这种展开（3.34 式）不是别的，正是

傅立叶变换。 
 

    动量的这个本征函数（3.32 式）是正弦曲线，它的波长是 

                        
2 .

p
πλ =
=

                                        [3.36] 

这正是前面的德布罗意公式（1.39 式），我曾承诺在适当的时候给出证明。这看起来要比德

布罗意想象的稍微有一点难解，因为我们现在知道一个粒子具有确定动量实际上并不存在。

不过我们可以做一个归一化的波包，其动量分布在一个狭窄的范围，对这样的波包可以运

用德布罗意关系。 
我们拿例题 3.2 做什么呢？尽管 p̂ 没有本征函数存在于在希耳伯特空间内，但是其中的一

部分（具有实数本征值的部分）位于希耳伯特空间的“郊区” 附近，并且具有准-归一化的性

质。它们确实不表示可能的物理态，但是它们仍然是很有用的（像在我们以前研究的一维散射

问题中）。13 

 
 
例题 3.3 求坐标算符的本征函数与本征值。 
解：设本征函数为 ( )yg x ，本征值为 y ： 

                       ( ) ( ).y yxg x yg x=                                   [3.37] 

这里（对应于任何一个给定的本征函数） y 是一个定值，但是 x 是一个连续的变量。什么

样的 x 函数具有如下的性质：用常数 y 乘以函数与用 x 乘以函数的结果相同？明显地，除

在 x y= 点之外，只能是 0；实际上不是别的，就是狄拉克δ 函数： 
                       ( ) ( ).yg x A x yδ= −  

这次本征值必须是实数；本征函数不是平方可积的，但是它们也具有狄拉克正交归一性： 

                                                        
13

本征函数的本征值不是实数会怎样？这不仅仅是不可归一化的问题——它们实际上在±∞趋于无

限大。我所说的希耳伯特空间“郊区”的函数（有时，整个中心城区称为 “装备希耳伯特空间”；可参见，

例如，Leslie Ballentine 所著的，量子力学：一个划时代的发展, World Scientific, 1998）具有如下的性质：

尽管它们没有与自身的（有限的）内积，但它们与希耳伯特空间中所有成员的内积是存在的。但这对 p̂ 的

具有非实数本征值的本征函数不成立。特别地，我证明对希耳伯特空间中的函数而言，动量算符是厄密算

符，但是，证明是基于（在式 3.19 中）去掉了边界项。如果 g 是 p̂ 具有实数本征值的的本征函数，边界项

仍然为零（只要 f 是在希耳伯特空间），但是，如果本征值具有虚数部分，就非如此。在这个意义上，任

何复数都是算符 p̂ 的本征值，但是只有实数才是厄密算符 p̂ 的本征值—其余的不处在厄密算符 p̂ 的空间。 



         
2 2( ) ( ) ( ) ( ) ( ).y yg x g x dx A x y x y dx A y yδ δ δ

∞ ∞∗
′−∞ −∞

′ ′= − − = −∫ ∫       [3.38] 

如果我们取 1A = ，就有 
                        ( ) ( ),yg x x yδ= −                                 [3.39] 

这样 

                       ( ).y yg g y yδ′ ′= −                               [3.40] 

这些本征函数也是完备的： 

             ( ) ( ) ( ) ( ) ( ) ,yf x c y g x dy c y x y dyδ
∞ ∞

−∞ −∞
= = −∫ ∫                   [3.41] 

有 
                          ( ) ( )c y f y=                                    [3.42] 

（对本题，如果你坚持你也可以从傅立叶技巧得到它）。 
 

 
如果厄密算符的谱是连续的（所以上面例子中的本征值由一个连续变量标记— p 或者

是 y ；下文中一般用 z ），本征函数是不可归一化的，它们不在希耳伯特空间内并且不能代

表可能的物理态；然而，具有实数本征值的本征函数具有狄拉克正交归一性，并且是完备

的（求和现在是积分）。幸运的是，这正是我们所需要的。 
 

习题 3.9 
(a)从第二章中列举一个仅具有分立谱线的哈密顿（谐振子除外）。 
(b)从第二章中列举一个仅具有连续谱的哈密顿（自由粒子除外）。 
(c)从第二章中列举一个既具有分立谱又具有连续谱的哈密顿（有限深方势阱除外）。 
 

习题 3.10 无限深方势阱的基态是动量的本征函数吗？如果是，它的动量是什么？如果不是，

为什么不是？ 
 
 
3.4 广义统计诠释 
 
第一章我们介绍了怎样去求一个粒子在某一特定位置出现的几率，以及如何确定任意一个

可观测量的期望值。在第二章中，我们学习了如何求出能量测量的可能结果及其出现的几

率。那么，现在，我们能够来阐述广义统计诠释，这一概念包含了上述内容，而且可使我

们计算出任何测量的可能结果以及出现这些结果的几率。这和（告诉我们波函数如何随时

间演化的）薛定谔方程一起构成了量子力学的基础。 
广义统计诠释：如果测量一个处于 ( , )x tΨ 态的粒子的可观测量 ( , )Q x p ，那么，其结

果一定是厄密算符 ˆ ( , / )Q x id dx− = 的一个本征值。如果 Q̂的谱是分立的，得到与正交归一

本征函数 ( )nf x 相应的本征值 nq 的几率是 

                   
2 ,nc      其中    .n nc f= Ψ                         [3.43] 

如果 Q̂的谱是连续的，具有实数本征值 ( )q z 及狄拉克-正交归一的本征函数 ( )zf x ，则得到

结果在范围dz 的几率是 

                 
2( )c z dz     其中   ( ) .zc z f= Ψ                        [3.44] 

测量之后，波函数“坍塌”于相应的本征态。14 
统计诠释与我们在经典物理学中学到的东西完全不同。从不同的侧面可以帮助我们更

好地理解：一个可观测量的本征函数是完备的，所以波函数可以写作它们的线性迭加： 

                                                        
14在连续谱的情况下，取决于测量设备的精密程度，坍塌是朝向测量到的值的一个狭窄的范围。 



                     ( , ) ( ).n n
n

x t c f xΨ =∑                                  [3.45] 

（简单起见，假设谱是分立的；很容易推广到连续谱的情况。）由于本征函数是正交归一的，

展开系数可由傅立叶技巧得出：15 
                ( ) ( , ) .n n nc f f x x t dx∗= Ψ = Ψ∫                            [3.46]  

定性上来说， nc 告诉我们“Ψ 中包含有多少 nf ”，并且一次测量一定给出算符 Q̂的一个本征值，

它看起来是合理的，得到某一特定本征值 nq 的几率应该取决于Ψ 中“包含 nf 的量”。但是，因

为几率是由波函数的模平方决定的，其精确度量实际上是
2

nc 。这才是广义统计诠释的精髓所

在。16  
当然，总的几率（对所有可能结果的几率求和）必须是 1： 

                         
2 1,n

n

c =∑                              [3.47] 

这也可以从波函数归一化得出： 

1 n n n n n n n n
n n n n

c f c f c c f f∗
′ ′ ′ ′

′ ′

⎛ ⎞ ⎛ ⎞= Ψ Ψ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑∑      

2.n n n n n n n
n n n n

c c c c cδ∗ ∗
′ ′

′

= = =∑∑ ∑ ∑                          [3.48]  

类似地，Q的期望值应该是任何可能性的本征值与本征值出现几率的乘积的求和： 

                       
2 .n n

n

Q q c=∑                                  [3.49] 

的确 

             ˆ ˆ ,n n n n
n n

Q Q c f Q c f′ ′
′

⎛ ⎞ ⎛ ⎞
= Ψ Ψ = ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑                    [3.50] 

但是 ˆ
n n nQf q f= ，所以 

         
2 .n n n n n n n n n n n n

n n n n n

Q c c q f f c c q q cδ∗ ∗
′ ′ ′ ′

′ ′

= = =∑∑ ∑∑ ∑            [3.51] 

不管怎样，到此为止，所有的结果是一致的。 

那么，我们能不能用现在的语言对原先的位置测量的统计诠释重新论述呢？当然可以

— 这有点絮叨，但值得检验。测量一个处于Ψ 态的粒子的 x 其结果一定是坐标算符的一

个本征值。在例题 3.3 中，我们发现每个实数 y 都是 x 的一个本征值，相应的本征函数是

( ) ( )yg x x yδ= − 。     

显然有 

               ( ) ( ) ( , ) ( , ),yc y g x y x t dx y tδ
∞

−∞
= Ψ = − Ψ = Ψ∫              [3.52] 

所以，获得结果处于某一范围 dy 的几率就是
2( , )y t dyΨ ，这也正是原先的统计诠释。 

                                                        
15注意时间依赖性—此处没有讨论这个问题—体现在展开系数中；如果明显写出应为 ( )nc t 。 

16再次，我小心地避开常见的论述“
2

nc 是粒子处于 nf 态的概率。”这毫无意义。粒子是处于态Ψ。而
2

nc

是测量Q 的值得到 q 的概率。这种测量会使态坍塌向本征函数 nf 。所以正确说法是 “
2

nc 是处于Ψ态

的粒子在测量Q 值后将处于 nf 态的几率”…但是这是完全不同的论述。 



动 量 又 如 何 呢 ？ 在 例 题 3.2 中 我 们 发 现 动 量 算 符 的 本 征 函 数 是

( ) (1/ 2 ) exp( / )pf x ipxπ
∞

−∞
= ∫= = ，所以 

                  /1( ) ( , ) .
2

ipx
pc p f e x t dx

π

∞ −

−∞
= Ψ = Ψ∫ =

=
               [3.53] 

这是非常重要的一个量，我们赋给它一个特殊的名字和记号：动量空间波函数， ( , )p tΦ 。

它其实就是坐标空间波函数 ( , )x tΦ 的傅立叶变换 ⎯ 根据 Plancherel 定理，后者又是它的

逆变换： 

                      /1( , ) ( , ) ;
2

ipxp t e x t dx
π

∞ −

−∞
Φ = Ψ∫ =

=
                  [3.54] 

                      /1( , ) ( , ) .
2

ipxx t e p t dp
π

∞ −

−∞
Ψ = Φ∫ =

=
                  [3.55] 

根据广义统计诠释，对动量的测量得到结果在 dp 范围的几率是 

                                 
2( , ) .p t dpΦ                             [3.56] 

 
 

例题 3.4   一个质量为m 的粒子处在δ 函数势 ( ) ( )V x xαδ= − 中。对其动量进行测量，得到结

果比 0 /p mα= =大的几率是多少？ 
解：（坐标空间的）波函数是（2.129 式） 

                     
2/ /( , ) m x iEtmx t e eαα − −Ψ = = =

=
 

（式中 2 2/ 2E mα= − = ）。因此动量空间的波函数是 

        
2

3 / 2 /
/ / / 0

2 2
0

1 2( , )
2

iEt
m xiEt ipxm p ep t e e e dx

p p
αα

ππ

−∞ −− −

−∞
Φ = =

+∫
=

= = =

==
 

（查阅积分表求积分）。所以，要求的几率就是 

0
0

3 10
0 2 2 2 2 2

0 0 0

2 1 1 1 1tan 0.0908
( ) 4 2pp

pp pp dp
p p p p pπ π π

∞ − ∞⎡ ⎤⎛ ⎞
= + = − =⎢ ⎥⎜ ⎟+ + ⎝ ⎠⎣ ⎦

∫  

（再次查阅积分表求积分） 
 
 
 

习题 3.11 对谐振子基态，求出其动量空间的波函数， ( , )p tΦ 。对此态测量动量，发现结

果处于经典范围（具有相同能量）之外的几率是多大（精确到两位数）？提示：数值计算

部分可查阅数学手册中“正态分布”或“误差函数”部分，或者使用 Mathematic 软件。  
 

习题 3.12   证明 

                    .x dp
i p

∗ ⎛ ⎞∂
= Φ − Φ⎜ ⎟∂⎝ ⎠
∫

=
                              [3.57] 

提示：注意到 exp( / ) ( / ) exp( / )x ipx i d dp ipx= −= = = 。 
则，在动量空间，坐标算符则可表示为 /i p∂ ∂= 。更普遍的有      



  ˆ , ,
( , )

ˆ ,

Q x dx
i x

Q x p
Q p dp

i p

∗

∗

⎧ ∂⎛ ⎞Ψ Ψ⎜ ⎟⎪ ∂⎝ ⎠⎪= ⎨
⎛ ⎞∂⎪ Φ − Φ⎜ ⎟⎪ ∂⎝ ⎠⎩

∫

∫

=

=

在坐标空间

在动量空间

;

， .

                 [3.58] 

原则上，可以像在坐标空间一样在动量空间进行所有的计算（当然并不总是很简便）。 
 
 
 
3.5 不确定原理 
 
在 1.6 节部分我们曾讲述过不确定原理（以 / 2x pσ σ ≥ = 的形式），而且在习题你们曾多次验证

过它。但是我们从来没有证明过它。这一节我们来证明不确定原理更一般的形式，并探讨它的

的蕴涵。论证很优美，而且相当简洁，请细心体会。 
 
3.5.1 普遍不确定原理的证明 
 
对于任意一个可观测量 A，我们有（3.21 式）： 

                ( ) ( )2 ˆ ˆ ,A A A A A f fσ = − Ψ − Ψ =  

 式中 ( )ˆf A A≡ − Ψ。同样地，对于任何另外一个可观测量 B ，有 

                2 ,B g gσ =      其中 ( )ˆ .g B B≡ − Ψ    

因此（由 Schwarz 不等式，3.7 式）有， 
22 2 .A B f f g g f gσ σ = ≥                          [3.59] 

那么现在对于任意一个复数 z ， 

 [ ] [ ] [ ]
2

2 2 22 1Re( ) Im( ) Im( ) ( ) .
2

z z z z z z
i

∗⎡ ⎤= + ≥ = −⎢ ⎥⎣ ⎦
             [3.60] 

因此，令 z f g= ， 

                     
2

2 2 1
2A B f g g f
i

σ σ ⎛ ⎞⎡ ⎤≥ −⎜ ⎟⎣ ⎦⎝ ⎠
                   [3.61] 

但是 

           ( ) ( ) ( )( )ˆ ˆˆ ˆf g A A B B A A B B= − Ψ − Ψ = Ψ − − Ψ  

                 ( )ˆ ˆˆ ˆAB A B B A A B= Ψ − − + Ψ  

                 ˆ ˆˆ ˆAB B A A B A B= Ψ Ψ − Ψ Ψ − Ψ Ψ + Ψ Ψ  

                 ˆ ˆAB B A A B A B= − − +  

                 ˆ ˆ .AB A B= −  

类似有， 

                       ˆˆ ,g f BA A B= −  

因此 



               ˆ ˆ ˆˆ ˆ ˆ, ,f g g f AB BA A B⎡ ⎤− = − = ⎣ ⎦  

式中 

                        ˆ ˆ ˆˆ ˆ ˆ,A B AB BA⎡ ⎤ ≡ −⎣ ⎦  

是两个算符之间的对易关系（2.48 式）。结论： 
 
                                         
                                                                          

[3.62] 
                            
 
 

这就是（普遍的）不确定原理。你或许会认为 i 使得这个式子无价值 — 等式的右边是负。

其实不然，因为两个厄密算符的对易式本身具有 i 因子，因此两者相互抵消。17  

举例来说，假设第一个可观测量是坐标（ lA x= ），第二个是动量（ l ( / ) /B i d dx= = ）。

在第二章我们曾算出它们的对易式（2.51 式）： 
                             [ ]ˆ ˆ,x p i= =  

所以 

                       
2 2

2 2 1 ,
2 2x p i
i

σ σ ⎛ ⎞ ⎛ ⎞≥ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

==    

或者，因为标准差由其本质是正值， 

                            .
2x pσ σ ≥
=

                                   [3.63] 

这就是最初的海森堡不确定原理，但是现在看来它只是更普遍理论的一个应用而已。 
事实上，对每一对其算符不对易的可观测量的都存在一个“不确定原理”— 我们称它

们为不相容可观测量。不相容可观测量没有共同的本征函数 — 至少，它们不能有完备的

共同本征函数系（参见习题 3.15）。相反，相容（可对易的）的可观测量却可以有共同的本

征函数系。18例如，对氢分子来说(我们将在第四章遇到)，哈密顿、角动量的模平方以及角

动量的 z 方向分量是互相相容的可观测量，我们可以构造这三个量的共同本征函数，并以

它们各自的本征值来标记。但是没有既是坐标的又是动量的共同本征函数，因为这两个算

符不相容。 
注意，不确定原理并不是量子力学中一个额外的假设，而是统计诠释的结果。你或许

感到奇怪，它在实验室是怎么起作用的呢 — 为什么就不能同时确定(比方说)一个粒子的坐

标和动量呢？你当然可以测量一个粒子的位置，但是测量本身使波函数坍塌为一个尖峰，

这样波的傅立叶展开中波长(动量)分布范围很宽。如果你此时再去测量动量，这个态就会坍

塌为一个长正弦波，（现在）具有确定的波长 — 但是此刻的粒子已经不再处于第一次测量

时你得到的位置。19 这样问题是，第二次测量使得第一次测量的结果无效了。只有波函数同

时是两个力学量的本征态时，才有可能在不破坏粒子的状态的情况下进行第二次测量（这

种情况下第一次坍塌不改变任何事情）。但是，一般来说，这只是在两个可观测量相互对易

的情况下才有可能。 
 

                                                        
17更确切地说，两个厄密算符的对易式本身是反厄密算符（

†ˆ ˆQ Q= − ），而且它的期望值是虚数(习题 3.26)。 
18这对应着以下事实，非对易的矩阵不能同时对角化（即它们不能被同一个相似变换变为对角矩阵），而对

易的厄密矩阵可以同时被对角化。见 A.5 节。 
19波尔在努力探索（例如）对 x 的测量破坏先前已经存在的 p 的值的机制。问题的关键是想要确定一个粒

子的位置就必须用某种东西对它作用——比方说，光照射。但是你无法控制这些光子传递给粒子的动量。

现在你知道位置了，却没法再知道动量了。他和爱因斯坦著名的争论中包含了许多趣事，详细展示了实验

限制如何影响不确定原理。见 P.A.Schilpp 所编《哲学科学家爱因斯坦》Tudor, New York （1949）一书中

波尔的文章。 

2
2 2 1 ˆ ˆ, .

2A B A B
i

σ σ ⎛ ⎞⎡ ⎤≥ ⎜ ⎟⎣ ⎦⎝ ⎠



*习题 3.13 
(a)  证明下列的对易关系等式： 

                [ ] [ ] [ ], , , .AB C A B C A C B= +                               [3.64] 

(b) 证明 
                    1, .n nx p i nx −⎡ ⎤ =⎣ ⎦ =  

(c）对任意函数 ( )f x ，更一般的证明 

                    [ ]( ), .dff x p i
dx

= =                                     [3.65] 

 
*习题 3.14  证明著名的 “（名副其实的）不确定原理”联系着坐标（ A x= ）的不确定和

能量（
2 / 2B p m V= + ）的不确定： 

                    .
2x H p
m

σ σ ≥
=

      

对于定态这个并不能告诉你更多 ⎯ 为什么？ 
 
习题 3.15    证明两个非对易算符不能拥有共同的完备本征函数系。提示：证明如果 P̂ 和 Q̂
拥有共同的完备本征函数系，则对于希耳伯特空间的任意函数有 ˆˆ[ , ] 0P Q f = 。 
 
 
3.5.2 最小不确定波包 
 
我们曾两次遇到波函数达到坐标-动量不确定原理限制极限（ / 2x pδ δ = = ）的情况：谐振子

基态（习题 2.11）和自由粒子的高斯波包（习题 2.22）。这就提出了一个有趣的问题：什么

是最一般的最小不确定波包？回望对不确定原理的证明，我们注意到在两个地方出现不等

式：方程 3.59 和方程 3.60。假定我们令其成为等式，看看能从中告诉我们Ψ 的哪些信息。 
对于某些复数 c（见习题 A.5），当一个函数是另一个函数的倍数： ( ) ( )g x cf x= 时，

Schwarz 不等式变成等式。与此同时，我们舍去方程 3.60 中的实数部分 z ；此等同于如果

Re( ) 0z = ，即 Re Re( ) 0f g c f f= = 。 f f 必是实数，这就意味着常数 c 必须

是纯虚数—我们将它表示为 ia 。因此，对最小不确定成立的必要充分条件就是 
                      ( ) ( ),g x iaf x=     式中a 是实数.                    [3.66] 

对于坐标-动量不确定原理来说这个判据为 

                    ( ) ,d p ia x x
i dx

⎛ ⎞− Ψ = − Ψ⎜ ⎟
⎝ ⎠

=
                       [3.67] 

这是一个作为 x 的函数Ψ的微分方程。其一般解（习题 3.16）是：  

                     ( )2 2( ) .a x x i p xx Ae e− −Ψ = = =                           [3.68] 
显然，最小不确定波包是一个高斯波包 — 而且我们之前遇到的两个例子都是高斯波包。20 

 
习题 3.16 求方程 3.67 的解。注意 x 和 p 都是常数。  
 
 

3.5.3 能量-时间不确定原理 
 
                                                        
20注意这里只有Ψ 对 x 依赖才是有有关的—“常数” A ，a , x ,和 p 可能都是时间的函数，这种情况下

Ψ可能会演变而偏离最小形式。我所能断言的是如果在某个时刻波函数是 x 的高斯函数，则（在这个时刻）

不确定之积是最小的。 



坐标-动量不确定原理常写成下面的形式 

                              ;
2

x pΔ Δ ≥
=

                               [3.69] 

对全同体系进行重复测量结果的标准差来说， xΔ （ x 的不确定度）是一个不严谨的标记（粗

略的语言）。21 方程 3.69 经常和下面的能量-时间不确定原理伴随出现： 

                            .
2

t EΔ Δ ≥
=

                                  [3.70] 

的确，在狭义相对论里，能量-时间的形式可以被认为是坐标-动量版本的的一个推论，因为

x 和 t （或者说 ct ）在坐标-时间 4-矢量里一同变换，而 p 和 E （或者说 /E c）在能量-动
量 4-矢量里一同变换。所以在相对论理论里，方程 3.70 应该是方程 3.69 的一个必要的伴随

式。但是我们不是在讨论相对论量子力学。薛定谔方程显然是非相对论的：式中赋予 x 和 t
非常不同的立足点（在同一微分方程中 t 是一次导数，而 x 是二次导数），并且方程 3.70 显

然不被方程 3.69 所隐含。我们现在的目的是导出能量-时间不确定原理，并且在推导的过程

中使你相信，它实际上是另一个完全不同的概念，而它与位置-动量不确定原理表面上的相

似之处实际上让人相当误解。 
首先，坐标、动量和能量都是动力学变量 — 是体系在任何时刻都可观测的特征。但

是时间本身不是动力学变量（在任何情况下，在非相对论中都不是）：你不会像测量坐标和

能量一样去测量一个粒子的“时间”。时间是一个独立变量，动力学量是它的函数。特别地，

能量-时间不确定原理中的 tΔ 不是对时间测量所收集数据的标准差；粗略地讲（一会儿将对

此做出更精确的解释）正是时间让体系发生实质性的变化。 
当测量一个体系变化有多快时，我们来求某个可观测量的期望值对时间的导数，

( , , )Q x p t ： 

           
ˆˆ ˆ ˆ .d d QQ Q Q Q

dt dt t t t
∂Ψ ∂ ∂Ψ

= Ψ Ψ = Ψ + Ψ Ψ + Ψ
∂ ∂ ∂

 

由薛定谔方程 

                           ˆi H
t

∂Ψ
= Ψ

∂
=  

（式中
2 2H p m V= + 是哈密顿）。所以 

               
ˆ1 1ˆ ˆˆ ˆ .d QQ H Q QH

dt i i t
∂

= − Ψ Ψ + Ψ Ψ +
∂= =

 

但是 Ĥ 是厄密算符， ˆ ˆˆ ˆH Q HQΨ Ψ = Ψ Ψ ，所以有 

                         
ˆˆˆ , .d i QQ H Q

dt t
∂⎡ ⎤= +⎣ ⎦ ∂=

                   [3.71] 

 
在算符不显含时间的通常情况下，它告诉我们算符期望值的变化率决定于此算符与哈密顿

量的对易式。特别地，如果 Q̂与 Ĥ 对易，则 Q 是常量，在这个意义上Q是一个守恒量。 

现在假设我们在广义不确定原理中（3.62 式）令 A H= 和 B Q= ，并且假设Q不显含

时间： 

            
2 22 2

2 2 1 1ˆˆ , .
2 2 2H Q

d Q d Q
H Q

i i i dt dt
σ σ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
 

或者，更简洁地， 
                                                        
21不确定原理的许多不经意的应用实际上基于（常常是无意的）完全不同的—有时候并未被证明是正确的

—对“不确定”的测量。相反地，一些精辟严密的论征会用到对“不确定”的另外定义。见 Jan Hilgevoord, 
Am.J.Phys. 70,983 (2002)。 



                           .
2H Q

d Q
dt

σ σ ≥
=

                             [3.72] 

我们定义 HE σΔ ≡ 和 

                            .Qt
d Q dt
σ

Δ ≡                               [3.73] 

则有 

                                ,
2

E tΔ Δ ≥
=

                               [3.74] 

这就是能量-时间的不确定原理。但应注意到这里 tΔ 的含义：由于 

Q

d Q
t

dt
σ = Δ ， 

tΔ 表示Q的期待值变化单位标准差时所需的时间。23特别是， tΔ 完全依赖于你所关心的那

个可观测量（Q）— 对有的可观测量变化较快，而有些较慢。但是，如果 EΔ 很小的话，

则所有的可观测量的变化速率一定是非常平缓的；或者，换言之，假如任一可观测量变化很

快的话，能量的“不确定”必定很大。 
 

 
例题 3.5  在定态的特殊情况下，能量值可以被唯一地确定，所有可观测量的期待值不随时

间变化（ 0E tΔ = ⇒ Δ = ∞）。要使期待值变化，至少需要两个定态的迭加⎯比如说： 
1 2/ /

1 2( , ) ( ) ( ) .iE t iE tx t a x e b x eψ ψ ψ− −= += =  

如果 a ，b ， 1ψ 和 2ψ 是实数， 

( ) ( ) ( )22 22 1 2 2 1
2 1 2, ( ) ( ) 2 ( ) ( )cos .E Ex t a x b x ab x x tψ ψ ψ ψ ψ −⎛ ⎞= + + ⎜ ⎟

⎝ ⎠=
 

振荡的周期是 ( )2 12 / E Eτ π= −= 。粗略来说， 2 1E E EΔ = − ， t τΔ = (精确计算参见习题

3.18)，因此 
2 ,E t πΔ Δ = =  

这个确实 / 2≥ = 。 
 
例题 3.6  一个自由粒子波包经过某一特定点大约要多长时间（图 3.1）？定性地有（精确解

参见习题 3.19）， / /t x v m x pΔ = Δ = Δ ，但是
2 / 2E p m= ，所以 /E p p mΔ = Δ 。因此， 

,p p m xE t x p
m p
Δ Δ

Δ Δ = = Δ Δ  

有坐标-动量不确定原理，这个 / 2≥ = 。  

 
图 3.1： 一个自由粒子的波包趋近点 A (习题 3.6)。 
 

                                                        
23有时称这为能量-时间不确定原理的“Mandelstam-Tamm”公式。对其它探讨的一个评述，见 Paul Busch，
Found. Phys. 20,1 (1990)。 



例题3.7  Δ粒子在自发分裂之前大约能够生存10-23秒。假如你对所有的质量测量做分布图，

就可以得到一个中心在 1232MeV/c2 的喇叭形曲线,其宽度大约是 120 MeV/c2 (图 3.2)。那么

为什么静止能量（mc2）有时大于 1232，而有时又小于 1232 呢？难道是这个实验有误差？

其实不是，因为： 

23 22120 (10 sec) 6 10 sec
2

E t MeV MeV− −⎛ ⎞Δ Δ = = ×⎜ ⎟
⎝ ⎠

， 

而
22/ 2 3 10 MeV−= ×= sec。因此m 的离散大约和不确定原理所允许的值一样小 ⎯ 有如此

短暂寿命的粒子没有很好定义的质量。24 

    注意这些例子中 tΔ 在不同情况下的具体含义：在 3.5 例子中它是一种周期振荡；在 3.6
例子中它是粒子通过某点的所花的时间；在 3.7 例子中它是不稳定粒子的寿命。 然而在任

何情况中， tΔ 都是表示体系经历“显著”变化所需的时间。 
常常有人说，不确定原理意味着量子力学中能量不是严格守恒 — 就是说你被允许“借

出”能量 EΔ , 只要在 /(2 )t EΔ ≈ Δ= 时间内可以“还回”；违背守恒越大，它所经历的时间

越短。现在有很多关于能量-时间不确定原理的正统课本，但是本书不是它们中的一个。量

子力学在任何地方都不允许违背能量守恒，在推导公式 3.74 的过程中显然也没有违背能量

守恒。但是不确定原理是如此强大坚实：它可以被误用而不会导致严重错误的结果，从而，

很多物理学家习惯于草率地应用它。 

 
图 3.2 Δ粒子质量的测量图(例题 3.7). 

 
*习题 3.17 在下面的具体例子中应用公式 3.71：（a）Q =1；（b）Q H= ；（c）Q x= ；（d）
Q p= 。在每种情况下，解释结果，特别是参考公式 1.27，1.33，1.38 和能量守恒（2.39 式

后的评注）。 
 
习题 3.18 对习题 2.5 中的波函数和可观测量 x 通过计算 ,H xσ σ 和 /d x dt 来验证能量-时间

不确定原理。 
 
习题 3.19对习题 2.43中的自由粒子波包和力学量 x 通过计算 ,H xσ σ 和 /d x dt 来验证能量

-时间不确定原理。 
 
问题 3.20 证明当问题中的可观测量为 x 时，能量-时间不确定原理还原为“名副其实”的不

确定原理（习题 3.14）。 
 
 
                                                        
24实际上，例题 3.7 有点不切实际。你无法用一个跑表测量

2310 sec−
，在实际中这类短生存粒子的寿命是

根据不确定原理，由质量曲线的宽度推导出的。经管逻辑上我们是倒推出寿命，本题原则上是成立的。另

外，如果你假设 Δ和质子大小（
1510 m−∼ ）差不多，则粗略讲

2310 sec−
是光通过这个粒子所需的时间，

很难想象寿命可以比这还短。 



3.6 狄拉克符号 
 
设想二维空间的一个普通矢量 A（图 3.3（a））。你如何向别人描述这一矢量呢？最方便的方

式就是建立直角坐标轴，x 和 y ，并且规定矢量 A 的分量： xA = ⋅i A， yA = ⋅j A（图 3.3(b)）。

当然，你的姐妹也许会建立另外一种坐标轴，x′和 y′，并且她将有不同的分量：
'

xA′ = ⋅i A ，

'
yA′ = ⋅j A（图 3.3（c）)。但是它仍然是同一个矢量 — 我们仅仅是用到两种不同的基（{ },i j

和{ }' ',i j ）来表示而以。矢量本身存在于空间中，不依赖于坐标系的选择。 

量子力学中体系的态也同样如此。它由一个希耳伯特空间里的 ( )ℑ t 矢量来描述，但是

我们可以用任何不同的基来表示的它。波函数 ( , )Ψ x t 实际上是 ( )ℑ t 当用坐标的本征函数 
 
 
 

 
图 3.3：（a）矢量 A。（b）A 在 xy坐标系中的分量。（c）A 在

' 'x y 坐标系中的分量。 
 
展开时的展开系数： 

( , ) ( ) ,Ψ = ℑx t x t                             [3.75] 

（这里基矢量 x 对应于属于本征值 x 的 �x 本征函数），25 而动量空间波函数 ( , )p tΦ = 是

( )ℑ t 用动量本征函数的基展开时的展开系数： 

                            ( , ) ( )p t p tΦ = ℑ                             [3.76] 

（这里基矢量 p 对应于属于本征值 p 的 p
∧

的本征函数）。26 或者我们也可以把 ( )tℑ 用能

量本征函数的基展开（简单起见，假设谱是分立的）： 
                            ( ) ( )nc t n t= ℑ                                [3.77] 

（这里基矢量 n 对应属于lH 的第 n 个本征函数）— 方程 3.46。但是这些都是表示的同一

个态；函数Ψ，Φ和系数的集合{ }nc 精确包含同样的信息 — 它们仅是描述同一矢量的三

种不同途径而已： 

                                                        
25我不想称它为 xg （3.39 式），因为这是用坐标基时它的形式，这里的要点是我们要摆脱任何特定基的束

缚。的确，第一次我是用 x 的平方可积函数来定义希耳伯特空间的，这有点太束缚，约定我们是在一个特

定的表象（坐标基）。我现在是在一个抽象的矢量空间讨论问题，其中的矢量可以用任何你喜欢的基来表示。 
26在坐标空间它应该为 ( )pf x 。 



/

/

1( , ) ( , ) ( ) ( , )
2

( ).n

ipx

iE t
n n

x t y t x y dy p t e dp

c e x

δ
π

ψ−

Ψ = Ψ − = Φ

=

∫ ∫
∑

=

=

=             [3.78] 

（表示可观测量的）算符是一种线性变换 — 它们把一个矢量变换到另一个： 

.Qβ α
∧

=                             [3.79] 

正如对某组基{ }ne ，27 矢量是由其分量表示一样， 

,n n
n

a eα =∑  ;n na e α=    ,n n
n

b eβ =∑  ,n nb e β=             [3.80] 

算符（对某组基）是用矩阵元来表示的：28 

.m n mne Q e Q
∧

=                                   [3.81] 

采用这种形式，方程 3.79 可以写为： 

,n n n n
n n

b e a Q e
∧

=∑ ∑                                 [3.82] 

或者，取同 me 的内积， 

l ,n m n n m n
n n

b e e a e Q e=∑ ∑                            [3.83] 

因此 
.m mn n

n
b Q a=∑                                     [3.84] 

所以矩阵元告诉你分量是如何变换的。 
后面我们会遇到仅允许有限（N）个线性独立态的体系。在这种情况下 ( )tℑ 是处于一

个 N-维矢量空间；（对给定的基）它的分量可以表示一个（N 行）列矩阵，算符表示成 ( )N N×
普通矩阵的形式。这些是最简单的量子体系 — 不存在无限维矢量空间中时的错综复杂。其

中最容易的是两-态体系，我们在下面的例子中讨论它。 
 

例题 3.8 假定一个体系仅有两个线性独立的态：29 

1
1

0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

   和    
0

2 .
1
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

最一般的态是它们归一化的线性迭加： 

( ) 1 2 ,
a

t a b
b
⎛ ⎞

ℑ = + = ⎜ ⎟
⎝ ⎠

  并且有 
2 2 1.a b+ =  

哈密顿函数算符可以表示为一个（厄密）矩阵；假定它有特定的形式： 

,
h g

H
g h

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

这里 g 和 h 都是实常数。如果体系的初始态是 1 （在 0t = 时刻），那么在 t 时刻它的状态

是什么？ 
解：含时薛定谔方程为： 

                                                        
27我将假定基是分立的；否则 n 成为一个连续指标，求和被积分取代。 
28这个术语当然是对有限维情况，但是现在的“矩阵”一般可以有无限多个（甚至是不可数的）矩阵元。 
29技术上，这里的“相等”号其含义是“由 ⋅ ⋅ ⋅表示”，如果我们采取这个惯用的不正式的术语，也不会引

起混淆。 



( ) ( ) .di t H t
dt

ℑ = ℑ=                                [3.85] 

一般的，我们总是先解定态薛定谔方程： 
;H Eℑ = ℑ                                    [3.86] 

即，我们求 H 的本征矢量和本征值。久期方程确定了本征值： 

2 2det ( ) 0
h E g

h E g h E g E h g
g h E ±

−⎛ ⎞
= − − = ⇒ − = ⇒ = ±⎜ ⎟−⎝ ⎠

∓ , 

显然所许可的能量值是 ( )h g+ 和 ( )h g− 。为了确定本征矢量，写出 

( ) ( ) ,
h g

h g h g h g
g h

α α
α β α β α

β β
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ± ⇒ + = ± ⇒ = ±⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

因此归一化本征矢量是 
11
12±

⎛ ⎞
ℑ = ⎜ ⎟±⎝ ⎠

。 

然后我们把初始态展开为哈密顿算符的本征矢量的线性迭加: 
1 1(0) ( )
0 2 + −

⎛ ⎞
ℑ = = ℑ + ℑ⎜ ⎟

⎝ ⎠
. 

最后，我们加进标准的时间因子 exp( / )niE t− = ： 

( ) / ( ) /

/ / /

/ /
/ /

/ /

1( ) [ ]
2

1 11         
1 12

cos( / )1        .
sin( / )2

i h g t i h g t

iht igt igt

igt igt
iht iht

igt igt

t e e

e e e

gte e
e e

i gte e

− + − −
+ −

− −

−
− −

−

ℑ = ℑ + ℑ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= +⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞+ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−− ⎝ ⎠⎝ ⎠

= =

= = =

= =
= =

= =

=
=

 

假如你怀疑这个结果，可以采取各种方法来检验它：它满足含时薛定谔方程么？当 0t = 时

它和初态一致么？ 
这只是中微子振荡的一个粗略模型。在这种情况下 1 表示电子中微子， 2 表示 μ 中

微子；假如哈密顿算符有非零的非对角元（g），则在时间的演化中电子中微子将会变成μ 中

微子（反之亦然）。 
 
狄拉克建议把内积， α β ，的括号记号劈为两个部分，分别称之为左矢 α （或刁矢）

和右矢 β （或刃矢）。后者是一个矢量，但是前者确切是什么呢？当它从左边和右边一个

矢量结合在一起时，生成一个（复）数 — 内积，在这个意义上，它是矢量的一个线性泛函。

（当一个算符作用在一个矢量上，给出另一个矢量，当左矢和右矢结合在一起时，给出一个

数。）在一个函数空间里，左矢可以认为是一个对积分的指定： 

[ ]* ,f f dx= ∫ "  

这里，任何左矢所结合的右矢所表示的函数将被填入到省略号里。在有限维矢量空间里，当

右矢被表示成列矩阵： 



1

2

.
,

.

.

n

a
a

a

α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                               [3.87] 

相应的左矢可以表示成行矩阵： 
                        ( )* * *

1 2 . . . ,na a aα =                       [3.88] 

所有的左矢集合构成了另外一个矢量空间 — 所谓的对偶空间。 
允许把左矢按分开的实体处理给我们提供了一个有力简洁的工具（我将不会在本书里深

究）。举个例子来说，假如 α 是一个归一化矢量，算符： 

P α α
∧

≡                                  [3.89] 

将会从任意其它矢量中选出沿 α 方向的部分： 

P β α β α
∧

≡ ； 

我们称它为向 α 张成的一维子空间的投影算符。如果{ }ne 是一分立的正交归一基， 

,m n mne e δ=                                 [3.90] 

则有 
1n n

n
e e =∑                                 [3.91] 

（恒等算符）。如果我们把这个算符作用于任意一个矢量 α 上，得到 α 用基{ }ne 的展开

式： 
.n n

n
e e α α=∑                              [3.92] 

类似有，假如{ }ze 是一狄拉克正交归一的连续基， 

' ( '),z ze e z zδ= −                              [3.93] 

则有 
                            1.z ze e dz =∫                                [3.94] 

公式 3.91 和 3.94 是表达完备性最整洁的方式。 
 

习题 3.21 证明投影算符是等幂的： l l2
P P= 。求出 lP 本征值，描述它的本征矢量。 

 
习题 3.22 考虑由正交归一基 1 ， 2 ， 3 张成的三维矢量空间。右矢 α 和 β 由下式给

定 
1 2 2 3i iα = − − ， 1 2 3iβ = + 。 

（a） 给出 α 和 β （以对偶基 1 , 2 , 3 表示的）。 

（b） 求出 α β 和 β α 并证实
*β α α β= 。 

（c） 在这个基中，求出算符 lA α β≡ 里的 9 个矩阵元，并写出矩阵A 。它是厄密矩阵

么？ 
 



习题 3.23 一个两-能级体系的哈密顿为： 

  l ( 1 1 2 2 1 2 2 1 )H E= − + + ， 

这里 1 ， 2 是正交归一基， E 是量纲为能量的一个实数。求出它的本征值和归一化的本

征矢（用 1 和 2 的线性迭加）。相应于这个基表示lH 的矩阵H是什么？ 

习题 3.24 设算符 lQ有一组完备的正交归一本征矢：  

( 1,2,3,...).n n nQ e q e n
∧

= =   

证明 lQ可以被写成它的谱分解形式： 
l .n n n

n
Q q e e=∑  

提示：一个算符是由它对所有可能矢量的作用来表征的，因此你需要证明的是，对于任意矢

量 α 来说，有： 

.n n n
n

Q q e eα α
∧ ⎧ ⎫= ⎨ ⎬

⎩ ⎭
∑  

 
第三章补充习题 
 
习题 3.25 勒让德多项式。用 Gram-Schmidt 方法（习题 A.4）在区间 1 1x− ≤ ≤ 里来正交归

一化函数 1， x , 2x , 3x 。你可能会认出这些结果 — (除了归一化外)它们是勒让德多项式

（表 4.1）。30 
 
习题 3.26 一个反厄密算符等于它的负的厄密共轭： 

l l†
.Q Q= −                                [3.95] 

（a） 证明一个反厄密算符的期望值是个虚数。 
（b） 证明两个厄密算符的对易子是反厄密的。那么两个反厄密算符的对易子如何？ 
 

习题 3.27 连续测量。一个算符 lA表示可观测量 A，它的两个归一化本征态是 1ψ 和 2ψ ，分

别对应本征值 1a 和 2a 。算符 lB 表示可观测量 B ，它的两个归一化本征态是 1φ 和 2φ ，分别对

应本征值 1b 和 2b 。两组本征态之间有关系： 

1 1 2(3 4 ) /5,ψ φ φ= +     2 1 2(4 3 ) /5.ψ φ φ= −  

（a） 测量可观测量 A，所得结果为 1a 。那么在测量之后（瞬时）体系处在什么态？ 
（b） 如果现在再测量 B ，可能的结果是什么？它们出现的几率是多少？ 
（c） 在恰好测出 B 之后，再次测量 A。那么结果为 1a 的几率是多少？（注意如果我已经

告诉你测量 B 所得结果，对不同的测量 B 所得结果，本问的答案将是不同的。） 
 
**习题 3.28 对无限深方势阱第 n 定态求其动量空间的波函数 ( , )n p tΦ = 。作为 p 的函数，

画出
2

1( , )p tΦ 和
2

2 ( , )p tΦ （特别注意点 /p n aπ= ± = ）。用 ( , )n p tΦ 来计算
2p 的期望值。

并把答案和习题 2.4 比较。 
 
习题 3.29 考虑下面的波函数： 

                                                        
30勒让德那时不知道最方便的选择是什么；他选择普乘常数使得在 1x = 时多项式值为 1，我们仍用他这个

不幸的选择。 



2 /

           

1 , ,
( ,0) 2

0,

i xe n x n
x

π λ λ λ
ψ πλ

⎧ − < <⎪= ⎨
⎪⎩ 其它地方,

 

这里 n 是某个正整数。这个函数在区间 n x nλ λ− < < 上是纯正弦的（波长为λ），但是它的

动量仍然有一个分布范围，因为振荡没有伸展到无限远处。求出动量空间波函数 ( ,0)pΦ ，

画出
2( ,0)xψ 和

2( ,0)pΦ ，求出峰宽 xw 和 pw  （主峰两边零点之间的宽度）。并考虑当

n →∞时每一个宽度会怎样, 用 xw 和 pw 来估计 xΔ 和 pΔ ，验证不确定原理是否满足。提

醒：如果你尝试计算 pσ ，你将会很意外。你能够分析问题所在么？ 
 
习题 3.30 假设： 

2 2( ,0) ,Ax
x a

ψ =
+

 

式中 A和 a 是常数。 
（a） 归一化 ( ,0)xψ ，确定 A的值。 

（b） 求出 x ，
2x 和 xσ （在 0t = 时刻）。 

（c） 求出动量空间的波函数 ( ,0)pΦ ，并验证它是归一化的。 

（d） 用 ( ,0)pΦ 来计算 p ，
2p 和 pσ （在 0t = 时刻）。 

（e） 对这个态的验证不确定原理。 
 
*问题 3.31  Virial 定理。利用 3.71 式证明： 

2 ,d dVxp T x
dt dx

= −                            [3.96] 

式中T 是动能（ H T V= + ）。对定态上式的左边为是 0（为什么？）所以有： 

2 .dVT x
dx

=                                 [3.97] 

这个称为 Virial 定理。用它来证明对谐振子的定态有 T V= ，并验证这与你在习题 2.11

和 2.12 里得到的结果是一致的。 
 

习题 3.32 在一个关于能量-时间不确定原理的有趣版本里 31 /t τ πΔ = ，这里τ 是 ( , )x tψ 演

变为与 ( ,0)xψ 相正交的状所需要的时间。用某个（任意的）势的两个（正交归一的）定态

波函数的均匀迭加： 1 2( ,0) (1/ 2)[ ( ) ( )]x x xψ ψ ψ= + ，验证这个结论。 
 
**习题 3.33 以谐振子（正交归一的）定态为基，求矩阵元 'n x n 和 'n p n （2.67 式）。

你已在习题 2.12 里计算过对角元素（ 'n n= ）；用同样方法计算更一般的情况。构造出相应

的（无限）矩阵，X 和 P。证明
2 2 2(1/ 2 ) ( / 2)m m Hω+ =P X 在这个基中是对角的。你预

期它的对角元素是什么？部分答案如下： 

, ' 1 ', 1' ( ' ).
2 n n n nn x n n n
m

δ δ
ω − −= +
=

                  [3.98] 

 
习题 3.34 一个谐振子处于这样的态，当对其测量能量时所得结果必是 (1/ 2) ω= 或 

(3/ 2) ω= 其中之一，并且得到两者的几率相等。在此态中， p 的可能的最大值是多少呢？

                                                        
31其证明参见 Lev Vaidman， Am. J. Phys. 60,182(1992)。 



如果假设在 0t = 时刻为这个可能的最大值， ( , )x tΨ 是什么？ 
 
**问题 3.35  谐振子的相干态。在谐振子定态中（ ( )nn xψ= ，2.67 式）仅 0n = 的态符

合不确定原理的极限（ / 2x pσ σ = = ）；一般情况下， (2 1) / 2x p nσ σ = + = ，如你在习题 2.12

求出的那样。但是某些线性迭加（所谓的相干态）也会减小不确定原理中的积。它们是降阶

算符的本征函数：32 

,a α α α− =  

（这里本征值α 可以是任何复数）。 
（a） 对态 α 计算 x ，

2x ， p ，
2p 。提示：利用例题 2.5 中的方法，并记住a+

是a− 的厄密共轭。不要假定α 是实数。 

（b） 求出 xσ 和 pσ ；证明 / 2x pσ σ = = 。 

（c） 像其它的波函数一样，相干态可以用能量本征态展开： 

0

.n
n

c nα
∞

=

=∑  

证明展开系数是： 

0.!

n

nc c
n
α

=  

（d） 由归一化 α 确定 0c 。答案：
2exp( / 2)α− 。 

（e） 现在加入时间因子： 
 / ,niE tn e n−→ =  

证明 ( )tα 仍然是a− 的本征态，但是本征值随时间变化： ( ) iwtt eα α−= 。 

因此一个相干态维持相干，并继续减小不确定原理中的积。 
（f） 基态（ 0n = ）本身是相干态吗？如果是，它的本征值是什么？  
 
   习题 3.36 扩展的不确定原理。33 广义不确定原理（3.62 式）指出： 

2 2 21 ,
4A B Cσ σ ≥ 〈 〉  

其中 ˆ ˆ ˆ,C i A B⎡ ⎤≡ − ⎣ ⎦。 

（ａ）证明它可以强化为 

                              ( )2 2 2 21 ,
4A B C Dσ σ ≥ 〈 〉 + 〈 〉                 [3.99］ 

其中 ˆ ˆˆ ˆ ˆ 2D AB BA A B≡ + − 〈 〉〈 〉。提示：保留 3.60 式中的实部项Re( )z 。 

（ｂ）当 B A= 时验证 3.99（在这种情况下标准的不确定原理是平庸的，因为 ˆ 0C = ；不幸

的是扩展的不确定原理也没多少帮助）。 
 
习题 3.37 某个三-能级体系的哈密顿的矩阵表示为 

0
0 0 ,

0

a b
c

b a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

H  

                                                        
32升阶算符没有可归一化的本征函数。 
33
一个有趣的评注及参考文献, 参见 R.R. Puri, Phys. Rev. A 49,2178(1994)。 



其中 a ，b 和 c都是实数。 
（a） 如果体系的初始态是 

0
(0) 1 ,

0

⎛ ⎞
⎜ ⎟ℑ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

求 ( )tℑ              

 （b）如果初始态是 

0
(0) 0 ,

1

⎛ ⎞
⎜ ⎟ℑ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

求 ( )tℑ              

 

习题 3.38 某个三-能级体系的哈密顿的矩阵表示为 
1 0 0
0 2 0
0 0 2

ω
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

H =  

另外两个可观测量 A和 B 的矩阵表示为 
0 1 0 2 0 0
1 0 0 ,      0 0 1
0 0 2 0 1 0

λ μ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A B ， 

式中ω，λ和μ 都是正实数。 
（a） 求H，A 和B 的本征值和归一化的本征函数。 
（b） 假设体系初始态为 

1

2

3

(0) ,
c
c
c

⎛ ⎞
⎜ ⎟ℑ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

其中
2 2 2

1 2 3 1c c c+ + = ，求H，A 和B 的期望值（在 0t = 时刻）。 

（c） ( )tℑ 是什么？如果你测量这个态的能量（在 t 时刻），可能会得到什么值，它们的几

率是多少？ 对 A 和 B 回答同样的问题。 
 
 **习题 3.39 

（a）一个函数 ( )f x 可以作泰勒展开,证明 
0ˆ

0( ) ( )ipxf x x e f x+ = =  

（其中 0x 是任意常数距离）。由于这个原因，称 p̂ =为空间平移生成元。注意：指数算

符是由一个幂级数定义的： 

( ) ( )ˆ 2 3ˆ ˆ ˆ1 1 2 1 3!Qe Q Q Q≡ + + + +"  

（b）如果 ( , t)xΨ 满足(含时)薛定谔方程，证明 
0

ˆ
0( , ) ( , )iHtx t t e x t−Ψ + = Ψ=   

(式中 0t 为任意时间常数)； Ĥ− =称为时间平移生成元。 



(c)  证明力学量 ),,( tpxQ 在 0t t+ 时刻的期望值可以写作：34 

0 0

0

/ /
0( , ) ( , , ) ( , ) .i H t i H t

t t
Q x t e Q x p t t e x t

∧ ∧∧ ∧
−

+
=< Ψ + Ψ= =  

用这个公式重新得到 3.71 式。提示：设 0t dt= ,然后展开到 dt 的一阶。 
 

**习题 3.40 
(a） 对自由粒子，在动量空间中写出其含时薛定谔方程，并求解。答案

)0,()2/exp( 2 pmtip Φ− = 。 

(b) 求运动高斯波包（习题 2.43）的 )0,( pΦ ，并构造 ),( tpΦ 。给出
2),( tpΦ ，注意到它

是不依赖时间的。 
(c) 通过求涉及Φ的积分，计算 p 和

2p ，然后将你的答案和习题 2.43 比较 

(d ) 证明
2

0
/ 2H p m H= + （这里脚标 0 表示高斯稳态），并讨论结果。 

                                                        
34 特别是，如果我们令 0t = ，并去掉 0t 的下标， 

                    � l � l1
( ) ( , ) ( , ) ( , 0) ( , ) ,Q t x t Q x t x U QU x t

−
= Ψ Ψ = Ψ Ψ  

式中 l lexp( / )U iHt≡ − = 。这表明在计算 �Q 期待值时，就像我们已经做过的那样，可以把 �Q 夹在
*( , )x tΨ 和

( , )x tΨ 之间（让波函数载有对时间的依赖性），也可以把 l � l1
U QU

−
夹在

*( ,0)xΨ 和 ( , 0)xΨ 之间，让算符

载有对时间的依赖性。前者称为薛定鄂绘景，后者称为海森堡绘景。 



第 4 章   
三维空间中的量子力学 
 
 

 
4.1 球坐标系中的薛定谔方程 
 
向三维情况的推广是直截了当的。薛定鄂方程为： 

                             ;i H
t

∂Ψ
= Ψ

∂
=                              [4.1] 

由经典能量可以得出哈密顿算符 H 1 

Vppp
m

Vmv zyx +++=+ )(
2
1

2
1 2222  

通过标准方法（现在应用于 y ， z 以及 x ）： 

,xp
i x
∂

→
∂
=

 ,yp
i y
∂

→
∂
=

 ,zp
i z
∂

→
∂
=

                 [4.2] 

或者简洁地写为 
                              
 

[4.3] 
 
 

这样 
                      
 

    [4.4] 
 
 

其中  

2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

≡∇                             [4.5] 

是直角坐标系中的拉普拉斯算符。 
势能V 和波函数Ψ现在是 ( , , )x y z=r 和 t 的函数。在无穷小体元

3d dxdydz=r 内发

现粒子的几率为
2 3( , )t dΨ r r ，归一化条件是 

2 3 1,d∫ Ψ =r                                [4.6] 

其中积分是对整个空间进行。如果势不显含时间，将有一组完备的定态 
/( , ) ( ) ,niE t

n nt eψ −Ψ =r r =                          [4.7] 

其中空间波函数 nψ 满足定态薛定谔方程： 
                          
 

           [4.8] 
 
 

 
                                                        
1当可能出现混淆时,我将在算符顶部放一个∧来区分它们与对应的经典力学量。本章中不会有很多场合会

出现这种混淆，用∧很麻烦，所以从现在起我不再用它。 

.
i

→ ∇p =

2
2

2
i V

t m
∂Ψ

= − ∇ Ψ + Ψ
∂

==

2
2 ,

2
V E

m
ψ ψ ψ− ∇ + =

=



（含时）薛定谔方程的一般解是 
/( , ) ( ) ,niE t

n nt c eψ −Ψ =∑r r =                       [4.9] 

其中常数 nc 由初始波函数 ( ,0)Ψ r 用通常的方法确定。（假如势允许连续态，那么 4.9 式中

的求和变为积分。） 
 
*习题 4.1 
（a） 求出算符r 和p的各分量之间的正则对易关系：[ , ]x y ，[ , ]yx p ，[ , ]xx p ，[ , ]y zp p

等等。答案： 
[ , ] [ , ]i j i j ijr p p r i δ= − = = ，[ , ] [ , ] 0i j i jr r p p= = ，            [4.10] 

这里指标表示 , ,x y z , ,  ,  x y zr x r y r z= = = 。 

（b） 证明三维情况下的 Ehrenfest 定理： 
1 ,d

dt m
=r p 和 .d V

dt
= −∇p                    [4.11] 

(当然，上面每个式子表示三个方程—一个分量一个)。提示：首先验证方程 3.71 在

三维中是成立的。 
（c） 给出三维情况下的海森堡不确定原理公式。答案： 

/ 2
xx pσ σ ≥ = ， / 2

yy pσ σ ≥ = ， / 2
zz pσ σ ≥ = ，             [4.12] 

但是对
yx pσ σ 等却没有限制。 

 
 

4.1.1 分离变量法 
          
通常，势能仅是到原点距离的函数。在这种情况下很自然的要应用球坐标系，( , , )r θ φ （参

见图 4.1）。在球坐标系下拉普拉斯算符的形式为：2 

        
2

2 2
2 2 2 2 2

1 1 1 1 1sin .
sin sin

r
r r r r r

θ
θ θ θ θ θ φ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
     [4.13] 

在球坐标系下。定态薛定谔方程可写为： 
2 2

2
2 2 2 2 2

1 1 1 1 1sin
2 sin sin

                                                                                         .

r
m r r r r r

V E

ψ ψ ψθ
θ θ θ θ θ φ

ψ ψ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
+ =

=
     [4.14] 

 
图 4.1： 球坐标：半径 r ，极角θ ，方位角φ。 
 
                                                        
2原则上，可以由直角坐标的变量变换得到（4.5 式）。不过有更有效的方法得到它；参见，例如，M. Boas
所著, 物理学中的数学方法，第二版，（Wiley，New York，1983），第 10 章，第 9 节。 



我们开始寻求可分离为下述积形式的解： 
                       ( , , ) ( ) ( , ).r R r Yψ θ φ θ φ=                         [4.15] 

把上式代入 4.14 式，我们得到： 

2
2

2 2 2 2 2

2

sin
2 sin sin

.                                                                            

Y d dR R Y R Y
r

m r dr dr r r

VYR EYR

θ
θ θ θ θ φ

∂ ∂ ∂
− + +

∂ ∂ ∂

+ =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=

 

两边同时除以 RY 和乘以
2 22 /mr− = ： 

( )
2

2
2

2

2 2

1 2

1 1 1sin 0.
sin sin

d dR mrr V r E
R dr dr

Y Y
Y

θ
θ θ θ θ φ

⎧ ⎫⎛ ⎞ − −⎡ ⎤⎨ ⎬⎜ ⎟ ⎣ ⎦⎝ ⎠⎩ ⎭
⎧ ⎫∂ ∂ ∂⎛ ⎞+ + =⎨ ⎬⎜ ⎟∂ ∂ ∂⎝ ⎠⎩ ⎭

=
 

上式第一个大括号里的项仅与 r 有关，而其它的仅与θ 和φ有关；所以，每项必须为一个常

数。由于以后将会明白的理由，
3
我将把这个分离常数写作 ( 1)l l + ： 

( )
2

2
2

1 2 ( 1);d dR mrr V r E l l
R dr dr

⎛ ⎞ − − = +⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠ =
              [4.16] 

2

2 2

1 1 1sin ( 1).
sin sin

Y Y l l
Y

θ
θ θ θ θ φ

⎧ ⎫∂ ∂ ∂⎛ ⎞ + = − +⎨ ⎬⎜ ⎟∂ ∂ ∂⎝ ⎠⎩ ⎭
              [4.17] 

 
习题 4.2  在直角坐标系下，用分离变量法来求解三维无限深方势阱  （处在箱子里的一个

粒子）： 

0,   0 , ,
( , , )

,   
x y z a

V x y z
< <⎧

= ⎨∞⎩ 其它地方.

；
 

(a) 求出定态波函数及相应的能级。 
  (b) 按能量增加的顺序标记不同的能量 1 2 3, , ,...E E E 。给出 1 2 3 4 5, , , ,E E E E E 和 6E 。确定

它们的简并度（即具有相同能量的态的数目）。注：一维情况下不会发生简并（参见习题

2.45），但在三维情况下是很平常。 
  (c)  14E 的简并度是多少,为什么该情况有趣? 

 

 

4.1.2 角动量方程    

 

方程 4.17 决定了波函数ψ 对θ 与φ的依赖关系；两边乘以
2sinY θ 它成为： 

            
2

2
sin sin ( 1)sin .2

Y Y l l Yθ θ θ
θ θ φ

∂ ∂ ∂⎛ ⎞ + = − +⎜ ⎟∂ ∂⎝ ⎠ ∂
                     [4.18] 

你可能已认出这个方程—它在经典电动力学中求解拉普拉斯方程中出现。我们总是试图分离

变量： 

                       Y( , ) ( ) ( ).θ φ θ φ= Θ Φ                                 [4.19] 
把上式代入 ，并除以ΘΦ ,我们发现： 

                                                        
3 这里不失普遍性⎯在此阶段 l 可以是任何复数。以后我们会发现，事实上 l 必须是一个整数，我把它表示

成现在看起来有点奇怪的方式实际上是有预先考虑的。 



21 1 d2sin sin ( 1)sin 0.2d

d d l l
d d

θ θ θ
θ θ φ

⎧ ⎫⎡ Θ ⎤ Φ⎛ ⎞ + + + =⎨ ⎬⎜ ⎟⎢ ⎥Θ Φ⎝ ⎠⎣ ⎦⎩ ⎭
 

第一项仅是θ 的函数，第二项仅是φ的函数，所以每一项必须是一个常数。这次,
4
我称它为

为分离常数
2m ： 

21 2sin sin ( 1)sin ;d d l l m
d d

θ θ θ
θ θ

⎡ Θ ⎤⎛ ⎞ + + =⎜ ⎟⎢ ⎥Θ ⎝ ⎠⎣ ⎦
                [4.20] 

            
2

2
2

1 .d m
dφ
Φ

= −
Φ

                                [4.21] 

关于φ的方程非常简单： 

                     

2
2

2  ( ) .imd m e
d

φφ
φ
Φ

= − ⇒ Φ =                           [4.22] 

[实际上有两组解： exp( )imφ 和 exp( )imφ− 但m 取负时就把后者也包括进去了。前面还应

该有个常数因子，但是它可以被吸收到Θ中去。顺便提及，在电动力学中我们把方位函数

（Φ）写成正弦和余弦的形式，因为电势是实数。在量子力学中没有这种约束，使用指数

形式更方便。] 现在，当φ变化 2π 时，我们回到空间同一点（图 4.1），这很自然要求：
5 

                        ( 2 ) ( ).φ π φΦ + = Φ                                 [4.23] 
换句话说， exp[ ( 2 )] exp( )im imφ π φ+ = ，或 exp(2 ) 1imπ = 。这就要求m 必须为整数： 

                          0, 1, 2,....m = ± ±                                  [4.24] 
θ 的方程， 

              
2 2sin sin ( 1)sin 0,d d l l m

d d
θ θ θ

θ θ
Θ⎛ ⎞ ⎡ ⎤+ + − Θ =⎜ ⎟ ⎣ ⎦⎝ ⎠

               [4.25] 

就没那么简单了。它的解是： 

                         ( ) (cos ),m
lAPθ θΘ =                               [4.26] 

式中
m

lP 是缔合勒让德函数，其定义为
6 

                 / 22( ) (1 ) ( ),
m

mm
l l

dP x x P x
dx

⎛ ⎞≡ − ⎜ ⎟
⎝ ⎠

                    [4.27] 

其中 ( )lP x 是勒让德多项式，可由 Rodrigue 公式定义： 

                        ( )21( ) 1 .
2 !

l
l

l l

dP x x
l dx
⎛ ⎞≡ −⎜ ⎟
⎝ ⎠

                         [4.28] 

例如： 

                  ( )2
0 1

1( ) 1,         ( ) 1 ,
2

d

dx
p x p x x x= = − = ， 

                  ( ) ( )
2

22 2
2

1 1( ) 1 3 1 ,
4 2 2

dp x x x
dx

⎛ ⎞= − = −⎜ ⎟⋅ ⎝ ⎠
 

                                                        
4同样，这里也不失普遍性，因为在此阶段 m 可以是任何复数；尽管随后我们将发现事实上 m 必须为一整

数。注意：现在字母 m 有双重角色，表示质量或分离常数。没有适当的方法避免这个，因为这两种用法都

是标准的表示。有些作者改变质量的表示为 M 或 μ ，我不喜欢在中途改变记号，只要你细心，我不认为

这会引起混淆。 
5说起来好像简单，但是我们需要小心对待。无论如何，不管 m 怎样，几率密度

2
( )Φ 应是单值的。在 4.3

我们将由一个完全不同的更令人信服的方法得到 m 需满足的条件。 
6注意到

m m
l lP P− = 。某些作者采用了一个便利负值 m 的不同记号；见 Boas（脚标 2），p. 505。 



表 4.1： 前几个勒让德多项式， ( )lP x ：（a）函数形式（b）图形。 

 
 

等等。前几个勒让德多项式列在表 4.1 中。正如名字所示， ( )lP x 是一个 x 的（最高幂次为

l ）多项式，根据 l 的奇偶性分别为奇或偶函数。但是 ( )m
lP x 并非如此⎯如果m 是奇数那么

它就带有因子
21 x− ； 

          

( ) ( ) ( )

( ) ( ) ( )

1/20 2 1 2 2 2
2 2

2
2 2 2 2

2

1
1 1( ) 3 1 ,   ( ) 1 3 1 3 ,
2 2

1                1 3 1 3 1 ,
2

d
x

dx
P x x P x x x x

dP x x x
dx

−
⎡ ⎤= − = − − =⎢ ⎥⎣ ⎦

⎛ ⎞ ⎡ ⎤= − − = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

 

等。（另一方面，我们需要的是 cos( )m
lP θ ，由于

21 cos sinθ θ− = ，所以 cos( )m
lP θ 总是一

个 cosθ 的多项式⎯如m 是奇数⎯乘以 sinθ 的多项式。一些 cosθ 的缔合勒让德函数列在表

4.2 中。） 

注意，为了使 Rodrigue 公式有意义，l 必须是一个非负整数；另外，如果 m l> ，那么

由方程 4.27 由 0m
lP = 。因此，对于任何给定的 l ，m 都有 (2 1)l + 个不同的可能取值： 

.0,  1,  2,  ...;             ,  1 1  0  1  1l m l l l l= = − − + −，...，- ，，，..., ，     [4.29] 
但是请等一下！4.25 式是一个二阶方程：对于任何一组 l 和m ，它应该有两个线性独立

的解。所有的另外一个解呢？答案是：作为数学上的解，它们的确存在，但这些解物理上是

不可接受的，因为它们在 0θ = 或θ π= 时为无穷大（见习题 4.4）。 
球坐标系中的体积元为：

7 

3 2 sin ,d r drd dθ θ φ=r                             [4.30] 
所以归一化条件（方程 4.6）变为： 

                 
2 2 22 2sin sin 1.r drd d R r dr Y d dψ θ θ φ θ θ φ= =∫∫ ∫   

对 R 和Y 分别归一化是方便的： 

                     
2 2

0
1R r dr

∞
=∫   和 

2 2

0 0
sin 1.Y d d

π π
θ θ φ =∫ ∫             [4.31] 

 

 

 

 

                                                        
7参见，例如，Boas（脚标 2），第 5章，第 4节。 



表 4.2：一些缔合勒让德函数, (cos )m
lP θ ：(a)函数形式， （b）图 (cos )m

lr P θ= （这些

图告诉你在θ 上函数的量值；每个图都应绕 z 轴旋转）。 

 
归一化的角波函数

8
称为球谐函数： 

                

  
                                                                          [4.32] 
 

 

其中当 0m ≥ 时 ( )1 m= −є ，当 0m ≤ 时 1=є 。我们将在后面证明它们是自动正交的，所以： 

                ( ) ( )
2

0 0
, , sin ,m m

l l ll mmY Y d d
π π

θ φ θ φ θ θ φ δ δ
∗ ′

′ ′ ′⎡ ⎤ ⎡ ⎤ =⎣ ⎦ ⎣ ⎦∫ ∫             [4.33] 

在表 4.3 中列出了前几个球谐函数。由于历史原因 l 称为角量子数，m 称为磁量子数。 

 

*习题 4.3  用方程 4.27，4.28，和 4.32，来构建
0

0Y 和
1
2Y ，验证它们的正交归一的。 

 

习题 4.4  证明 

                           [ ]( ) ln tan( / 2)Aθ θΘ =  

对 l =m =0，满足θ 的方程(4.25 式)。这就是不可接受的”第二个解”⎯它在什么地方有问

题？ 

*习题 4.5  利用 4.32 式构造 ( ),l
lY θ φ 和 ( )2

3 ,Y θ φ 。（你可以从表 4.2 中查出
2

3P ，但是你

得从方程 4.27 和 4.28 求出
l

lP 。）对适当的 l 和m ，验证它们满足角方程（4.18 式）。 

 

**习题 4.6 从 Rodrigue 公式出发，推导出缔合勒让德多项式的归一化条件： 

                      ( )
1

1

2 .
2 1l l llP x P dx
l

δ′ ′−

⎛ ⎞= ⎜ ⎟+⎝ ⎠∫                          [4.34] 

提示:利用分步积分。 

 

 

                                                        
8 归一化因子将在习题 4.45 算出；选择є（它总是 1 或－1）是为了我们将在角动量理论中所用记号的一致

性，虽然一些老书使用其它记号。注意 
*( 1) ( )m m m

l lY Y− = −  

(2 1)( )!
( , ) (cos ),

    4   ( + )!
m im m

l l

l l m
Y e P

l m
φθ φ θ

π
− −

= є



表 4.3 前几个球谐函数, (cos )m
lY θ 。 

 
                             
 

 

4.12 径向方程 
 

注意到波函数的角度部分， ( ),Y θ φ ，对所有的球对称势都是一样的；势 ( )V r 的具体形式

只影响波函数的径向部分， ( )R r ，决定它的是方程 4.16： 

             ( ) ( )
2

2
2

2 1 .d dR mrr V r E R l l R
dr dr

⎛ ⎞ − − = +⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠ =
                 [4.35] 

这个方程可以用变量代换简化：令 

                    ( ) ( ) ,u r rR r≡                                  [4.36] 

则有 /R u r= ，
2/ [ ( / ) ]/dR dr r du dr u r= − ， ( )2 2 2( / )[ / ] /d dr r dR dr rd u dr= ，可得： 

                

 

 
                 [4.37] 
 
 

这称为径向方程；
9
这在形式上和一维薛定鄂方程是一样的（方程 2.5），只不过它的有效势： 

     
( )2

2

1
,

2eff

l l
V V

m r
+

= +
=

                            [4.38] 

含有一个额外的项，即所谓的离心项，
2 2( / 2 )[ ( 1) / ]m l l r+= 。此项类似于经典力学中的离

心力，使粒子有向外的倾向（背离原点）。另外，归一化条件（4.31 式）变为 

          
2

0
1.u dr

∞
=∫                                  [4.39] 

在具体势指定之前我们无法走的更远。 
 
 
例题 4.1 对无限深球势阱， 

                                                        
9显然这里的m 是质量⎯分离常数m 不出现在径向方程中 

( )2 2 2

2 2

1
.

2 2
l ld u V u Eu

m dr m r
+⎡ ⎤

− + + =⎢ ⎥
⎣ ⎦

= =



                   ( )
0,        ;

,      .
r a

V r
r a
<⎧

= ⎨∞ >⎩
                                   [4.40] 

求其波函数和允许的能量值。 

解：在势阱外面，波函数是零；在势阱里面，径向方程为： 

       
( )2

2
2 2

1
,

l ld u k u
dr r

+⎡ ⎤
= −⎢ ⎥
⎣ ⎦

                                  [4.41] 

 

和通常一样，式中 

     
2 ,mEk ≡
=                              [4.42] 

我们的问题是在给定的边界条件 ( ) 0u a = 下求解这个方程。 0l = 时比较简单： 

                     ( ) ( ) ( )
2

2
2  sin cos .d u k u u r A kr B kr

dr
= − ⇒ = +  

不过要记住，实际的径向波函数是 ( ) ( ) /R r u r r= ，当 0r → 时，[cos( )]/kr r 趋于无穷大。

因此
10
我们必须选择 0B = 。边界条件又要求 ( )sin 0ka = ，因此 ka nπ= ，其中 n 是整数。

允许的能量显然为： 
2 2 2

0 2 ,
2n

nE
ma
π

=
=

  ( 1,2,3,....),n =                    [4.43] 

这同一维无限深方势阱（2.27 式）一样。归一化 ( )u r 得到 2 /A a= ；考虑角度部分（此

刻的例子中是平凡的， ( )0
0 , 1/ 4Y θ φ π= ），我们得到： 

                          
( )

00

sin /1 .
2n

n r a
ra
π

ψ
π

=                       [4.44] 

[注意到定态是由三个量子数来标记， ,n l 和m ， ( ), ,nlm rψ θ φ 。而能量： nlE ，仅与 ,n l 有
关。] 

方程 4.41 的一般解（对任意整数 l ）就有点陌生了： 

  ( ) ( ) ( ) ,l lu r Arj kr Brn kr= +                       [4.45] 

其中 ( )lj x 是 l 阶的球 Bessel 函数 ， ( )ln x 是 l 阶的球 Neumann 函数。它们的定义如下： 

  ( ) ( ) ( ) ( )1 sin 1 cos;       .l l
l l

d x d xj x x n x x
x dx x x dx x

⎛ ⎞ ⎛ ⎞≡ − ≡ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       [4.46] 

例如： 

( ) ( )0 0
sin cos;   ;x xj x n x

x x
= = −  

( )1 2

1 sin sin cos( ) ;d x x xj x x
x dx x x x

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

                                                        
10 实际上我们要求的是波函数是归一化的，而不是有限的； ( ) ~ 1/R r r 在原点是可归一化的（由于在 4.31

式中的
2r ）。对 0B = 一个更令人信服的证明，参见 R.Shankar 所著,量子力学原理 (Plenum,New 

York,1980),p.351。 



( )
2

2 2
2 3

2

3

1 sin 1 cos sin( )

3sin 3 cos sin        ;

d x d x x xj x x x
x dx x x dx x

x x x x x
x

−⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
− −

=
 

等。前几个球贝塞尔函数和球 Neumann 函数列在表 4.4 中。对于小 x （这时有
3 5sin /3!  / 5!  x x x x≈ − + − ⋅ ⋅ ⋅和 2 4cos 1 / 2 / 4! x x x≈ − + − ⋅ ⋅ ⋅），有 

                ( ) ( ) ( ) ( )
2

0 0 1 2
11;   ;   ;   ;

3 15
x xj x n x j x j x

x
≈ ≈ − ≈ ≈  

等。注意到在原点，球贝塞尔函数是有限的，但球 Neumann 函数是无穷大。这样，我们必须 

表 4.4 前几个球 Bessel 和 Neumann 函数, ( )nj x 和 ( )ln x ； x 很小时的渐进形式。 

 
选择 0lB = ，因此： 

  ( ) ( ).lR r Aj kr=                                 [4.47] 

我们还有边界条件， ( ) 0R a = 。显然 k 必须满足： 

                             ( ) 0;lj ka =                                  [4.48] 

即（ ka）是第 l 阶球 Bessel 函数的零点。球 Bessel 函数是振荡的（见图 4.2）；每个函数都

有无限多个零点。可是（不幸的是）这些零点不是处在优美的敏感点（如 ,n nπ ，或类似的

点）；它们必须通过数值计算得到。
11
总之，边界条件要求 

                              
1 ,nlk
a
β=                                   [4.49] 

这里 nlβ 是 l 阶球 Bessel 函数的第 n 个零点。这样允许的能量值可以写作 

                           
2

2
2 ,

2nl nlE
ma

β=
=

                               [4.50] 

波函数为： 

                      ( ) ( ) ( ), , / , ,
nl

m
nlm l nl lr A j r a Yψ θ φ β θ φ=                  [4.51] 

式中常数
nl

A 由归一化确定。每个能级都是 ( )2 1l + 重简并的，因为对应每个 l 值，有 ( )2 1l +
个不同的m 值（参见 4.29 式）。 

                                                        
11 Abramowitz 和 Stegun 所编，数学函数手册，（Dover，New York，1965）,第 10 章，提供了一个列表。 



 
图 4.2 前 4 个球 Bessel 函数图。 
 

 

习题 4.7 

（a）根据定义（4.46 式）给出 ( )1n x 和 ( )2n x 。 

（b）当 1x� 时，通过展开正弦和余弦得出 ( )1n x 和 ( )2n x 的近似公式。并验证它们在原

点处趋于无穷大。 

 

习题 4.8 

（a） 对 ( ) 0V r = 和 1l = ，验证 ( )1Arj kr 满足径向方程。 

（b）当 1l = 时，用图解法确定无限深球势阱的允许能级。证明对于较大的 n ，

( )22 2 2
1 ( / 2 ) 1/ 2nE ma nπ≈ += 。提示：首先证明 ( )1 0   tanj x x x= ⇒ = 。在同一

个图上画处 x 和 tan x ，找出交点位置。 

 

**习题 4.9  一个质量为m 的粒子在一个有限深球势阱中： 

                          ( ) 0 ,      ;
0,         .
V r a

V r
r a

− ≤⎧
= ⎨ ≥⎩

 

通过解 0l = 时的径向方程求出基态。证明当
2 2 2

0 /8V a mπ< = 时不会有束缚态。 

 

 

4.2 氢原子 

 
氢原子有一个基本不动质量较大的带正电 e 的质子(我们可以把它是放在坐标的原点)，通过

正负电荷的相互吸引作用,在它的周围束缚着一个质量很小带负电 e− 的电子绕其运动。由库

仑定律,势能为（SI 单位） 



                           ( )
2

0

1 ,
4

eV r
rπε

= −                                [4.52] 

径向方程可以写为： 

                  
2 2 2 2

2 2
0

1 ( 1) .
2 4 2

d u e l l u uE
m dr r m rπε

⎡ ⎤+
− + − + =⎢ ⎥

⎣ ⎦

= =
                [4.53] 

我们问题是解这个方程求出 ( )u r ，求出允许的能量值 E 。氢原子非常重要，我不再打算直

接给出解⎯我们将由求谐振子分析解的类似方法，详细讨论解的过程。（如果有哪一步不清

楚的话，你可以重读 2.32 式，以期有一个更圆满的解释。）顺便提及，库仑势（4.52 式）

允许有描述电子-质子散射的连续态（ 0E > ），以及表示氢原子的分立束缚态，本章我们的

重点在后者。 

图 4.3：氢原子 

 

4.2.1 径向波函数 

 
我们首先简化形式。令 

                            
2 .mE−

κ ≡
=                              [4.54] 

（对于束缚态 E 是负的，所以 κ为实数。）方程 4.53 除以 E ，得到： 

( ) ( )

2 2

22 2 2
0

1 1 ( 1)1 .
2

d u me l l u
dr r rπε

⎡ ⎤+
= − +⎢ ⎥

κ κ κ κ⎢ ⎥⎣ ⎦=
 

这提示我们引入 

 

   

2

0 2
0

,          
2

merρ ρ
πε

≡ κ ≡
κ=

和 ，                    [4.55] 

这样有 

  

2
0

2 2

( 1)1 .d u l l u
d

ρ
ρ ρ ρ

⎡ ⎤+
= − +⎢ ⎥
⎣ ⎦

                      [4.56] 

其次我们考察解的渐进形式。当 ρ →∞时，括号里的常数项起主要作用，所以（近似

地）： 
2

2 .d u u
dρ

=  

它的一般解为： 

                              ( ) ,u Ae Beρ ρρ −= +                         [4.57] 



但当 ρ →∞， eρ
趋于无穷大，所以应取 0B = 。这样对于 ρ 较大时， 

                                ( ) .u Ae ρρ −∼                             [4.58]  

另一方面当 0ρ → 时，离心项起主要作用，
12
则近似有： 

                              

2

2 2

( 1) .d u l l u
dρ ρ

+
=                            

它的一般解为（验证它！） 

                            ( ) 1 ,l lu C Dρ ρ ρ+ −= +  

但是当 0ρ → 时，
lρ−
为无穷大，所以应取 0D = 。这样，当 ρ 很小时 

                                ( ) 1.lu Cρ ρ +∼                            [4.59] 

下一步是分离出渐进形式，引入新的函数 ( )v ρ ： 

    ( ) ( )1 ,lu e vρρ ρ ρ+ −=                        [4.60] 

希望 ( )v ρ 的方程比 ( )u ρ 的更简洁。开头的征兆好像不太顺利： 

( )1 ,ldu dve l v
d d

ρρ ρ ρ
ρ ρ

− ⎡ ⎤
= + − +⎢ ⎥

⎣ ⎦
 

( )
2 2

2 2

( 1)2 2 2 1 .ld u l l dv d ve l v l
d d d

ρρ ρ ρ ρ
ρ ρ ρ ρ

− ⎧ ⎫⎡ ⎤+
= − − + + + + − +⎨ ⎬⎢ ⎥

⎣ ⎦⎩ ⎭
 

用 ( )v ρ ，径向方程（4.56 式）变为： 

  ( ) ( )
2

022 1 2 1 0.dv d vl l v
d d

ρ ρ ρ
ρ ρ

+ − + + − + =⎡ ⎤⎣ ⎦              [4.61] 

最后我们假定解, ( )v ρ , 可以表示成 ρ 的幂级数： 

( )
0

.j
j

j
v cρ ρ

∞

=

= ∑                             [4.62] 

我们问题是确定展开系数（ 0 1 2, , ,...c c c ）。逐项求导： 

                     ( )1
1

0 0

1 .j j
j j

j j

dv jc j c
d

ρ ρ
ρ

∞ ∞
−

+
= =

= = +∑ ∑  

[在第二个求和中我已重新命名“哑指标”： 1j j→ + 。如果你有疑问，明显写出前几项，

检验它。你可能质疑求和现在应当从 1j = − 开始，但因子 ( 1)j + 总是消除了此项，所以求

和可以从零开始。] 再次求导， 

                         ( )
2

1
12

0

1 .j
j

j

d v j j c
d

ρ
ρ

∞
−

+
=

= +∑  

把得到的结果代入方程 4.61，我们有 

( ) ( ) ( )

( )

1 1
0 0

0
0 0

1 2 1 1

  2 2 1 0.

j j
j j

j j

j j
j j

j j

j j c l j c

jc l c

ρ ρ

ρ ρ ρ

∞ ∞

+ +
= =

∞ ∞

= =

+ + + +

− + − + =⎡ ⎤⎣ ⎦

∑ ∑

∑ ∑
 

令同幂次项的系数相等，给出： 

                                                        
12 这个论据对 0l = 不成立（但是事实上结论 4.59 式对这种情况依然成立）。但是不必顾虑：这里我只是

提供变量变换（4.60 式）的一些动机 



( ) ( )( ) ( )1 1 01 2 1 1 2 2 1 0,j j j jj j c l j c jc l cρ+ ++ + + + − + − + =⎡ ⎤⎣ ⎦  

或者： 

                          
( )

( )( )
0

1

2 1
.

1 2 2j j

j l
c c

j j l
ρ

+

⎧ ⎫+ + −⎪ ⎪= ⎨ ⎬
+ + +⎪ ⎪⎩ ⎭

                   [4.63] 

这个递推公式决定的展开系数，因此也决定了函数 ( )v ρ ：我们从 0c 开始（它成为一个普乘

常数，最后由归一化确定），方程 4.63 给出 1c ；把它再代入就得到 2c ，依此类推。
13 

现在我们来看 j 较大时（这对应较大的 ρ ，此时高幂次项起主要作用）展开系数是什

么形式。在这个区域，递推公式为：
14 

                          
( )1

2 2 .
1 1j j j
jc c c

j j j+ ≅ =
+ +

 

假定这个式子是严格成立的。则有 

     0
2 ,

!

j

jc c
j

=                                [4.64] 

这样 

( ) 2
0 0

0

2 ,
!

j
j

j
v c c e

j
ρρ ρ

∞

=

= =∑  

从而： 

                                 ( ) 1
0 ,lu c eρρ ρ +=                         [4.65] 

这样在 ρ 趋于无穷大时 ( )u ρ 趋于无穷大。这个正的指数因子正是我们所不希望的 4.57 式

所展示的渐进行为。（它在这里又一次出现不是偶然的；，毕竟它代表着径向方程某些解的渐

进形式⎯由于不可归一化，它们仅是我们不感兴趣的解。）仅有一种途径可以解决这种困境：

级数必须在某处中断。对于对某个最大的整数， maxj ，必须有 

               ( )max 1 0,jc + =                            [4.66] 

（在这个系数之后的所有的系数自动为零）。显然必须有（方程 4.63） 

                              ( )max 02 1 0.j l ρ+ + − =  

定义 

                                  max 1n j l≡ + +                          [4.67] 
（称其为主量子数），我们有 

                                    0 2 .nρ =                              [4.68] 

但是 0ρ 决定了能量 E （方程 4.54 和 4.55）： 

                          

2 2 4

2 2 2 2
0 0

,
2 8

meE
m π ε ρ
κ

= − = −
=

=                 [4.69] 

所以允许的能量是 

                                                        
13 你可能置疑为什么不对 ( )u ρ 直接应用级数的方法⎯为什么在应用它时要先把渐进行为分离出去？剥离

1lρ +
的理由主要是美学上的：如果不这样的话，级数中将有很多零系数项（第一个非零系数是 1lc + ）；分

离出因子
1lρ +
级数可以从

0ρ 开始。因子 e ρ−
更关键⎯如果不剥离的话，将会得到含有三项系数 2 1,  j jc c+ +

和 jc 的递推公式，导致下面的计算极其困难。 

14你可能会问为什么不略去 1j + 中的 1⎯毕竟，我略去了分子中的 02( 1)l ρ+ − ，分母中的 2 2l + 。在这

种近似中去掉 1也行，不过保留它会使论述更清楚。去掉 1试一试，你就会明白我的意思。 



                  

 

                                                                         [4.70] 

 

 

这就是著名的玻尔公式—在任何程度上来说都是量子力学中最重要的结果。玻尔在 1913 年

通过偶然地把一种不成熟的量子理论和无法应用到原子的经典力学结合起来得到过这个结

果（薛定鄂方程直到 1924 年才出现）。 

结合 4.55 和 4.68 式可得： 

  
2

2
0

1 1 ,
4

me
n anπε

⎛ ⎞
κ = − =⎜ ⎟

⎝ ⎠=
                       [4.71] 

其中 

                       

 

                       [4.72] 
 

 

是所谓的玻尔半径。
15
这样有（同样由 4.55） 

.r
an

ρ =                               [4.73] 

氢原子的空间波函数用三个量子数（ , ,n l m）来标记： 

    ( ) ( ) ( ), , , ,m
nlm nl lr R r Yψ θ φ θ φ=                   [4.74] 

其中（参考前面 4.36 和 4.60 式） 

   ( ) ( )11 ,l
nlR r e v

r
ρρ ρ+ −=                        [4.75] 

( )v ρ 是关于 ρ 的最高幂次为 max 1j n l= − − 的多项式，其中的系数（除了一个普乘的归一

化因子外）由下面的递推公式决定 

     
( )

( )( )1

2 1
.

1 2 2j j

j l n
c c

j j l+

+ + −
=

+ + +
                    [4.76] 

基态（即能量最低的态）是 1n = 的态；把物理常数代入，我们有： 

 

 

             [4.77] 
 

 

显然氢原子的结合能（也就是电离基态电子所需要的能量）为 13.6eV。由方程 4.67，基态

0l = ,因此也有 0m = (见 4.29 式),所以基态波函数为 

                       ( ) ( ) ( )0
100 10 0, , , .r R r Yψ θ φ θ φ=                       [4.78] 

由递推公式, ( )v ρ 的级数在第一项 0c 后即被截断（令方程 4.7 6 中 0j = ,得到 1 0c = ），

所以 ( )v ρ 是一个常数 0c ,这样 

                                ( ) 0
10 .

r
acR r e

a
−

=                          [4.49] 

由方程 4.31 对上式归一化： 

                                                        
15传统上波尔半径的写作 0a 。但是这是不必要的，也有点累赘，所以我更喜欢去掉脚标。 

22
1

2 2 2
0

1 ,        1,2,3,...
2 4
m e EE n

n nπε

⎡ ⎤⎛ ⎞
⎢ ⎥= − = =⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦=

2
100

2

4 0.529 10a m
me
πε −= = ×
=

22

1 2
0

13.6 .
2 4
m eE eV

πε

⎡ ⎤⎛ ⎞
⎢ ⎥= − = −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦=



2
22 202 2

10 020 0
1,

4
r

a
c aR r dr e r dr c
a

∞ ∞ −
= = =∫ ∫  

所以 0 2 /c a= 。由于
0

0 1/ 4Y π= ，因此氢原子基态为 

 

 

                                              [4.80] 

 

 

 

如果 2n = ，对应的能量是： 

2
13.6 3.4 ;

4
eVE eV−

= − = −                       [4.81] 

这就是第一激发态—因为在这种情况下，我们可以有 0l = （此时 0m = ），或 1l = （此时

1,0, 1m = − + ）；显然有四个不同的状态对应这个能量。如果 0l = ，递推公式（4.76 式）给

出： 

1 0 2( 0),    0 ( 1)c c j c j= − = = =令 令 ， 

所以 ( ) 0 (1 )v cρ ρ= − ，因此： 

    ( ) / 20
20 1 .

2 2
r ac rR r e

a a
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
                     [4.82] 

[注意，展开系数{ }jc 随量子数 ,n l 的不同是完全不同的。]  如果 1l = ，递推公式在一项

后即终止； ( )v ρ 是一个常数，我们有 

   ( ) / 20
21 2 .

4
r acR r re

a
−=                          [4.83] 

（在每一种情况下常数 0c 都是由归一化确定—参看习题 4.11。） 

对于任意的 n ， l 的可能取值（由 4.67 式）为 
0,  1,  2,  ...,  1,l n= −                           [4.84] 

而对每个 l 值，m 的可能取值有（2 l +1）个（4.29 式），所以能级 nE 总的简并度为 

  
1

2

0
( ) (2 1) .

n

l
d n l n

−

=

= + =∑                           [4.85] 

多项式 ( )v ρ  (由递推公式 4.76 所定义的)对应用数学家是非常熟悉的；除了归一化外，它可

以写为 
                   2 1

1( ) (2 ),l
n lv Lρ ρ+
− −=                             [4.86] 

而 

( ) ( 1) ( )
q

p p
q p q

dL x L x
dx−

⎛ ⎞≡ − ⎜ ⎟
⎝ ⎠

                      [4.87] 

是缔合勒盖尔(Laguerre)多项式，其中 

( ) ( )
q

x x q
q

dL x e e x
dx

−⎛ ⎞≡ ⎜ ⎟
⎝ ⎠

                       [4.88] 

是q 阶勒盖尔多项式。16（前几个勒盖尔多项式列在表 4.5 中；一些缔合勒盖尔多项式列在

表 4.6 中。前几个径向波函数列在表 4.7 中，图 4.4 是函数图像。）归一化氢原子波函数是 17 
                                                        
16照例，在文献中有可媲美的规范化约定；我采用最标准的一种。 
17如果你想知道归一化因子是如何计算出的，阅读（例如）L.Schiff 所著，量子力学，第二版，（McGraw-Hill，
纽约，1968），p. 93。 

( ) /
100 3

1, , .r ar e
a

ψ θ φ
π

−=



 
图 4.4 前几个径向波函数 ( )nlR r 的图象. 
 
 
 
 

      
 

[4.89] 
 
 
这看起来有点复杂，但是不要抱怨⎯这可是能够严格解出的少数几个实际系统之一。注意虽

然波函数依赖所有三个量子数，但是能量（4.70 式）仅由n 决定。这仅是库仑势所特有的，

在球势阱情况下我们知道能量还依赖于l(公式 4.50)。由球谐函数的正交性（公式 4.33 和它

们是 H 属于不同本征值( 'n n≠ )的本征函数,可以得出以上波函数是相互正交的： 

' ' ' ' ' '
* 2 sin .nlm n l m nn ll mm

r drd dθ θ φ δ δ δΨ Ψ =∫                            [4.90] 

想象氢原子的波函数形状并不容易。化学家喜欢用“密度图”来画出它们，在这种方

法中电子云的亮度与
2Ψ 成比例（图 4.5）。一种更定量的方法（但是也许更难理解）是用

等几率面（图 4.6）。 
 
*习题 4.10 利用递推公式(4.76 式),写出径向波函数 30 31,  R R 和 32R 。无需归一化它们。 

*习题 4.11 

（a） 把 20R 归一化（4.82 式），并给出函数 200Ψ  

（b） 把 21R 归一化（4.83 式），并构造函数 211Ψ ， 210Ψ ， 21 1−Ψ 。 
 
*习题 4.12 
（a） 根据公式 4.88 写出前四个勒盖尔多项式 
（b） 根据公式 4.86，4.87 和 4.88，对 5,  2n l= = 情况，求出 ( )v ρ 。 

[ ]

3
2 1

13

2 ( 1)! 2 [ (2 )] ( , ).
2 ( )!

l
r na l m

nlm n l l
n l re L r na Y

na nan n l
θ φ− +

− −

− −⎛ ⎞ ⎛ ⎞Ψ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

 



（c） 利用递推公式（4.76 式）重新求 ( )v ρ （ 5,  2n l= = 情况）。 
表 4.5：前几个勒盖尔多项式， ( )qL x 。 

0

1
2

2
3 2

3
4 3 2

4
5 4 3 2

5
6 5 4 3 2

6

( ) 1
( ) 1

( ) 4 2

( ) 9 18 6

( ) 16 72 96 24

( ) 25 200 600 600 120

( ) 36 450 2400 5400 4320 720

L x
L x x

L x x x

L x x x x

L x x x x x

L x x x x x x

L x x x x x x x

=
= − +

= − +

= − + − +

= − + − +

= − + − + − +

= − + − + − +

 

 
表 4.6：一些缔合勒盖尔多项式， ( )p

q pL x− 。 
 
 
 
 

       
 
 
 
 
 
 

表 4.7：氢原子前几个径向波函数， ( )nlR r 。 
3 2

10 2 exp( )R a r a−= −  

3 2
20

1 1(1 )exp( 2 )
22

rR a r a
a

−= − −  

3 2
21

1 exp( 2 )
24

rR a r a
a

−= −  

3 2 2
30

2 2 2(1 )( ) exp( 3 )
3 2727

r rR a r a
a a

−= − + −  

3 2
31

8 1(1 )( ) exp( 3 )
627 6

r rR a r a
a a

−= − −  

3 2 2
32

4 ( ) exp( 3 )
81 30

rR a r a
a

−= −  

3 2 2 3
40

1 3 1 1[1 ( ) ( ) ]exp( 4 )
4 4 8 192

r r rR a r a
a a a

−= − + − −

3 2 2
41

5 1 1[1 ( ) ] exp( 4 )
4 8016 3

r r rR a r a
a a a

−= − + −

3 2 2
42

1 1(1 )( ) exp( 4 )
1264 5

r rR a r a
a a

−= − −  

3 2 3
43

1 ( ) exp( 4 )
768 35

rR a r a
a

−= −  

 

0
0 1L =  
0
1 1L x= − +  
0 2
2 4 2L x x= − + 1

0 1L =  
1
0 1L =  
1
1 2 4L x= − +  
1 2
2 3 18 18L x x= − +  

2
0 2L =  
2
1 6 18L x= − +  
2 2
2 12 96 144L x x= − +  
3
0 6L =  
3
1 24 96L x= − +  
3 2
2 60 600 1200L x x= − +  



*习题 4.13 

（a） 求电子处于氢原子基态时的 r 和
2r ，用 Bohr 半径表示你的结果。 

（b） 求电子处于氢原子基态时的 x 和
2x 。提示：利用基态的对称性并注意到

2 2 2 2r x y z= + + ，无需重新积分。 

（c） 对 2,  1,  0n l m= = = 的态，求
2x 。注意：这个态对 ,  ,  x y z 不是对称的，利用

sin cosx r θ φ= 计算。 
 
习题 4.14  求氢原子基态 r 的最可几值（答案不是零！）。提示：你必须首先求出电子处于 r
到 r dr+ 范围的几率。 

 

习题 4.15  一个氢原子的初始态为 

211 21 1
1( ,0) ( ).
2 −Ψ = Ψ + Ψr  

（a） 求出含时波函数 ( , )tΨ r ，并尽可能简化表示式。 

（b） 求出势能的期望值 V 。（它是否依赖时间 t ？）给出公式结果和用电子伏特表

示的数值结果 。 
 

 
 
图 4.5：氢原子波函数（ ,  ,  n l m）密度作图，设想每个图都是可绕 z 轴（竖直方向）旋转的。

本图的使用经 Dauger Research 许可。浏览网站 http://dauger.com，你可以做出你自己的图 
 
 
 



 
图 4.6：前几个氢原子波函数的等

2Ψ 面。本图的使用经 Siegmund Brandt 和 Hans Dieter 

Dahmen 许可，量子力学图册，第三版，Springer，New York（2001）   
 

4.2.2 氢原子光谱  
 
原则上，如果把一个氢原子放到某个定态 nlmΨ ，那么它将永远处于这个态上。然而，如果

给它轻微的扰动（比如说，用另一个原子碰撞或用光照射），电子就有可能跃迁到其它的定

态⎯吸收能量跃迁到较高能量的态，或者释放能量(通常以电磁辐射的方式)跃迁到较低能量

的态。18 事实上这样的扰动总是存在；跃迁（有时也称作量子跃迁）经常发生，其结果是含

氢的容器发出光（光子）来，光子的能量对应着初态和终态的能量之差： 

                 2 2

1 113.6 .i f
i f

E E E eV
n nγ

⎛ ⎞
= − = − −⎜ ⎟⎜ ⎟

⎝ ⎠
                    [4.91]   

   由普朗克(Planck)公式,19 光子的能量和它的频率成正比： 
                                 .E hvγ =                                  [4.92]     

同时, 波长由公式 c vλ = 给出，所以 

2 2

1 1 1( ),
f i

R
n nλ

= −                             [4.93] 

式中 

                                                        
18就其本质来讲，这个涉及含时的相互作用，我们将在第 9 章讨论之；对我们现在的目的来讲所涉及的实

际机制不影响这里的讨论。 
19光子是电磁辐射的量子；它涉及相对论的内容，超出了非相对论量子力学的范围。在少数地方提及光子

及用普朗克公式计算其能量是有益的，但是要记住这超出了我们讨论理论的范围。 



2
7 1

3
0

1.097 10 m
4 4

m eR
cπ πε

−⎛ ⎞
≡ = ×⎜ ⎟

⎝ ⎠=
                 [4.94]    

是里德伯（Rydberg）常数。4.93 式是氢原子光谱的里德伯公式；它是在十九世纪发现的经

验公式，波尔理论的巨大成就就是解释了这个公式⎯通过基本的自然常数计算出了 R 。跃

迁到基态（ 1fn = ）的谱线处在紫外区；就是光谱学家们熟知的 Lyman 系；跃迁到第一激

发态（ 2fn = ）的谱线处在可见光区为 Balmer 系；跃迁到 3fn = （Paschen 系）激发态的

谱线处于红外区；等等（见图 4.7）。（在室温下，大多数氢原子处于基态；为了得到发射光

谱，必须先获得各种激发态；通常的做法是让电火花穿过气体。） 

 
图 4.7：氢原子的能级和跃迁光谱 
 
*习题 4.16 类氢原子有一个电子围绕有 Z 个质子的原子核运动（Z=1 是氢原子，Z=2 是氦

离子，Z=3 是二价锂离子等等）。求出波尔能量 ( )nE Z ，结合能 1( )E Z ，波尔半径 ( )a Z ，

类氢原子的常数里德伯 ( )R Z 。（答案用一个乘子乘以氢原子相应的值表示）。对 Z=2， Z=3
情况，Lyman 系分别处在那个光谱区？。提示：这不需要太多计算⎯在势能中（4.52 式）做

代换
2 2e Ze→ ，所以你只需在最终的结果做同样的代换。 

 

习题 4.17 把地球—太阳引力体系类比为氢原子 
（a） 势能函数是什么（替换 4.52 式）？（设地球质量为m ，太阳质量为M 。） 
（b） 这个体系的“波尔半径” ga 为什么？给出数值结果。 

（c） 写出重力的“波尔公式”，令 nE 等同于半径为 0r 的行星轨道的经典能量，证明

0 gn r a= 。依此估算地球的量子数 n 。 

（d） 假设地球跃迁到相邻的（ 1n − ）低能级。将会释放多少能量（以焦耳为单位）？

辐射的光子波长（或许引力子）为多少？（用光年表示你的答案—这个不寻常



的答案 20 是一种巧合吗？） 
 

 
4.3 角动量 
 
我们已经知道氢原子的定态是由三个量子数： ,  ,n l 和m 来标记的。主量子数（ n ）确定态

的能量（公式 4.70）；而 l 和m 与轨道角动量有关。在中心力场的经典理论中能量和角动量

是基本守恒量，这就不用奇怪角动量在量子理论中起着显著（事实上，甚至更重要）的作用。 
经典上，一个粒子的角动量（相对于原点）由下式给出 

,= ×L r p                               [4.95] 
其分量形式为， 

,x z yL yp zp= − ,y x zL zp xp= − .z y xL xp yp= −                 [4.96] 

对应的量子算符由标准方法 /xp i x→− ∂ ∂= ， /yp i y→− ∂ ∂= ， /zp i z→− ∂ ∂= 得到。在

接下来的一节我们用类似于第二章求谐振子能量的纯代数的方法求出角动量算符的本征值；

它们都基于巧妙地利用对易关系。随后我们解决确定本征函数这个更难一点的问题。 
 
4.3.1 本征值 
 
算符 xL 和 yL 不对易；事实上 21 

[ , ] [ , ]x y z y x zL L yp zp zp xp= − −  

                  ,[ , ] [ , ] [ ] [ , ].z x z x y x y zyp zp yp zp zp zp zp xp= − − +              [4.97] 

由正则对易关系（4.10 式），我们知道算符 x 与 xp ， y 与 yp ， z 与 zp 之间是不对易。所以

中间两项为零，余下的为 
[ ,  ] [ , ] [ , ] ( ) .x y x z y z y x zL L yp p z xp z p i xp yp i L= + = − == =             [4.98] 

当然，我们也可以计算出[ ,  ]y zL L 或[ ,  ]z xL L ，但是没有必要再分别计算它们⎯由指数的轮

换（ ,  y , x y z z x→ → → ）可立即得到它们： 
            
                                                                           

[4.99] 
 
 
这就是角动量的基本对易关系；其它的可由它们导出。 
    注意， ,x yL L 和 zL 是不相容的可观测量。：由推广的不确定原理（3.62 式） 

2
2 2 21( ) ,

2 4x yL L z zi L L
i

σ σ ≥ 〈 〉 = 〈 〉
==  

或 

.
2x yL L zLσ σ ≥ 〈 〉
=

                              [4.100] 

因此寻求 xL 和 yL 的共同本征函数是徒劳的。另一方面，总角动量的平方： 
2 2 2 2 ,x y zL L L L= + +                               [4.101] 

却和 xL 对易： 

                                                        
20感谢 John Meyer 指出这一点。 
21注意在量子力学里我们遇到的所有算符满足对加法的分配率： ( )A B C AB AC+ = + 。特别是，

[ ,  ] [ ,  ] [ ,  ]A B C A B A C+ = + 。 

[ ,  ] ;    [ ,  ] ;    [ ,  ] .x y z y z x z x yL L i L L L i L L L i L= = == = =



       

2 2 2 2[ ,  ] [ ,  ] [ ,  ] [ ,  ]

            = [ ,  ] [ ,  ] [ ,  ] [ ,  ]

            = ( ) ( ) ( ) ( )

            =0.

x x x y x z x

y y x y x y z z x y x z

y z z y z y y z

L L L L L L L L

L L L L L L L L L L L L

L i L i L L L i L i L L

= + +

+ + +

− + − + += = = =
 

（我用了 3.64 式去简化对易子；注意任何算符都和它自身对易。）  
同样，

2L 也同 yL 和 zL 对易： 

           2 2 2[ ,  ] 0,   [ ,  ] 0,    [ ,  ] 0,x y zL L L L L L= = =                   [4.102] 

或，更紧凑地： 
2[ ,  ]=0.L L                                [4.103] 

所以
2L 同L 的各分量是相容的，我们可以期望找到

2L 和（比如说） zL 的共同本征态： 
2L f fλ=   和  .zL f fμ=                       [4.104] 

我们将用同 2.3.1 节中应用于谐振子问题非常相似的“梯子算符”方法。令 
                    
 

                                                  [4.105] 
 
 
L± 与 zL 的对易关系为 

        [ ,  ] [ ,  ] [ ,  ] ( ) ( ),z z x z y y x x yL L L L i L L i L i i L L iL± = ± = ± − = ± ±= = =  

所以 
                  [ ,  ] .zL L L± ±= ±=                             [4.106] 

当然，也有 
                   2[ ,  ] 0.L L± =                              [4.107] 

我断言，如果 f 是
2L 和 zL 的本征函数，那么 L f± 也是：由 4.107 式 

2 2( ) ( ) ( ) ( ),L L f L L f L f L fλ λ± ± ± ±= = =                [4.108] 

所以 L f± 是
2L 相同的本征值λ的一个本征函数。由 4.106 式 

( ) ( ) ( )
             =( )( ),

z z z zL L f L L L L f L L f L f L f
L f

μ
μ

± ± ± ± ± ±

±

= − + = ± +
±

=
=

           [4.109] 

所以 L f± 是 zL 的一个本征函数，但是本征值为 μ ± =。我们称 L+ 为“升阶”算符，因为

它使 zL 的本征值增加一个 =， L−为“降阶”算符，它使 zL 的本征值减少一个 =。 
对于一个给定的λ值，我们可以得到一个态的“梯子”，每一个“阶梯”与相邻梯级间

隔为 zL 的本征值相差一个 =（如图 4.8 所示），升高要用升阶算符，降低要用降阶算符。但

是这个过程不能永远持续下去：因为这样会达到一个 z 分量超过总量的态，而这是不可能的。
22 一定存在一个最高的阶梯 tf ，使得：23 

0.tL f+ =                                  [4.110] 

设 l= 是 zL 在这个最高阶梯的本征值（用字母“ l ”的适当性马上明白）： 

                                                        
22 形式有, 2 2 2 2

x y zL L L L= + + ,但是
2 2 0x x x xL f L f L f L f= = ≥ (对 yL 也同样), 所以

2 22 2
x yL L μ μλ + + ≥= 。 

23 实际上，我们只能够论断 tL f+ 是不可归一化的⎯它的模也许是无限大，而不是它本身为零。习题 4.18

从其它方面阐述这个问题。 

.x yL L iL± ≡ ±



2;      .z t t t tL f lf L f fλ= ==                           [4.111] 
因为 

       
2 2

2 2

( )( ) ( )

        = ( ),
x y x y x y x y y x

z z

L L L iL L iL L L i L L L L

L L i i L
± = ± = + −

−
∓ ∓ ∓

∓ =
 

或者写作另一种形式， 
               2 2 .z zL L L L L±= +∓ ∓ =                                       [4.111] 
 

 
图 4.8： 角动量的梯形态 



因此有 
        2 2 2 2 2 2( ) (0 ) ( 1) ,t z z t t tL f L L L L f l l f l l f− += + + = + + = += = = =  
所以 
                           2 ( 1).l lλ = +=                                  [4.113] 

这告诉我们以 zL 的最大量子数 l 表示的
2L 的本征值。 

同时也存在一个（由于某些理由）最低的阶梯， bf ，使得 

                        0.bL f− =                                     [4.114] 

设在 bf 态， zL 的本征值为 l
_

= ： 

                 2;         .z b b b bL f l f L f fλ
_

= ==                              [4.115] 
利用 4.112 式,我们有 

       
_ _ _

2 2 2 2 2 2( ) (0 ) ( 1) ,b z z b t tbL f L L L L f l l f l l f
_

+ −= + − = + − = −= = = =  
所以 

                           
_ _

2 ( 1).l lλ = −=                                  [4.116] 

比较 4.113 式和 4.116 式，可知
_ _

( 1) ( 1)l l l l+ = − ，这样要么
_

( 1)l l= + （这是荒谬的，因为

这样一来最低阶梯将比最高阶梯还高！）所以只有 

                 
_

.l l= −                                     [4.117] 

zL 的本征值显然应是m=的形式，其中m（用这个字母的适当性马上就会清楚）每次增加 1
增加 N 次后从 l− 增加到 l ，即 l l N= − + ，因此 / 2l N= ，由此 l 必是一个整数或半整数。 

2L 和 zL 的共同本征函数由数 l 和m 表征： 
                      
                                                                         [4.118] 
 
 
其中 
       0,  1/ 2,  1,  3/ 2,  ... ;           ,  1,  ... ,  1,  .l m l l l l= = − − + −  
对一个给定的 l ，m 有 2 1l + 个不同的值（即梯子上的 2 1l + 个“阶梯”）。 
    有些人喜欢用图 4.9（ 2l = 情况）来解释上面的结果。箭矢代表可能的角动量⎯以=为
单位它们的长度都为 ( 1)l l + （本图为 6 2.45= ），它们的 z 分量是m 的允许值（-2，-1，

0，1，2）。注意箭矢的模（球面的半径）要比最大的 z 分量还要大！（一般有， ( 1)l l l+ > ，

除了“平凡”情况 0l = 。）显然不能有角动量是严格沿 z 方向的。乍看起来，这个结论有点

荒谬。“可是，为什么我不能选择 z 方向就是沿着角动量的方向呢？”仔细想一想，要想这

么做，你必须同时知道三个分量，而这按照不确定原理((4.100 式)是不可能的。“嗯，也许对

吧，不过偶尔幸运，我也许凑巧会使我的 z 轴沿着L 的方向。”错，错！你不得要领。它不

仅是你不知道L 所有三个分量的问题；简单来说，这里没有三个分量⎯一个粒子根本没有

一个确定的角动量矢量，就像它没有同时确定的坐标和动量一样。如果 zL 有确定的值，则 xL
和 yL 就没有确定的值。画出 4.9 图中那样的矢量容易使人误解⎯至少它们应该在围绕纬度

线被涂抹浑浊以表示 xL 和 yL 是不确定的。 

我希望你们对从角动量的对易关系出发由纯粹代数的方法决定
2L 和 zL 本征值的方法

有深刻印象⎯即便我们根本不知道本征函数的具体形式！现在我们来建造本征函数，不过我

要提醒你们这是一个繁杂的过程。既然你们已经知道我们的任务，我先给出最终结果：
m m

l lf Y= ⎯ 2L 和 zL 的本征函数不是别的正是前面的球谐函数，在前面 4.1.2 节中不同的场

2 2 ( 1) ;          ,m m m m
l l z l lL f l l f L f mf= + == =



合我们曾遇到过（当然，这也是为什么我们选择字母 l 和m ）。现在我也可以告诉你们为什

么球谐函数是相互正交的：它们是厄密算符（
2L 和 zL ）属于不同本征值的本征函数（3.3.1

节定理）。 

 
图 4.9 角动量态( 2l = ). 

 
*习题 4.18  升阶和降阶算符使m 的值改变 1： 
                             1( ) ,m m m

l l lL f A f ±
± =                            [4.120] 

其中
m
lA 为常数。问题：如果本征函数要归一化，

m
lA 是什么？提示：首先证明 L∓ 是 L± 的

厄密共轭算符（因为 xL 和 yL 是可观测的力学量，你可以假定它们是厄密算符…但是如果你

乐意证明它）；再利用 4.112 式。答案: 
                ( 1) ( 1) ( )( 1).m

lA l l m m l m l m= + − ± = ± += = ∓            [4.121] 

注意对最高的阶梯和最低的阶梯会出现什么(即，对
l

lf 应用 L+ ，对
l

lf
−
应用 L− )。 

 
*习题 4.19 
（a）由坐标和动量的对易关系（4.10 式），求下列对易关系 

              
  [ ,  ] ,      [ ,  ] ,       [ ,  z] 0,
[ ,  ] ,    [ ,  ] ,    [ ,  ] 0.

z z z

z x y z y x z z

L x i y L y i x L
L p i p L p i p L p

= = =
= = =
= =
= =

                [4.122] 

（b）利用这些结果直接从 4.96 式导出[ ,  ]z x yL L i L= = 。 

（c） 计算对易子
2[ ,  ]zL r 和

2[ ,  ]zL p （当然，这里
2 2 2 2r x y z= + + ，

2 2 2 2
x y zp p p p= + + ）。 

（d）证明哈密顿
2( / 2 )H p m V= + 与L 的三个分量都是对易的，只要V 仅依赖 r 。（这样，

2,  ,  zH L L 是相互相容的力学量。） 
 
**习题 4.20 
（a） 证明,一个处在势 ( )V r 中的粒子，其轨道角动量L 期待值的变化速率等于力矩的期

待值： 



                              ,d
dt

=L N  

       其中 
                              ( ).V= × −∇N r  
     （这是转动情况下与 Ehrenfest 定理类似的公式。） 
（b） 证明对任何球对称势有 0d dt =L 。（这是角动量守恒的量子力学表述的一种形式.） 
 
 
4.3.2 本征函数 
 
首先我们需要把 ,  x yL L 和 zL 在球坐标中重新写出。由 ( / )( )i= ×∇L r= 和梯度算符在球坐

标中的表示式：24 

                       � �1 1 ;
sin

r
r r r

θ φ
θ θ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
�                     [4.123] 

另外， rr=r �，所以 

                � � 1( ) ( ) ( ) .
sin

r r r r r
i r

θ φ
θ θ φ

⎡ ⎤∂ ∂ ∂
= × + × + ×⎢ ⎥∂ ∂ ∂⎣ ⎦

L = � � � �  

但是， ( ) 0r r× =� � ， � �( )r θ φ× =� ， � �( )r φ θ× = −� （见图 4.1），因此 

                         � � 1 .
sini

φ θ
θ θ φ

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

L =
                       [4.124] 

单位矢量 �θ 和 �φ可以分解为它们在笛卡儿坐标中的分量: 

                  � � �(cos cos ) (cos sin ) (sin ) ;i j kθ θ φ θ φ θ= + −�                [4.125] 

                  � �(sin ) (cos ) .i jφ φ φ= − +�                                  [4.126] 
这样 

               

�

� �

( sin cos )

1     (cos cos cos sin sin ) .
sin

i j
i

i j k

φ φ
θ

θ φ θ φ θ
θ φ

∂⎡= − +⎢ ∂⎣
⎤∂

− + − ⎥∂ ⎦

L = �

�
 

显然有 

                  sin cos cot ,xL
i

φ φ θ
θ φ

⎛ ⎞∂ ∂
= − −⎜ ⎟∂ ∂⎝ ⎠

=
                      [4.127] 

                  cos sin cot ,yL
i

φ φ θ
θ φ

⎛ ⎞∂ ∂
= + −⎜ ⎟∂ ∂⎝ ⎠

=
                     [4.128] 

及 
                          
 
                                                                         [4.129] 
 

 
    我们也需要升阶和降阶算符： 

                                                        
24 George Arfken 和 Hans-Jurgen Weber，为物理学家的数学方法，第 5 版，Academic Press，Orlando（2000），
2.5 节。 

.zL
i φ
∂

=
∂
=



            ( sin cos ) (cos sin )cot .x yL L iL i i
i

φ φ φ φ θ
θ φ±

⎡ ⎤∂ ∂
= ± = − ± − ±⎢ ⎥∂ ∂⎣ ⎦

=
 

但是 cos sin ) ii e φφ φ ±± = ，所以 

                         cot .iL e iφ θ
θ φ

±
±

⎛ ⎞∂ ∂
= ± ±⎜ ⎟∂ ∂⎝ ⎠
=                     [4.130] 

特别有（习题 4.21（a））： 

                 
2 2

2 2
2 2cot cot ,L L iθ θ

θ θ φ φ+ −

⎛ ⎞∂ ∂ ∂ ∂
= − + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
=            [4.131] 

因此（习题 4.21（b））： 
 
 
                                                       [4.132] 
 
 
 

现在我们来决定 ( , )m
lf θ φ 。它是

2L 属于本征值
2 ( 1)l l += 的本征函数： 

2
2 2 2

2 2

1 1sin ( 1) .
sin sin

m m m
l l lL f f l l fθ

θ θ θ θ φ
⎡ ⎤∂ ∂ ∂⎛ ⎞= − + = +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

= =  

但是这正是“角方程”（方程 4.18）。它也是 zL 属于本征值m=的本征函数： 

                ,m m m
z l l lL f f mf

i φ
∂

= =
∂
= =  

但是这个方程等同于方位角方程（方程 4.21）。我们已经解出了这个方程体系：结果（适当

归一化后）是球谐函数， ( , )m
lY θ φ 。结论：球谐函数是

2L 和 zL 的本征函数。当我们在 4.1

节中用分离变量法解薛定鄂方程时，我们在无意中构造出了三个相互对易算符
2,  H L 和 zL

的共同本征函数： 
               2 2,      ( 1) ,      .zH E L l l L mψ ψ ψ ψ ψ ψ= = + == =                [4.133] 
顺便提及，现在利用 4.132 式我们可以把薛定鄂方程(方程 4.14)写为更紧凑的形式： 

              2 2 2
2

1 .
2

r L V E
mr r r

ψ ψ ψ⎡ ∂ ∂ ⎤⎛ ⎞− + + =⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
=  

对这部分内容还有一个难以理解最后疑问，对角动量的代数理论，允许的 l 值（因此m
值）可以是半整数（4.119 式），然而分离变量产生的方程仅为整数值（4.29 式）。你们也许

会认为半整数的解是不合逻辑的，但是会发现其实它们非常重要，下面一节我们将会明白。 
 

*习题 4.21 
(a) 由 4.130 式导出 4.131 式。提示：利用一个检验函数；否则你可能会丢掉某些项。 

（b）由 4.129 和 4.131 式导出 4.132 式。提示:利用 4.112 式。 
 

*习题 4.22 
（a） l

lL Y+ 是什么？（不允许计算！） 

（b）利用（a）的结果和 4.130 式以及
l l

z l lL Y lY= = 的事实，除了一个待定的归一化常数外，

求出 ( , )l
lY θ φ 。 

（c）由直接积分确定归一化常数。把你所得的最终结果与习题 4.5 的结果相比较。 
 

习题 4.23 在习题 4.3 中我们知道 

2
2 2

2 2

1 1sin .
sin sin

L θ
θ θ θ θ φ

⎡ ⎤∂ ∂ ∂⎛ ⎞= − +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
=



                1
2 ( , ) 15/8 sin cos .iY e φθ φ π θ θ= −  

对它应用升阶算符求出
2

2 ( , )Y θ φ 。利用 4.121 式对其归一化。 
 
习题 4.24 两个质量为m 粒子固定在一个质量忽略不计的长度为 a 的刚性杆两端。这个体系

可以在三维空间绕杆中心自由转动（杆的中心是固定的） 
（a） 证明这个刚性转子所允许的能量值是 

                      
2

2

( 1) ,                0,  1,  2,  ...n
n nE n
ma

+
= =
=

 

 
提示：首先把（经典）能量用总角动量表示。 

  （b）这个体系归一化的波函数是什么？第n 能级的简并度是多少？ 
 
 
 
4.4 自旋 
 
在经典力学中，一个刚性物体有两种角动量：轨道角动量（ = ×L r p），它是物体质心相对

原点的运动，自旋（ Iω
→

=S ），它是物体绕质心的运动。例如地球的轨道角动量是地球每

年绕太阳的公转的运动，而自旋角动量是地球每天绕自身南北极轴的运动。在经典力学中这

种区分很大程度上只是为了方便，当你理解后，S其实就是所有组成地球的岩石尘粒等绕极

轴的“轨道”角动量的总和。但是当类似的术语在量子力学中出现时，却有着本质的区别。 
除了（例如氢原子）电子绕原子核的运动产生的轨道角动量（由球谐函数描写）外，电子还

具有另外一种角动量，这种角动量与空间的运动没有任何关系（因此，也不可能由坐标变量

, ,r θ φ描述），但是在某些意义上，它与经典的自旋有类似之处（因此，我们还用自旋这个

词）。但是也不要对这个类比印象太深：（就目前我们所知）电子是一个无内部结构的点粒子，

它的自旋角动量是不能分解为组成它的成分的轨道角动量（见习题 4.25）。25 现在我们只需

说除了“外在”的角动量（L ）基本粒子还有内禀的角动量（S）就足够了。 
自旋的代数理论与轨道角动量的及其相似，由基本对易关系：26 
        [ , ] , [ , ] , [ , ] .            x y z y z x z x yS S i S S S i S S S i S= = == = =              [4.134] 

(同以前一样)可以得出
2S 和 zS 的本征矢满足 27 

           2 2, ( 1) , ; , , ;          zS s m s s s m S s m m s m= + == =              [4.135] 

及 
                 , ( 1) ( 1) , 1 ,S s m s s m m s m± = + − ± ±=                  [4.136] 

其中 x yS S iS± ≡ ± 。但是现在本征矢不再是球谐函数（它们根本不是θ 和φ的函数），我们

也没有一个既定的理由把 s 和m 的半整数值排除在外： 

             
1 30, , 1, , ... ; , 1, ... , 1, .
2 2

                      s m s s s s= = − − + −          [4.137]  

                                                        
25对于一个不同的解释，见 Hans C. Ohanian, “自旋是什么?”, Am. J. Phys. 54, 500(1986)。 
26我们把这些作为自旋理论的假设；轨道角动量类似的公式（4.99 式）是从它算符的表示式(4.96 式)推导出

的。在一个更精巧的处理中，它们是从三维空间的转动不变性得出的（例如，见 Leslie E. Ballentine, 量子

力学：一个近代的发展，World Scientific， Singapore（1998），3.3 节）。的确，这些基本的对易关系对所有

形式的角动量都适用，无论是自旋、轨道，还是一个复杂体系的包括部分自旋和部分轨道的耦合角动量。 
27因为自旋的本征态不是函数，我将对它们使用“右矢”的标记。（在 4.3 节中，我也可以使用这种标记，

把
m

lY 替代为 ,l m ，不过那里函数的标记可能更自然一些。）附带提及，我快用尽字母了，所以，同标记 zL

一样，我将用m 标记 zS 的本征值（某些作者用 lm 和 sm ，以便更清楚些）. 



   十分巧合的是每一种基本粒子都有一个特定的永远不变的 s ，我们称它为该种粒子的自

旋。π 介子的自旋为零；电子的自旋是 1/2；光子的自旋为 1；Δ粒子的为 3/2；引力子的为

2；等等。对比而言，轨道角动量量子数 l （比如，氢原子中的电子）可以取任何（正整）

数，而且当体系受到扰动时会从一个值变为另一个值。但是，对于任何粒子，它的自旋 s 是
不变的，这使的自旋的理论相对简单一些。28 
 
习题 4.25 如果电子是一个经典的固体球，半径为 

                            
2

2
04c
er

mcπε
=                                 [4.138] 

（所谓的经典电子半径，由爱因斯坦公式
2E mc= ，假设电子的质量可归因于它电场的能

量得到的），它的角动量是 (1/ 2)=，问在“赤道”上的一点运动速度有多快？这个模型有意

义么？（实际上，实验判定电子的半径要比 cr 小的多，不过这将使这个模型更糟糕。） 
 
  
 
4.4.1 自旋 1/2 
 

1/ 2s = 是最重要的情况，因为它是构成普通物质的粒子(质子、中子和电子)的自旋，以及

所有夸克和所有轻子的自旋。另外，一旦你掌握了自旋 1/2，理解高自旋就非常容易了。对

1/ 2s = ，
2S 和 zS 仅有两个本征态：

1 1
,

2 2
，它被称为上自旋态（经常用↑），和

1 1
,

2 2
，

它被称为下自旋态（↓）。利用这两个基矢量，一个自旋 1/2 粒子的一般态可以表示成一个

两元列矩阵(或旋量)： 

                         ,
a

a b
b

χ χ χ+ −

⎛ ⎞
= = +⎜ ⎟
⎝ ⎠

                            [4.139] 

其中 

                              
1
0

χ+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                  [4.140] 

代表上自旋, 而 

                              
0
1

χ−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                  [4.141] 

代表下自旋。 
另外，自旋算符成为 2 2× 的矩阵，具体表示可由它们对 χ+ 和 χ−的作用结果写出。由

4.135 式 

               2 2 2 23 3, .
4 4

S        Sχ χ χ χ+ + − −= == =                       [4.142] 

如果我们把
2S 写为矩阵元待定的矩阵, 

                          2 ,S
c d
e f
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

则 4.142 式的第一个方程给出 

                                                        
28的确，在数学的意义上，自旋 1/2 是最简单的非平庸可能量子体系，因为它仅许可两个基本状态。取代错

综复杂的无限维希耳波特空间，我们现在研究的是一个普通的 2-维空间；取代不熟悉的微分方程和繁杂的

函数，我们面对的是 2 2× 的矩阵和 2-分量的矢量。正是由于这个原因，某些作者由学习自旋开始介绍量子

力学。（一个很好的例子是 John S. Townsend 所著, 量子力学的现代探讨，大学教材，Sausalito，CA，2000。）
但是简洁数学的代价是概念的抽象，我不打算采用这种方法。 



               21 13 ,
0 04

c d
e f
⎛ ⎞⎛ ⎞ ⎛ ⎞

=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

=   或者  
23

,4
0

c
e

⎛ ⎞⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

=
 

所以
2(3/ 4)c = = , 0e = 。第二个方程给出 

               20 03 ,
1 14

c d
e f
⎛ ⎞⎛ ⎞ ⎛ ⎞

=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

=   或者  2

0
,3

4

d
f

⎛ ⎞⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
=

 

所以 0d = ，
2(3/ 4)f = = 。结论： 

                           2 2 1 03 .
0 14

S ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=                              [4.143] 

   类似有， 

                  
1 1, .
2 2

S        Sz zχ χ χ χ+ + − −= = −= =                        [4.144] 

由此得出 

                           
1 0

.
0 12

S z
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

=
                               [4.145] 

另外，4136 式表明 
          , , 0,S      S     S  Sχ χ χ χ χ χ+ − + − + − + + − −= = = == =  
所以 

                     
0 1 0 0

, .
0 0 1 0

S         S+ −

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= =                     [4.146] 

因为 x yS S iS± = ± ，所以 (1/ 2)( ), (1/ 2 )( )  x yS S S S i S S+ − + −= + = − ，因此得 

                     
0 1 0

, .
1 0 02 2

S         Sx y

i
i

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= =
                  [4.147] 

由于 , yS  Sx 和 zS 都有一个因子 / 2= ，S可以更简洁地写为 ( / 2)S = = σ，其中 
              
 

[4.148] 
 

                                               
 
这就是著名的泡利（Paili）自旋矩阵。注意Sx 、 yS 、 zS 和

2S 都是厄密矩阵（它们也应当

是，因为它们都表示可观测量）。另一方面，S+ 和S− 不是厄密的⎯它们显然不是可观测量

量。 
    S z 的本征旋量是（当然应该是） 

1 0
, , .

0 12 2
              χ χ+

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
－本征值为 本征值为； －       [4.149] 

如果对一个粒子的一般态 χ（4.139 式）测量其 zS ，得到 / 2+= 的几率为
2a ，得到 / 2−= 的

几率为
2b 。既然这两个几率是仅有的几率，应有 

              
2 2 1a b+ =                              [4.150] 

0 1 0 1 0
, , .

1 0 0 0 1
                 x y z

i
i

σ σ σ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

≡ ≡ ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 



（即旋量必须是归一化的）。29 

但是，如果测量 xS ，可能值是什么？几率是多少？按照广义的统计诠释，我们需要知

道Sx 的本征值和本征旋量。久期方程是 

              
2

2/ 2
0 .

/ 2 2 2
    =

λ
λ λ

λ
− ⎛ ⎞= ⇒ = ⇒ ±⎜ ⎟− ⎝ ⎠

= = =
=

 

无需惊讶， xS 的可能值同 zS 的是一样的。用通常的方法可以获得本征旋量： 

                 
0 1

,
1 02 2

  
α α β α
β β α β

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ± ⇒ = ±⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= =
 

所以β α= ± 。显然， xS (归一化的)本征旋量是 

( ) ( )1/ 2 1/ 2
, , .

1/ 2 1/ 2
          x xχ χ+

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= =
－本征值为 本征值为－＋ ；

2 2－
   [4.151]  

作为厄密矩阵的本征矢量，它们张成空间；一般的旋量 χ （4.139 式）可以表示成它们的线

性迭加： 

( ) ( ).
2 2

x xa b a bχ χ χ+ −

+ −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                      [4.152] 

如果测量 xS ，得到 / 2+= 的几率是
2(1/ 2) a b+ ，得到 / 2−= 的几率是

2(1/ 2) a b− 。（你

自己应当检验一下几率之和为 1。） 
 
 
 
 

例题 4.2  假设一个自旋 1/2 的粒子处在态 

          
11 .

26
i

χ
+⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

如果测量 zS 和 xS ，得到 / 2+= 和 / 2−= 的几率各是多少？ 

解：这里 (1 ) / 6a i= + ， 2 / 6b = ，所以对 zS ，得到 / 2+= 的几率为
2

(1 ) / 6 1/ 3i+ = ，

得到 / 2−= 的几率是
2

2 / 6 2 /3= 。对 xS ，得到 / 2+= 的几率为
2

(1/ 2) (3 ) / 6 5/ 6i+ = ，

得到 / 2−= 的几率是
2

(1/ 2) ( 1 ) / 6 1/ 6i− + = 。顺便提及， xS 的期待值是 

5 1 ,
6 2 6 2 3
⎛ ⎞ ⎛ ⎞+ − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = =
 

这也可以由更直接的方法得到： 

        † 0 / 2 (1 ) / 6(1 ) 2 .
/ 2 0 36 6 2 / 6

xSx

iiS χ χ
⎛ ⎞+⎛ ⎞−⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

= =
=

 

 
 

    现在我想给你们介绍一个涉及自旋 1/2 的虚拟测量方案，因为它可以非常具体地阐明我

                                                        
29 人们常说

2
a 是“粒子处在自旋向上态的几率”，但是这是一个模糊的语言; 他们意思其实是如果你测量

zS ，
2

a 是得到 / 2= 的几率。见第 3 章中的脚标 16。 



们在第一章所讨论地某些抽象概念。我们从一个粒子处在 χ+ 态开始。如果有人问，“这个粒

子的自旋角动量的 z-分量是什么？”，我们可以毫不含糊的回答： / 2+= 。一个对 zS 的测量

肯定得到这个结果。但是如果提问者是问，“这个粒子的自旋角动量的 x-分量是什么？”，

我们不得不有点模棱两可：如果测量 xS ，得到 / 2+= 或 / 2−= 的机会是一半对一半。如果提

问者是一个经典物理学家，或者一个“现实主义者”（在 1.2 节的意义上），他将会认为这是

一个不恰当的⎯不是说不礼貌的⎯回答：“你是告诉我你不知道这个粒子的真实状态？”恰

恰相反，我精确的知道这个粒子的态是： χ+ 。“阿嗯，那么为什么你不能告诉我它自旋的

x-分量是什么？”因为它根本没有一个特定的 x-分量。确实，它也不能有，否则如果 xS 和 zS
两者都有一个确定的值，不确定原理就不成立了。 

这时我们的挑战者夺过检测管测量自旋的 x-分量；比方说他得到了 / 2+= 。“啊哈”（他

胜利地呼叫），“你们撒谎！这个粒子的 xS 有着完全确定的值： / 2+= 。”是的，的确⎯它现

在是，但是这不能证明在你测量之前它是这个值。“你们显然是吹毛求疵。不管怎样，你们

的不确定原理如何成立？ zS 和 xS 两者我现在都知道。”很抱歉，但是你现在不知道：在你

测量的过程中，你已经扰动了粒子的状态；它现在是在
xχ+ 态，虽然你现在知道 xS 的值，但

是你现在不再知道 zS 的值。“但是我在测量 xS 的时候非常小心地不去干扰这个粒子。”好吧，

如果你不相信我，请检验一下：测量 zS ，看看你能得到什么结果。（当然，他可能得到 / 2+= ，

这可能会使我尴尬⎯但是如果我们一次又一次地重复整个方案，一半的时间他将会得到

/ 2−= 。） 
对外行、哲学家或者经典物理学家，“这个粒子没有一个确定的位置”（或动量，或自

旋角动量的 x-分量，或其它）这种形式的论述听起来是含糊的，不恰当的，或者是故弄玄

虚的（所有中最糟的）。其实并非如此。但是它精确的含义，我认为，如果没有深入学习量

子力学的精髓，几乎是不可能理解的。如果你发现自己一次又一次在理解上有问题（如果没

有，你可能同样没有理解这个问题），重新学习自旋-1/2 体系。它是一个最简单最清晰的例

子去思考量子力学的概念疑题。 
 

习题 4.26 
(a) 验证自旋矩阵（4.145 和 4.147 式）满足角动量的对易关系，4.134 式。 
(b) 证明泡利自旋矩阵（4.148 式）的乘积满足 

,j k jk jkl l
l

σ σ δ ε σ= +∑                            [4.153] 

这里指标代表 ,  x y 或 z ， jklε 是 Levi-Civita 符号：如果 123, 231jkl = 或 312，为＋1；如

果 132, 213 jkl = 或 321，为－1；其余为零。 
 

*习题 4.27 一个粒子处在自旋态 

                           
3

.
4
i

Aχ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

(a) 求出归一化常数 A。 
(b) 求出 ,  x yS S 和 zS 的期待值。 

(c) 求出 ,  
x yS Sσ σ 和

zSσ 的“不确定”。（注意：这里的σ 是标准方差，不是泡利矩阵！） 

(d) 证实你的结果符合不确定原理（4.100 式和它的循环置换⎯当然要用 S 取代 L ）。 
 
*习题 4.28  对最一般的旋量 χ（4.139 式），计算

2 2 2, , , , ,    x y z x y zS S S S S S和 。 

验证
2 2 2 2
x y zS S S S+ + = 。 

 
*习题 4.29 



（a）求出S y 的本征值和本征矢。 

（b）如果对一个一般态 χ（4.139 式）测量 yS ,可能得到什么值，每一个的几率是多少？验

证几率之和为 1。注意：a 和b 不一定是实数！ 
（c）如果测量

2
yS ，可能得到什么值，几率是多少？ 

 

**习题 4.30 构造一个表示自旋角动量沿一个任意方向 r�的矩阵Sr 。使用球坐标，有 

                   � �sin cos sin sin cos .r i j kθ φ θ φ θ= + +� �                     [4.154] 
求出Sr 的本征值和（归一化的）本征旋量。答案： 

             
cos( / 2) sin( / 2)

; .
sin( / 2) cos( / 2)

               
i

r r
i

e
e

φ

φ

θ θ
χ χ

θ θ+ −

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

              [4.155] 

注意：你总是自由的去乘上一个任意相因子⎯比如说，
ie φ ⎯所以你的答案可能与我所给的

答案看起来好像不完全一样。 
 
习题 4.31 对一个自旋为 1 的粒子，构造它的自旋矩阵（ ,S  Sx y 和Sz ）。提示：在这种情况

下 zS 有几个本征态？对每个本征态确定 ,zS S+ 和 S−的作用结果。仿照书中对自旋 1/2 的步

骤。 
 

 
 
 
4.4.2 磁场中的电子 

 
一个带电的自旋粒子形成一个磁偶极子。它的磁偶矩，μ，正比于它的自旋角动量，S： 
                              ;Sγ=μ                                    [4.156] 
比例常数，γ ，称为回转磁比率。30 当一个磁偶极子放入一个磁场B 中时，它受到一个力矩，

B×μ ，使磁偶极子趋于与磁场平行的方向（就像一个指南针一样）。和这个力矩相应的能

量为 31 
                            ,BH = − ⋅μ                                   [4.157] 
所以一个静止在 32 磁场中的带电的自旋粒子的哈密顿是 
                            .B SH γ= − ⋅                                  [4.158] 
 

 
例题 4.3  Larmor 进动: 假定一个自旋 1/2 的粒子静止在一个方向沿 z 方向的均匀磁场中: 

                              �
0 .B B k=                                   [4.159] 

矩阵形式的哈密顿(4.158 式)是 

0
0

1 0
.

0 12
H S z

BB γγ
⎛ ⎞

= − = − ⎜ ⎟−⎝ ⎠

=
                      [4.160] 

                                                        
30参见，例如，D. Griffiths, 电动力学导论，第 3 版。（Prentice Hall, Upper Saddle River,NJ, 1999），252 页。

经典上，一个质量和电荷分布是相同的物体的回转磁比率是 / 2q m ，q 是电荷，m 为质量。电子的回转磁

比率正好是经典值的两倍： /e mγ = − ，只有在相对论量子力学中才能对此有一个完全的解释。 
31 Griffiths（见脚标 30，281 页。 
32如果粒子被允许运动，将需要考虑动能项；这样将出现洛仑兹力 ( )v Bq × ，这个力是无法从一个势函数

导出的，因此也不适合到目前为止我们所写出的薛定鄂方程。以后，我会说明如何处理此类问题，目前，

我们仅假设粒子是可以自由转动的，但是没有其它形式的运动。 



H的本征矢同S z 的一样: 

   0

0

, ( ) / 2,
, ( ) / 2.
             
             

E B
E B

χ γ
χ γ
+ +

− −

= −⎧
⎨ = +⎩

=
=

能量

能量
                     [4.161] 

显然当偶极矩平行磁场时能量最低⎯如同它的经典情况一样。 
由于哈密顿是不依赖时间的，含时薛定鄂方程 

                        Hi
t
χ χ∂
=

∂
=                                  [4.162] 

的一般解可以表示成定态的迭加： 

                 
0

0

/ 2
/ /

/ 2( ) .
i B t

iE t iE t
i B t

ae
t a e b e

be

γ

γχ χ χ+ −− −
+ − −

⎛ ⎞
= + = ⎜ ⎟

⎝ ⎠
= =  

常数 a 和b 由初始条件决定： 

                             (0) ,
a
b

χ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

（当然，
2 2 1a b+ = ）不是一般性，33 我将令 cos( / 2)a α= ， sin( / 2)b α= ，其中α 是

一个固定的角度，其物理意义随后说明。这样 

                        
0

0

/ 2

/ 2

cos( / 2)
( ) .

sin( / 2)

i B t

i B t

e
t

e

γ

γ

α
χ

α −

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                        [4.163]

为了对这样的态有一个感性认识，让我们计算S期待值对时间的依赖关系： 

 

( )0 0

0

0

/ 2 / 2†

/ 2

/ 2

0

( ) ( ) cos( / 2) sin( / 2)

1 0 cos( / 2)
0 12 sin( / 2)

sin cos( ).
2

S

         

         

i B t i B t
x x

i B t

i B t

S t t e e

e
e

B t

γ γ

γ

γ

χ χ α α

α
α

α γ

−

−

= =

⎛ ⎞⎛ ⎞
× ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

=

=

=

       [4.164] 

类似有， 

                †
0( ) ( ) sin sin( ),

2
Sy yS t t B tχ χ α γ= =

=
                     [4.165] 

                     †( ) ( ) cos .
2

Sz zS t tχ χ α= =
=

                         [4.166] 

显然 S 与 z-轴有一个常数倾斜角α ,并且绕磁场方向以 Larmor 频率 

                             0 ,Bω γ=                                    [4.167] 
进动，如同在经典情况中一样 34（见图 4.10）。这里无需惊讶⎯Ehrenfest 定理（在习题 4.20
导出的形式）保证了 S 是按照经典规律演化的。但是从一个具体示例理解这一点还是非常

有益的。 

                                                        
33这并不是假设 a 和 b 是实数；如果你愿意你可以探讨一般的情况，结果不过是对 t 增加一个常数。 
34参见，例如，Feynman 物理文集（Addison-Wesley,Reading,1964），第 2 卷，34-3 节。当然，在经典情况

下这是角动量矢量本身绕磁场进动，而不是它的期待值。 



图 4.10: S 在均匀磁场中的进动. 
 
 
 
例题 4.4 斯特恩-革拉赫(Stern-Gerlach)实验：在一个非均匀磁场中，除了力矩，还有另外

一个力作用在磁偶极子上：35 
                             ( ).F B= ∇ ⋅μ                                 [4.168] 
这个力可以用来分离具有特定自旋指向的粒子。假设一束较重的中性原子 36 沿 y 方向通过

一个非均匀磁场区域⎯比如说 

                      l
0( , , ) ( ) ,B x y z xi B z kα α= − + +�                       [4.168] 

其中 0B 是一个较强的均匀场，而α 描述对均匀性的一个小的偏离。（实际上我们只需要 z
方向上的小的偏离，但不幸的是这是做不到的⎯这将违背电磁规律 0B∇ ⋅ = ，不管喜欢不

喜欢，必须有 x 分量出现。）作用在原子上的力为 

                          �( ).F x zS i S kγα= − +�  

 
 

图 4.11： 斯特恩－革拉赫实验装置示意图. 
 

但是由于绕 0B 的拉莫尔进动， xS 快速振荡，且平均值为零；净力是沿 z 轴方向： 

,z zF Sγα=                              [4.170] 

与自旋角动量的 z 分量成正，原子束向上或向下偏转。经典上，（由于 zS 没有量子化）我们

预期的是一个模糊带，但事实上原子束分成了 2 1s + 个分立的束，这完美地展示了角动量的

量子化。（例如，如果你用银原子，原子内层的所有的电子都是配对的，所以它们的轨道和

自旋角动量都相互抵消。净自旋就是最外层一个⎯非配对⎯电子的自旋，所以 1/ 2s = ，

                                                        
35 Griffiths（见脚标 30），258 页。注意到F 是能量梯度的负值（4.157 式）。 
36 用中性原子是为了避免由洛仑兹力所产生的大尺度偏折，用重原子是为了使我们可以构造一个局域波

包，可以用经典的粒子轨迹处理粒子的运动。实际上，斯特恩-革拉赫实验无法使用电子束进行。 



因而原子束经过磁场后分为两束。） 
   在最后一步之前，上述论述完全是经典的；在完全的量子计算中，没有“力”的位置，

因此你们也许更喜欢下面对这个同样问题的探讨。37 我们在随着原子束一同运动的参照系中

来研究这个过程。在这个参照系中，哈密顿的初值为零，当粒子经过磁场的一段时间T 内不

为零，然后再归于零： 

0

0, 0,
( ) ( ) , 0 ,

0, .
z

t
H t B z S t T

t T
γ α

<⎧
⎪= − + ≤ ≤⎨
⎪ >⎩

                     [4.171] 

（我们忽略了B 讨厌的 x 分量⎯由前面所述原因⎯ x 分量与这个问题无关。）假定原子的自

旋为1 2，初态为： 
( ) , 0.t a b tχ χ χ+ −= + ≤当  

当哈密顿算符作用时， ( )tχ 按通常方式演化： 
/ /( ) , 0iE t iE tt a e b e t Tχ χ χ+ −− −

+ −= + ≤ ≤= =
当 ， 

式中（由 4.158 式） 

            0( ) ,
2

E B azγ± = +
=∓                             [4.172]  

因此（当 t T≥ ）它出现在态中 
0 0/ 2 / 2( / 2) ( / 2)( ) ( ) ( ) ,TB TBi i T z i i T zt ae e be eγ γαγ αγχ χ χ− −

+ −= +           [4.173] 
这两项含有沿 z 轴方向的动量（见 3.32 式）；自旋向上部分的动量为： 

,
2z
Tp αγ

=
=

                               [4.174] 

方向沿 z 轴正方向；自旋向下部分的动量恰好相反，方向沿 z 轴负方向。因而，像先前一样，

原子束经过磁场后分为两束。（注意到 4.174 式的结果与先前的结果（4.170 式）相符，此时

2zS = = 。） 
斯特恩－革拉赫实验在量子力学的基本原理中举足轻重，它既是量子态制备的范例，

又是一些量子测量的阐明模型。我们习惯于假定某一系统的初始条件是已知的（薛定谔方程

告诉我们它随后的演化）—但是，很自然会疑问，怎样让一个系统在开始时处于一个特定的

状态。可以这样，如果你想制备一束给定自旋态的原子束，可以先让未极化的粒子束通过一

个斯特恩－革拉赫磁场，再从出射的粒子束中选择出你感兴趣的（可以通过适当的挡板或者

遮光器）。相反地，如果想测量一个原子自旋的 z 分量，只需让该原子通过斯特恩－盖拉赫

装置，记录它达到那个接受器上即可。我并不是说这总是处理这类问题最实际的方法，但是

它概念上十分清晰，因此是探讨态制备和测量的非常有用的内容。 
 
 
 

习题 4.32   在例题 4.3 中： 
（a）如果在 t 时刻，测量自旋角动量沿 x 方向的分量，求得到 2+ = 的几率是多少？ 
（b）问题同上，但为自旋角动量沿 y 方向的分量。 

（c）问题同上，但为自旋角动量沿 z 方向的分量。 
 

**习题 4.33 一电子静止在一振荡磁场  
�

0 cos( ) ,B B t kω=  

中，其中 0B 和ω为常数。 
（a）构造这个体系的哈密顿矩阵。 

                                                        
37
这个探讨仿效 L. Ballentine (脚标 26) 9.1 节 

 



（b）这个电子的初始态（ 0t = 时）为处于 x -轴方向上的上自旋态（即：
( )(0) xχ χ+= ）。

确定以后任意时刻的 ( )tχ 。注意：这是一个与时间有关的哈密顿，所以你不能用通常

从定态得到 ( )tχ 的方法。幸运的是，本题可以直接解含时薛定谔方程（方程 4.162）。 
（c）如果测量 xS ，求出得到 2−= 的几率。答案： 

2 0 sin( ) .
2

sin B tγ ω
ω

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(d) 迫使 xS 完全翻转所需要的最小磁场（B0）是多大？ 
 
 

4.4.3 角动量的迭加 
 
假设现在我们有两个自旋1 2的粒子 — 例如，处于氢原子基态的电子和质子。38 每个均可

自旋向上或自旋向下，所以共有四种可能性：39 
                           ,  ,  ,  ,↑↑ ↑↓ ↓↑ ↓↓                           [4.175] 

其中第一个箭头代表电子自旋，第二个代表质子自旋。问题：这个原子的总角动量是什么？

令： 
                              (1) (2).S S S≡ +                             [4.176] 

这四个复合态的每一个都是 zS 的一个本征态⎯ z 分量是简单的加在一起： 
(1) (2) (1) (2)

1 2 1 2 1 2 1 2( ) ( ) ( )z z z z zS S S S Sχ χ χ χ χ χ χ χ= + = +  

           1 1 2 1 2 2 1 2 1 2( ) ( ) ( ) ,m m m mχ χ χ χ χ χ= + = += = =  

（注意：
(1)S 只作用在 1χ 上，

(2)S 只作用在 2χ 上；这种标记可能不太优雅，但它确实很有

用）。所以m (复合系统的量子数)就是 1 2m m+ ： 

: 1;m↑↑ =  

: 0;m↑↓ =  

: 0;m↓↑ =  

: 1;m↓↓ = −  
    乍看来上述结果好像有问题：m 应该是以整数从 s− 到 s+ 改变的，所以有 1s = ⎯但是

出现一个“额外的” 0m = 的态。搞清楚这个问题的一种方法是利用 4.146 式对态↑↑作用

降阶算符，
(1) (2)S S S− − −= + ： 

                   (1) (2)( ) ( ) ( )S S S− − −↑↑ = ↑ ↑ + ↑ ↑  

      ( ) ( ) ( ).= ↓ ↑ + ↑ ↓ = ↓↑ + ↑↓= = =   

很显然 1s = 的三个态为（用  s m 表示）： 
                                                                  
 
 

 
 

[4.177] 
 
 
 

                                                        
38我设它们处在基态，所以不必考虑轨道角动量。 
39更严格地讲，每一个粒子是处在上自旋和下自旋线性迭加的状态，两个粒子的复合体系是处在上面列举

的四个态的线性迭加态。 

11
11 0 ( ) 1 ( ).
2

1 -1

s

⎧ ⎫=↑↑
⎪ ⎪
⎪ ⎪= ↑↓ + ↓↑ =⎨ ⎬
⎪ ⎪
⎪ ⎪=↓↓⎩ ⎭

三重态



 
 ( 作为验证， 对 10 作用降阶算符；你会得到什么？参看习题 4.34（a））。由于明显的原

因，这称为三重态。 另外，还有一个 0, 0 s m= = 的态： 
 

10 0 ( ) 0 ( ).
2

s⎧ ⎫= ↑↓ − ↓↑ =⎨ ⎬
⎩ ⎭

单态                      [4.178] 

 
 
 
（如果对这个态应用升阶和降阶算符，结果为零。参见习题 4.34（b）。） 

我们的结论是，两个自旋1 2的粒子可以结合成总自旋为 1 或 0，取决于它们占据的是

三重态或者是单态。为了确定这一点，我们需要证明三重态是
2S 的本征值为

22= 的本征矢，

而单态是
2S 的本征值为 0 的本征矢。由 

2 (1) (2) (1) (2) (1) 2 (2) 2 (1) (2)( ) ( ) ( ) ( ) 2 .S S S S S S S SS = + ⋅ + = + + ⋅         [4.179] 
利用 4.145 和 4.147 式，我们有： 

(1) (2) (1) (2) (1) (2) (1) (2)( ) ( )( ) ( )( ) ( )( )S S x x y y z zS S S S S S⋅ ↑↓ = ↑ ↓ + ↑ ↓ + ↑ ↓  

            ( )( ) ( )( ) ( )( )
2 2 2 2 2 2

i i− −
= ↓ ↑ + ↓ ↑ + ↑ ↓
= = = = = =

 

            
2

(2 ).
4

= ↓↑ − ↑↓
=

 

同理， 
2

(1) (2) ( ) (2 ).
4

⋅ ↓↑ == ↑↓ − ↓↑S S =
 

这样有 
2 2

(1) (2) 11 0 (2 2 ) 1 0 ,
4 42

⋅ = ↓↑ − ↑↓ + ↑↓ − ↓↑ =S S = =
         [4.180] 

2 2
(1) (2) 1 30 0 (2 2 ) 0 0 .

4 42
⋅ = ↓↑ − ↑↓ − ↑↓ + ↓↑ = −S S = =

       [4.181] 

回到 4.179 式（并利用 4.142 式），我们最后得到 
2 2 2

2 23 310 ( 2 ) 10 2 10 ,
4 4 4

= + + =S = = = =                 [4.182] 

所以， 1 0 确实是
2S 的本征值为

22= 的本征态；还有 
2 2 2

2 3 3 30 0 ( 2 ) 0 0 0,
4 4 4

= + − =S = = =
                   [4.183] 

所以， 0 0 确实是
2S 的本征值为 0 的本征态。（ 11 ， 1 1− 也是

2S 的取相应本征值的本

征态留给读者去证明，参见习题 4.34(c)。） 
我们刚才所做的(结合自旋为1 2的两个粒子得到自旋为 1 或 0)是一个较大问题中的一

个最简单例子。如果将自旋为 1s 和 2s 的两粒子结合，可得到什么总自旋 s 呢？40 答案 41是，

你可以得到的总自旋值从 1 2s s+ 开始逐步减 1，直到 1 2s s−  ⎯或 2 1s s− ，如果 2 1s s> ， 即 

                                                        
40简单起见，我说是自旋，但是任一个也可以是（或者两个都可以是）轨道角动量（不过，我们用字母 l 表
示轨道角动量）。 
41它的证明你必须参考更高级的教科书，例如，Claude Cohen-Tannoudji, Bernard Diu, Granck Laloë, 量子力

学, (Wiley, New York,1977), 第 2 卷, 第 10 章。 

10 0 ( ) 0 ( ).
2

s⎧ ⎫= ↑↓ − ↓↑ =⎨ ⎬
⎩ ⎭

单态



 
 

[4.184] 
 
 
 

 
(大体上来说，当两个粒子的自旋同向平行时，总自旋有最大值; 当两个粒子的自旋反向平

行时, 总自旋有最小值。) 例如，将一自旋为 3/2 的粒子和一自旋为 2 的粒子组装到一起，

依据形态你将会得到总自旋为 7/2，5/2，3/2，或 1/2。又例如：如果一个氢原子在 nlmψ 上，

电子的总角动量（自旋加轨道）为 l +1/2 或 l -1/2；如果现在再放进一个质子的自旋，这个原

子的总角动量为 l +1，l ，或 l -1（依据电子是在 l +1/2 还是在 l -1/2 态，l 能通过两种不同的

方法得到）。 
    有着总自旋 s 和 z 分量m 的的组合态 s m 将是复合态 1 1 2 2s m s m 的线性迭加： 

1 2

1 2

1 2

1 1 2 2
s s s
m m m

m m m

s m C s m s m
+ =

= ∑                       [4.185] 

（由于 z 分量是相加的，有贡献的复合态仅是那些 1 2m m m+ = 的态）。4.177 和 4.188 式是

这种一般形式的 1 2 1 2s s= = 的一个特例（我使用了习惯表示： 1 2 1 2↑= ，

1 2 1 2↓= − ）。常数 1 2

1 2

s s s
m m mC 称为克莱布希-高登（Clebsch-Gordan）系数。一些最简单

的情况已列在表 4.8 中。42 例如：2×1 表格中阴影部分一栏告诉我们： 

1 3 13 0 21 1 1 2 0 10 2 1 11 .
55 5

= − + + −  

特别有，如果两个粒子（自旋为 2 和自旋为 1）静止在一个盒子中，如果总自旋为 3， z 分

量为 0，那么测量
(1)

zS 可以得到=（几率为 1/5），或 0(几率为 3/5），或-= (几率为 1/5）。注

意到这些几率相加为 1（在克莱布希-高登系数表中任何一列的平方和为 1） 
 
表 4.8 克莱布斯－戈登系数 （平方根号适用于每一项，负号在根号外面） 

 
 

                                                        
42普遍的公式可以在 Arno Bohm 所著， 量子力学：基础与应用，第 2 版，（Springer，1986）172 页找到。 

1 2 1 2 1 2 1 2( ),  ( 1),   ( 2),  ,  .s s s s s s s s s= + + − + − −…  



这些表格对逆展开也是适用的： 

                      1 2

1 2
1 1 2 2 .s s s

m m m
s

s m s m s mC=∑                      [4.186] 

例如，在表中3 2 ×1 栏中阴影部分告诉我们： 
3 3 5 31 1 1 1 1 1 1
2 2 5 2 2 15 2 2 3 2 21 0 .= + −  

如果在盒子中放入自旋为 3/2 和自旋为 1 的粒子，而且知道第一个粒子的 1 1 2m = ，第二个

粒子的 2m =0，（所以m 必然是 1/2），你测量总自旋，s ，你会得到 5/2（几率为 3/5），或 3/2
（几率为 1/15），或 1/2（几率为 1/3)。同样，这些几率之和为 1（在克莱布希-高登系数表中

任意一行的平方和为 1）。 
如果你认为这开始听起来像神秘的数字命理学，我不会责备你。在本书以后的学习中我们将

不会太多使用克莱布斯－戈登系数表，但是我想让你知道万一在以后遇见它们，应该知道它

们是怎么用的。在数学意义上这只是群论的应用 — 我们讨论的是分解旋转群的两个不可约

表示的直积为不可约表示的直和。（你可以引用它，以给你的朋友留下深刻的印象）。 
 

* 4.34 题    
（a）将 S−作用到 10 上（4.177 式），并证实你会得到 2 1 1−= 。 

（b）将 S± 作用到 00 上（4.178 式），并证实你会得到零。 

（c）证明 11 和 1 1− 是
2S 的有着恰当本征值的本征态。 

 
4.35 题  夸克的自旋为 1/2。三个夸克结合在一起形成一个重子（如质子或中子）；两个夸克

（或更确切说一个夸克和一个反夸克）结合在一起形成一个介子（比如π介子或Ｋ介子）。

假设夸克是处于基态（所以轨道角动量为零）。 
（a）重子可能的自旋为多少？ 
（b）介子可能的自旋为多少？ 
 
 
4.36 题    
（a）一个自旋为 1 的粒子和一个自旋为 2 的粒子静止在一个形态中，其总自旋为 3，z 分量

为=。如果你测得自旋为 2 的粒子的角动量的 z 分量，你将会得到什么值？几率为多

少？ 
（b）一个自旋向下的电子处于氢原子的 510ψ 态。如果你能测量电子的总角动量的平方（不

包括质子自旋），你将会得到什么值？几率为多少？ 
 
4.37 题 求出

2S 和
(1)

zS 的对易式（
(1) (2)S S S≡ + ）。推广你的结果去证明： 

                   2 (1) (1) (2), 2 ( ).S i⎡ ⎤ = ×⎣ ⎦S S S                          [4.187] 

评注：因为
(1)

zS 与
2S 不对易，我们不能有它们两个共同本征矢。为了形成

2S 的本征态，我

们需要线性迭加
(1)

zS 本征态。这就是克莱布希－高登系数（4.185 式）能为我们做的。另一

方面，由 4.187 式明显的推论， (1) (2)+S S 是与
2S 是对易的，这是我们已知结果（见 4.103

式）的一个特例。 
 
 
第四章补充习题 
 
**习题 4.38  考虑一个三维谐振子,其势为： 



                         2 21( ) .
2

V r m rω=                            [4.188] 

(a) 证明在笛卡尔坐标系中分离变量，可以得到三个一维谐振子。并利用所学知识给出允许

的能量值。答案： 
                     ( 3 2) .nE n ω= + =                           [4.189] 

(c) 确定 nE 的简并度 ( )d n  
 
∗∗∗习题 4.39 由于三维谐振子的势函数（式 4.188）是球对称的，因而可以在球坐标系通

过分离变量法求解薛定谔方程。利用幂级数法求解径向方程，得到系数项的递推公式，得出

能量允许值。并利用 4.189 式验证你的结果。 
 
**习题 4.40 
(a) 证明三维维里(Virial)定理：（对于定态） 

2 .rT V= ⋅∇                            [4.190] 

提示：参考习题 3.31 
(b) 利用三维维里定理证明氢原子满足： 

;nT E= −   2 .nV E=                        [4.191] 

(c) 利用维里定理证明三维谐振子（习题 4.38）满足： 
                             2.nT V E= =                            [4.192] 
 
∗∗∗习题 4.41  [在你熟悉矢量运算的基础上试做本题。] 推广习题 1.14 定义三维几率流

为： 

                           (ψ ψ ψ ψ).
2
i
m

∗ ∗≡ ∇ − ∇J =
                       [4.193] 

(a) 证明 J 满足连续性方程： 
2ψ ,

t
∂

∇ ⋅ = −
∂

J                          [4.194] 

它表明局域几率守恒。由此(由散度定理) 
2 3ψ ,

S

dd d
dt ν

⋅ = −∫ ∫J a r                       [4.195] 

其中V 是(固定的)体积， S 是体积的边界面。用语言表述：流出表面的几率等于体积内

发现粒子几率的减少。 
(b) 求解处于 2, 1, 1n l m= = = 状态下的氢原子的几率流 J 。答案 

�/
5 sin .

64
r are

ma
θφ

π
−=

 

(c) 假如我们将mJ 解释为质量流，角动量可以表示为： 
                       3( ) .m d= ×∫L r J r  

   利用这个公式计算 211ψ 的 zL ，并对结果进行讨论。 
 
∗∗∗习题 4.42 三维动量空间的波函数（不含时间）可 3.53 式的一个自然推广而定义： 

                   
( ) / 3

3/ 2

1( ) ( ) .
(2 )

i
e dφ ψ

π
− ⋅

≡ ∫
p r

p r r
=

=
                      [4.196] 

（a）求出氢原子基态（4.80 式）的动量空间波函数。提示：用球坐标，让极轴方向沿动量p
的方向。首先对 θ积分。答案： 



( )
( )

3
2

22

1 2 1 .
1

ap
ap

φ
π
⎛ ⎞= ⎜ ⎟
⎝ ⎠ ⎡ ⎤+⎣ ⎦
= =

                     [4.197] 

（b）验证 ( )pφ 是归一化的。 

 (c) 对氢原子的基态，用 ( )pφ 来计算
2p 。 

 (d) 在这个态中，动能的期待值是什么? 答案用 1E 的倍数表示，验证它与维理定理一致

（4.191 式）。 
 
习题 4.43  
（a） 构造氢原子 1, 2, 1  n l m= = = 态的空间波函数（ψ ），仅用 , ,  r θ φ 及 a（玻尔半径）

表示结果⎯不允许用要用其它的变量（如 , zρ  ），或函数（如 ,Y v ），或常数（ 0,  A c 等），

或导数，但（ , , 2  eπ 等）允许使用。 
(b)  通过 , ,  r θ φ 的积分验证波函数是归一化。 

(c）对这个态求出
sr 的期待值。s 在哪个范围内（正，负）结果是有限的。 

 
习题 4.44 
（a）构造氢原子 4, 3, 3n l m= = = 态的空间波函数（ψ ）。表示结果为球坐标 , ,  r θ φ 的函

数。 
(b) 对这个态求 r 的期待值。（像通常一样，如果需要，查寻积分手册） 

（c）如果原子处于这个态，你能够测量可观测量
2 2
x yL L+ ，可以得到那些值？各自的概率是

多少？ 
 
习题 4.45  在氢原子的基态中，发现一个电子在原子核内部的几率有多大？ 

(a) 首先计算出精确答案，假设波函数（4.80 式）直到 0r = 都是正确，设b 为原子核半

径。 
(b) 将结果以小量 2 /b aε = 展开为幂级数，证明最低次項是三次方项：几率

3(4 / 3)( / )P b a= 。只要b a<< ，这个近似就是恰当的。 
(c) 另一种方法，可以假设 ψ(r) 在原子核体积的范围内基本是常数，所以

23(4 /3) (0)P bπ ψ≈ 。验证用这种方法可以得到同样的结果。 

(d) 用 1510b −≈ m和
100.5 10a −≈ × m估计 P 的数值。粗略地说，它代表电子处在原子

核中的时间与总时间的比率。 
 

习题 4.46  

（a）用递推公式（4.76 式）证明当 1−= nl 时，径向波函数的形式为 

                          1
( 1) ,n r na

n n nR N r e− −
− =  

  并通过直接积分求出归一常数 nN 。 

（b）对形为 ( 1)n n mψ − 的态计算出 r 和
2r 。 

（c）证明对这样的态 r 的“不确定”（ rσ ）为 2 1r n + 。注意到随着 n 的增加，r 的弥

散减小（在这个意义上，对于较大的 n ，体系“开始像经典的了”，具有一个可辨认的园“轨

道”）。对几个 n 值画出其径向波函数来说明这一点。 
 

习题 4.47 重叠光谱线。
43 

根据德伯里公式（方程 4.93），初态和末态的主量子数决定德伯里谱中谱线的波长。找 

                                                        
43 Nicholas Wheeler，“重叠光谱线”（未发表的 Reed 学院报告，2001）。 



出有相同λ 的不同的两对{ },i fn n 。例如{ }6851,6409 和{ }15283,11687 这两对有相同的

λ，但你不能再用这两对！ 

 

习题 4.48 题    考虑可观测量
2A x= 和 zB L=  

（a）对 A Bσ σ 构造测不准原理 

（b）对氢原子态 nlmΨ 计算 Bσ  

（c）在这一态中关于 xy 你能得到什么结论？ 

 

习题 4.49 题  一电子处在自旋态 

                               
1 2
2

i
Aχ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

（a） 归一化 χ 确定常数 A。 
（b） 如果对这个电子测量 zS ，能得到那些值，每个的几率是多少？ zS 的期待值是什么？ 

（c） 如果对这个电子测量 xS ，能得到那些值，每个的几率是多少？ xS 的期待值是什么？ 

（d） 如果对这个电子测量 yS ，能得到那些值，每个的几率是多少？ yS 的期待值是什么？ 

 
***4.50 题   假设两个自旋 1/2 的粒子构成总自旋为零的单态（4.178 式），设

( )1
aS 为第一

个粒子的自旋角动量在单位矢量 â方向的分量。类似的，
( )2
bS 为第二个粒子的自旋角动量在

单位矢量 b̂ 方向的分量。证明： 

( ) ( )
2

1 2 cos
4a bS S θ= −
=

 

其中θ为 â与 b̂ 之间的夹角。 
 

***4.51 题 

（a）当 1 1/ 2s = ， 2s 任意时，求出克莱布希-高登系数。提示：要求的是下式中的 A和 B  

2 2
1 1 1 1 1 1     ,
2 2 2 2 2 2

s m A s m B s m⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

使得 sm 是 2S 的一个本征态。用 4.179 到 4.182 式的方法。如果你忘记了（例如）
( )2
xS

对 2 2s m 的作用，查阅 4.136 式和 4.137 式的前一行。答案： 

2

2

1/ 2 ;
2 1

s mA
s

± +
=

+
    2

2

1/ 2 ,
2 1

s mB
s
+

= ±
+

∓
 

式中正负号取决与 2 1/ 2s s= ± 。 
（b） 用表 4.8 中三个或四个条目核对这个普遍结果。 
  
习题 4.52 对自旋 3/2 的粒子求出 xS 的矩阵表示（像通常一样，用 zS 的本征矢做基）。解久

期方程确定 xS 的本征值。 

 
***4.53 题 推广自旋 1/2(4.145 和 4.147 式)，自旋 1(习题 4.31)和自旋 3/2(习题 4.52)

的情况，对于任意自旋 s ，给出它们的自旋矩阵。答案：  



0 0 0
0 1 0 0
0 0 2 0

0 0 0

z

s
s

S s

s

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟= −
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

"
"

= "
# # # " #

"

 

 

     

1

1 2

2

1

1

0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0

2

0 0 0 0 0
0 0 0 0 0

s

s s

s s

x s

s

s

b
b b

b b
S b

b
b

−

− −

−

− +

− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"
"

= "
# # # # " # #

"
"

 

 

1

1 2

2

1

1

0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0

2

0 0 0 0 0
0 0 0 0 0

s

s s

s s

y s

s

s

ib
ib ib

ib ib
S ib

ib
ib

−

− −

−

− +

− +

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"
"

= "
# # # # " # #

"
"

 

 

其中： ( )( )1jb s j s j≡ + + − 。 

  
***习题 4.54 按如下方法求出球谐函数的归一化因数。从 4.1.2 节我们知道：

( )cos ;m m im m
l l lY B e Pφ θ=  

我们的问题式求出因子 m
lB （在方程 4.32 中被引用，但没有导出）。用方程 4.120，4.121 和

4.130 来得到一个递推关系，以 m
lB 表示出 1m

lB + 。除了一个普乘常数 ( )C l 外，通过归纳m

确定 m
lB 。最后，利用习题 4.22 的结果来确定这个常数。下面的缔合勒让德函数的导数公

式非常有用： 

                     ( )2 21 1 .
m

m ml
l l

dPx x P mxP
dx

− = − −                     [4.199] 

 
习题 4.55 在氢原子中的电子处在自旋和位置的结合态 

( )0 1
21 1 11 3 2 3 .R Y Yχ χ+ −+  

（a） 如果测得轨道角动量的平方
2L ，可能得到什么值，每个的几率是多少？ 

（b） 同样的问题对轨道角动量的 z 分量（ zL ）。 

（c） 同样的问题对自旋角动量的平方（
2S ）。 

（d） 同样的问题对自旋角动量 z 分量（ zS ）。 
设总角动量为 J L S≡ + 。 



（e） 如果测得总角动量的平方
2J ，可能得到什么值，每个的几率是多少？ 

（f） 同样的问题对 zJ  
（g） 如果你测得了这个粒子的位置，在 , ,  r θ φ 处找到它的几率密度为多少？ 
（h） 如果测得自旋的 z 分量和距原点的距离（注意这些为相容的可观测量），发现粒子在

半径 r 处且自旋向上的几率密度为多少？ 
 
***习题 4.56   
（a） 对于一个能用泰勒级数展开的函数 ( )f θ ，证明： 

( ) ( )ziLf e fϕφ ϕ φ+ = =  

（其中ϕ 为任意角度）。由于这个原因， /zL =被称为绕 z 轴转动的转动生成元。提

示：利用 4.129 式，参考习题 3.39。更普遍的， � /L n⋅ =是 n̂方向的转动生成元，在这

个意义上， ˆexp( )iL nϕi = 的作用是产生绕 n̂方向角度为ϕ 的一个转动(右手指向)。
在自旋情况下，转动生成元为 ˆS ni =。特别是，对自旋 1/2 

                               ( )ˆ 2i ne σ ϕχ χ⋅′ =                             [4.200] 
     这告诉我们旋量是如何转动的。 
（b）构造一个表示绕 x -轴旋转 180°的（2×2）矩阵，证明：它使自旋向上（ χ+ ）变为

自旋向下（ χ−）。 

（c）构造一个表示绕 y轴旋转 90°的矩阵，检验它使 χ+ 变为什么？ 
 (d) 构造一个表示绕 z轴旋转 360°的矩阵，如果结果和你期望的不太一样，解释它的含义。 

（e）证明： 
( )ˆ 2 ˆcos( 2) ( )sin( 2).i ne i nσ ϕ ϕ σ ϕ⋅ = + ⋅                 [4.201] 

 
***习题 4.57  角动量的基本对易关系（4.99 式）允许半整数（以及整数）的本征值。但对

于轨道角动量只有整数值出现。对特殊形式L = r p× ，肯定存在一些额外约束，使得半整

数被排除在外。44 设 a 为某个有着长度量纲的便利常数，（比如说，玻尔半径，如果我们讨

论氢原子），定义算符： 

          ( )2
1

1 ;
2 yq x a p⎡ ⎤≡ +⎣ ⎦=     ( )2

1
1 ;
2 xp p a y⎡ ⎤≡ −⎣ ⎦=  

( )2
2

1 ;
2 yq x a p⎡ ⎤≡ −⎣ ⎦=      ( )2

2
1 .
2 xp p a y⎡ ⎤≡ +⎣ ⎦=  

（a） 验证 [ ] [ ]1 2 1 2, , 0q q p p= = ； [ ] [ ]1 1 2 2, ,q p q p i= = =。这样， q 和 p 满足和坐标和

动量一样的对易关系，指标 1 和指标 2 是相容的。 
（b） 证明 

2
2 2 2 2
1 2 1 22 ( ) ( )

2 2z
aL q q p p

a
= − + −
=

=
 

（c） 验证 zL = 1 2H H− , 其中 H 是质量
2m a= = ，频率ω =1 的谐振子的哈密顿量。 

（d） 我们知道谐振子的哈密顿量的本征值为 ( )1 2n ω+ = ， 0, 1, 2, ...  n =  (在 2.3.1 节

中的代数理论中，这些结果来自哈密顿的形式和正则对易关系）。用这些来说明 zL 的

本征值必须为整数。 
 
  4.58 题 对于自旋为 1/2 的粒子的一般态（4.139 式），推导出 xS 和 yS 的最小不确定满足

                                                        
44这个问题基于 Ballentine（脚标 26）127 页的一个见解。 



的条件，（即在 ( )2
y xS S zSσ σ ≥ = 中取等号）。答案：不是一般性，我们可以把 a 取为实

数；那末最小不确定性的条件是b 要么是纯实数,要么是纯虚数。 
 

***习题 4.59  在经典电动力学中，电荷为q 的粒子以速度 v通过电场E 和磁场B 时，受到

的力由洛伦兹力定律给出： 
.F = (E + v �B)q                                [4.202] 

该力不能被表示成标量势能函数的梯度，因此，薛定谔方程的初始形态不适合它。但是如果

在 

i H
t

∂Ψ
= Ψ

∂
=                                  [4.203] 

中考虑经典的哈密顿量 45： 

                      ( )21 ,
2

p AH q q
m

ϕ= − +                             [4.204] 

就不存在问题，其中A 是矢势（B=� ∇ ），ϕ 是标势（E A tϕ= −∇ − ∂ ∂ ），所以薛定

谔方程（用标准的替代 ( )p i→ ∇= ）成为： 
 
 
                                                                         [4.205] 
 
 

                   
（a） 证明：  

                          
1 ( )

r
p A

d
q

dt m
= −                            [4.206] 

（b） 我们总是定义 /rd dt 为 v (见 1.32 式)。证明： 

      ( ) ( )
2

.
2

v
E p B B p A B

d q qm q
dt m m

= + × − × − ×            [4.207] 

（c） 特别有，如果 E 和 B 在波包所处体积内是均匀的，证明 

                         ( ),
v

E v B
d

m q
dt

= + ×                         [4.208] 

所以，期望值 v 按洛仑兹力定律运动，正如 Ehrenfest 定理所预期那样。 
 
 
**习题 4.60 题  [以 4.59 题为背景]假设： 

� 20 ( ),     ,
2
BA x j yi Kzϕ= − =� ， 

式中 0B 和 K 为常数。 
(a) 求电场 E 和磁感应强度 B。 
(b) 对处在上述场中的一个质量为m ，电荷为q 的粒子，计算出定态和允许的能量值。 答

案： 

1 2 1 1 2 2 1 2
1 1( , ) ( ) ( ) ,     ( , 0,  1,  2,  ...),
2 2

E n n n n n nω ω= + + + == =          [4.209] 

其中 1 0qB mω ≡  ， 2 2qK mω ≡ 。  注：如果 K=0，这是对回旋运动的量子类比； 1ω 为

                                                        
45参见，例如，H. Goldstein, C.P. Poole, 和 J.L. Safko所著, 经典力学, 第3版,(Prentice Hall, Upper Saddle River, 
NJ, 2002), 342 页。 

21 ( ) .
2

Ai q q
t m i

ϕ∂Ψ ⎡ ⎤= ∇ − + Ψ⎢ ⎥∂ ⎣ ⎦
==



经典的回旋频率，它是一个沿 z 轴方向的自由粒子。这些允许的能量， 1 1
1( )
2

n ω+ = ，称为

朗道能级。46 

   
**4.61 题 [以 4.59 题为背景] 在经典的电动力学中，势A 和ϕ不是唯一确定的；47 物理的

量是场 E 和 B。 
(a) 证明势 

              
t

ϕ ϕ ∂Λ′ ≡ −
∂

 ，  'A A≡ +∇Λ                        [4.210] 

（其中Λ为坐标和时间的任意实函数）给出同ϕ和A 一样的场。4.210 式称为规范变换，

称这个理论具有规范不变性。 
（b） 在量子力学中，势起着更直接的作用，我们对量子力学是否保持规范不变性很有兴

趣。证明： 
iqe Λ′Ψ = Ψ=                        [4.211] 

加上规范变换的势ϕ′和 'A 满足薛定谔方程(4.205) 。因为 ′Ψ 和Ψ 只差一个相因

子，所以它们代表相同的物理态，48 因此理论是规范不变的。（进一步的讨论见

10.2.3 节）。 

                                                        
46进一步的讨论见 Ballentine（脚标 26）11.3 节。 
47参见，例如，Griffiths（脚标 30）10.1.2 节。 
48 这是说， /, rr  dtd 等是不变的。由于Λ依赖坐标， P （由算符 ( / )i ∇= 表示）确实是变化的，但

是如我们在 4.206 式发现的那样, 现在p (在拉格朗日力学中是所谓的正则动量)并不代表机械动量( vm ) 。 
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第五章  
全同粒子 

 
5.1 两-粒子体系 
对于一个单粒子而言,ψ(r, t)是空间坐标 r 和时间 t 的函数（我们暂时忽略自旋）。而有两个粒子

的体系的状态则是粒子 1 的坐标（r1）、粒子 2 的坐标（r2）和时间的函数： 

 1 2( ).ψ r r, ,t  (5.1) 

它随时间的演化由薛定谔方程决定： 

 ,i H
t
ψ ψ∂

=
∂

=  (5.2) 

其中 H 是整个体系的哈密顿： 

 
2 2

2 2
1 2 1 2

1 2

( , , )
2 2

H V t
m m

= − ∇ − ∇ + r r= =
 (5.3) 

（∇的下标 1或 2 表示微分仅对粒子 1 或粒子 2 的坐标作用）。此时的统计诠释很明确： 

 
2 3 3

1 2 1 2( ) d dψ r r r r, ,t  (5.4) 

是在体积元
3

1d r 中发现粒子 1 并在体积元
3

2d r 中发现粒子 2 的几率；当然，Ψ必须是归一化的： 

 
2 3 3

1 2 1 2( ) d d 1ψ =∫ r r r r, ,t  (5.5) 

对于势能不显含时间的情况，我们通过分离变量得到一套完备的解： 

 
/

1 2 1 2( ) ( , ) ,iEteψ ψ −r r r r =, ,t =  (5.6) 

这里，空间波函数Ψ满足定态薛定谔方程： 

 
2 2

2 2
1 2

1 2

,
2 2

V E
m m

ψ ψ ψ ψ− ∇ − ∇ + =
= =

 (5.7) 

其中，E 为系统总能量。 

**问题 5.1  通常相互作用势仅依赖于两粒子间的相对位置矢量 1 2≡ −r r r 。在这种情况下，如果

我们将变量 r1,r2代换为 r 和 R≡(m1r1+m2r2)/(m1+m2)（质心坐标），薛定谔方程就可以分离变量。 

  (a) 证明 r1=R+(μ/ m1) r，r2=R-(μ/ m2) r， 1 2( / ) R rmμ∇ = ∇ +∇ ， 2 1( / ) R rmμ∇ = ∇ −∇ , 其

中： 

 1 2

1 2

m m
m m

μ ≡
+

 (5.8) 

是体系的约化质量。 

  (b)证明（定态）薛定谔方程可以写作： 
2 2

2 2

1 2

( ) .
2( ) 2R r V E

m m
ψ ψ ψ ψ

μ
− ∇ − ∇ + =

+
r= =

 

  (c) 分离变量，令 ( , ) ( ) ( )R rψ ψ ψ=R r R r 。注意到 ( )Rψ R 满足总质量为（
1 2m m+ ），势能为零，

能量为 ER的单粒子薛定谔方程； ( )rψ r 满足总质量为约化质量，势能为 V(r)，能量为 Er的单粒子

薛定谔方程。总能量为：E=ER+Er。这告诉我们质心的运动像一个自由粒子的运动，而相对运动（即

在粒子 1 相对于粒子 2的运动）可以看作是质量大小为约化质量，处于势场 V(r)的单粒子的运动。

在经典力学中存在完全类似的分解方法；
1
用这种方法可以将两体问题简化为等价的单体问题。 

                                                        
1 例如,参见 Jerry B 和 Stephen T. Thornton 所著, 粒子和体系的经典动力学, 第四版, Saunders, Fort 
Worth,TX(1995),8.2 节. 
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  问题 5.2 利用问题 5.1 的结论，只要简单地把电子质量变换为约化质量，我们就可以修正氢原

子中核的运动的影响： 

(a) 给出在计算氢原子结合能时(方程 4.77)用 m 代替μ所导致的误差百分比（精确到两位有效

数）。 

(b) 给出氢和氘的红色巴末尔线（n=3→n=2）的波长差。 

(c) 给出电子偶素（氢原子的质子被正电子代替所形成的正负电子对）的结合能。 

(d) 假定你想要证实μ子氢(muonic hydrogen：氢原子的电子被具有相同电荷但质量为其 206.77

倍的μ子代替所形成的原子) 的存在，你应该在哪里寻找 Lyman-α(n=2→n=1)线（也就是说

L yman-α线的波长为多少）？ 

问题 5.3 氯原子在自然界有两种同位素：Cl
35
和 Cl

37
。证明 HCl 的振动光谱应包含相距仅为

-4 =7.51 10υ υΔ × 的双线，其中υ为出射光子的频率。提示：把它看作一个频率为 /kω μ= 的简

谐振子， μ 为约化质量（见方程 5.8），k 对于两种同位素可认为近似相等。 

5.1.1 波色子和费米子 
假设粒子 1处于（单粒子）态 ( )aψ r ，粒子 2 处于 ( )bψ r 。（记住：我暂时忽略了自旋。）在这种情

况下， 1 2( , )ψ r r 就是两者的简单积：
2
 

 1 2 1 2( , ) ( ) ( ).a bψ ψ ψ=r r r r  (5.9) 

当然，这假定了我们可以把不同的粒子区分开来⎯否则粒子 1 处于态 ( )aψ r ，粒子 2 处于 ( )bψ r 的

说法就没有任何意义；我们只能说一个粒子处于态 ( )aψ r ，另一个粒子处于态 ( )bψ r ，而并不知道

到底哪个是哪个。如果我们此时所讨论的是经典力学，这将是一个很愚蠢的话题：原则上， 你总

可以将粒子区分开来⎯只要将一个涂成红色，另一个涂成蓝色，或者在粒子上贴上编码，再或者雇

佣私家侦探跟踪它们。但是，在量子力学中，情况将有本质上的不同：你不可能将某个电子涂成红

色，或在它上面贴上标签，并且侦探的侦查将不可避免且无法预测地改变电子的状态，因而导致“两

个电子会不会已经调换位置？”之类的疑问。事实是，所有的电子都是完全相同的，而这种性质也

是经典物体绝对不会有的。这并不仅仅是我们恰巧不知道哪个电子是哪个；上帝也不会知道的，而

因为根本就不存在“这个”电子或“那个”电子这样的说法；我们唯一合理的说法只有“一个”电

子这样的话。 

量子力学巧妙地适应了在原则上不可分辨粒子的存在：我们可以简单的构造一个波函数，这个

波函数并不给出哪个粒子是处于哪个态。有两种不同的构造方法： 

 1 2 1 2 1 2( , ) [ ( ) ( ) ( ) ( )].a b b aAψ ψ ψ ψ ψ± = ±r r r r r r  (5.10) 

这样，理论上将允许两种全同粒子：波色子（当取正号时），和费米子（当取负号时）。光子和介子

是波色子；质子和电子是费米子。恰巧的是： 

                   
,

.
⎧
⎨
⎩

=
=

所有自旋为 整数倍的粒子为玻色子

所有自旋为 半整数倍的为费米子
                    

 (5.11) 

这种自旋与统计（我们将看到，波色子和费米子有截然不同的统计性质）之间的联系，可以在相对

论量子力学中得到证明；在非相对论理论中，它被作为一个公理。
3
 

进而我们可以得到，两个全同费米子（例如两个电子），不可能占据相同的状态。因为如果

aψ = bψ ，将有： 

                                                        
2 并非每一个两粒子波函数都可以表示为两个单粒子波函数的积。所谓的纠缠态就不能这样来分解。不过，如果粒

子 1 是在态 a，粒子 2 是在态 b，则两－粒子态就可以表示为积。我知道你们在想什么：“为什么不可以是粒子 1 不

在某个态，而粒子 2 处在其它一个态？”自旋单态（方程 4.178）是一个典型例子⎯由其自身我无法告诉粒子 1 的

态，因为它是与粒子 2 的态“纠缠”（薛定鄂可爱的词语）在一起的。如果测量粒子 2 并且发现其自旋向上，则粒

子 1 将自旋向下，但是如果粒子 2 自旋向下，则粒子 1 自旋向上。 
3 看起来有点不可思议，任何事情都与相对论有关，近来，关于自旋－统计之间的联系有无可能由另外简单的方法

给出有许多讨论。例如，见Robert C. Hilborn, Am. J. Phys. 63,298(1995); Ian Duck and E. C. G. Sudarshan, Pauli  and the 
Spin-Statistics Theorem. World Scientific, Singapore(1997). 
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1 2 1 2 1 2( , ) [ ( ) ( ) ( ) ( )] 0,a a a aAψ ψ ψ ψ ψ− = − =r r r r r r  

我们将得不到任何波函数。
4
 这就是著名的泡利（Pauli）不兼容原理。这并不是一个仅适用于电

子的神秘的特定假设，而是构造两-粒子体系波函数规则的自然结果，适用于所有全同费米子。 

为了便于讨论，我假设了一个粒子处于 aψ ，另一个粒子处于 bψ ，但是还有一个更一般（也更

复杂）的方法来解决这个问题。首先让我们定义交换算符：P，它可以交换两个粒子： 

 1 2 2 1( , ) ( , ).Pf f=r r r r  (5.12) 

很显然，
2P =1，显然（请自行证明）P的本征值为± 1。现在，如果两个粒子是全同的，则哈密顿

算符对它们也是可交换的：
1 2m m= ， 1 2 2 1( , ) ( , )V V=r r r r 。这样，P 和 H 是相互对易的可观测量， 

 [ , ] 0,P H =  (5.13) 

因此，我们可以找到一套完备的函数，它们同时是 P 和 H的本征态。这就是说，我们可以找到薛定

谔方程的解，它们或者是交换对称的（本征值为+1）或者是交换反对称的（本征值为-1）： 

 1 2 2 1( , ) ( , ).ψ ψ= ±r r r r  (5.14) 

另外，如果一个系统的初始状态为上述态，它将一直处在这个状态。新的规则（我叫它对称性要求）

是这样的：对于全同粒子的波函数而言，它们不仅仅是允许的，并且必须满足方程 5.14，当为波

色子时取正号，费米子时取负号。
5
这是普适的称述，方程 5.10 是其一个特例。 

例题 5.1 假设我们有两个没有相互作用⎯它们相处在一起运动……不要深究这个在现实中到底会

不会发生⎯的粒子，质量都为 m，处于无限深方势阱（见 2.2 节）。单粒子态为： 

2( ) sin( ),n
nx x

a a
πψ =  

2
nE n K=  

（方便起见,
2 2 2/ 2K maπ≡ = ）。如果粒子是可分辨的，#1 粒子在态 1n 上，#2 在态 2n 上，完整的

波函数为简单积： 

1 2 1 21 2 1 2( , ) ( ) ( ),n n n nx x x xψ ψ ψ=   
1 2

2 2
1 2( ) .n nE n n K= +  

例如，基态为 

1 2
11

2 sin( )sin( ),x x
a a a

π πψ =   11 2 ;E K=  

第一激发态是双重简并： 

1 2
12

22 sin( )sin( ),x x
a a a

π πψ =  12 5 ,E K=  

1 2
21

22 sin( )sin( ),x x
a a a

π πψ =  21 5 ;E K=  

等等，以此类推。如果两粒子为全同波色子，基态保持不变，但第一激发态变成非简并的： 

1 2 1 22 22 2[sin( )sin( ) sin( )sin( )]x x x x
a a a a a a

π π π π
+  

（能量仍然为 5K）。如果两粒子为全同费米子，能量为 2K 的态不存在；基态为： 

1 2 1 22 22 2[sin( )sin( ) sin( )sin( )]x x x x
a a a a a a

π π π π
− ， 

其能量为 5K。 

*习题 5.4 

                                                        
4 记住，我仍然没有包括自旋在内⎯如果你感到困惑（毕竟， 无自旋的费米子术语上就是矛盾的），假定它们都处

在相同的自旋态。我马上将会考虑自旋。 
5 有人认为对称性要求（方程 514）是 P 和 H 对易所加之的。这是不对的：原则上我们可以想象一个有两个可区分

粒子的体系（比如一个电子和一个正电子），其哈密顿是交换对称的，但是并没有要求波函数是对称或反对称的要

求。但是全同粒子必须占据对称或反对称的态，这完全是一个新的基本规律⎯逻辑上地位等同于薛定鄂方程和统计

诠释。 
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 (a) 如果 aψ 和 bψ 是正交且归一化的，则方程 5.10 中的常数 A 为多少？ 

 (b) 如果 aψ = bψ （已归一化），则 A 为多少？（当然，这种情况只适用于波色子。） 

习题 5.5 

(a) 写下两个无相互作用的全同粒子处于无限深势阱时的哈密顿量。证明例题 5.1 给出的费米子基

态是 H 具有恰当本征值的本征函数。 

(b) 除例题 5.1 中的两激发态外, 对下两个激发态，找出三种情况（可分辨，全同波色子，全同费

米子）下波函数和能量本征值。 

5.1.2 交换力 
为了帮助你更好地理解对称性要求，我将介绍一个较为简单的一维情况作为例子。假设一个粒

子处于态 ( )aψ r ，另一个粒子处于 ( )bψ r ，两波函数正交且归一。如果两个粒子是可分辨的，且一

号粒子处于态 ( )aψ r ，则总的波函数为： 

 1 2 1 2( , ) ( ) ( )a bx x x xψ ψ ψ= ； (5.15) 

如果它们是全同波色子，总的波函数为（归一化问题见习题 5.4）： 

 1 2 1 2 1 2
1( , ) [ ( ) ( ) ( ) ( )];
2 a b b ax x x x x xψ ψ ψ ψ ψ+ = +  (5.16) 

如果它们是全同费米子，总波函数则为： 

 1 2 1 2 1 2
1( , ) [ ( ) ( ) ( ) ( )].
2 a b b ax x x x x xψ ψ ψ ψ ψ− = −  (5.17) 

下面让我们计算一下两粒子距离平方的期望值， 

 
2 2 2

1 2 1 2 1 2( ) 2 .x x x x x x< − >=< > + < > − < >  (5.18) 

情况 1：可分辨粒子。 对方程 5.15 的波函数有： 
2 22 2 2

1 1 1 1 2 2( ) ( )a b ax x x dx x dx xψ ψ< >= =< >∫ ∫  

（单粒子态 aψ 下
2x 的期望值）， 

2 22 2 2
2 1 1 2 2 2( ) ( ) ,a b bx x dx x x dx xψ ψ< >= =< >∫ ∫  

以及 
2 2

1 2 1 1 1 2 2 2( ) ( ) .a b a bx x x x dx x x dx x xψ ψ< >= =< > < >∫ ∫  

因此有： 

 
2 2 2

1 2( ) 2 .d a b a bx x x x x x< − > =< > + < > − < > < >  (5.19) 

（顺便说一句，这个结果很显然和粒子 1 处在态 ( )bψ r ，粒子 2处于 ( )aψ r 的情况是一样的。） 

情况 2：全同粒子。 对方程 5.16 和 5.17 的波函数有： 
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类似地， 

 
（很显然，

2
1x< > =

2
2x< >，因为我们无法区分两个粒子。）但是 

 

          
其中， 

  (5.20) 

显然有： 

  (5.21) 

对比方程 5.19 和 5.21，我们可以看出区别来源于最后一项： 

         (5.22) 

 
图 5.1： 共价键示意图：(a) 对称结构产生吸引力。(b) 反对称结构产生排斥力。 

 

和处于相同状态的可分辨粒子相比，全同波色子（取上面的+号项）将更趋向于相互靠近，而全同

费米子（取下面的-号项）更趋向于相互远离。注意到：除非两个波函数有重叠（如果 ( )a xψ 为零，

( )b xψ 不为零，方程 5.20 的积分将为零。），否则 abx< >将会消失。所以，如果 aψ 表示一个身处

芝加哥的电子， bψ 表示另一个呆在西雅图的电子，你是否将波函数反对称化，都不会产生什么影

响。因此，为了便于实际操作，我们不妨认为波函数没有重叠部分的电子是可分辨的。（当然这也

是能让物理学家和化学家继续工作下来的唯一方法，因为原则上，宇宙间的所有电子都是通过波函

数的反对称化而相互联系的。如果确实如此的话，我们将不可能单独谈论其中任何一个,除非我们

打算同时处理所有的电子！） 

当波函数出现一定程度的重叠时将会出现一些有趣的现象。整个系统好像受到外力的作用：对

全同波色子，这个力是吸引力，把粒子拉近；对全同费米子，这个力是排斥力，让粒子相互远离（再

次提醒一下，我们此时的讨论都是不计及自旋的）。我们把这个力称为交换力，虽然事实上并不存

在这样的一个力（因为并没有任何施力物存在并作用于粒子）；它仅仅是对称性要求导致的一个几

何结果。它也是一个严格的量子力学的现象，在经典力学当中并没有对应。然而，它却导致了一些

意义深远的结果。比如：考虑氢分子（H2）。粗略来说，它的基态由一个处于原子基态（方程 4.80）
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且以原子核 1 为中心的电子和一个同样处于原子基态但以原子核 2 为中心的电子组成。如果电子是

波色子，对称性要求（或者说“交换力”）将趋向于聚拢电子到两质子连线的中心位置（图 5.1（a）），

而这种负电荷的积累将导致质子受到向内的吸引力，这正是共价键的来源。
6
可惜的是，电子并不

是波色子，它们是费米子，这就意味着在现实中，负电荷不是向中间聚集而是向外分散开来，进而

导致分子被撕裂。 

但是等等，我们不是一直没有考虑自旋吗？完整的电子状态不仅包含它的空间位置波函数，还

包括一个用来描述电子自旋指向的旋量：
7
  

 ( ) ( ).ψ χr s  (5.23) 

当我们把它们都考虑在内时，就是这个整体决定系统的状态，而不仅仅是空间的部分。整个系统应

满足交换反对称。现在，回顾之前提到的两电子的自旋合成态（方程 4.177 和 4.178）可以发现，

自旋单态是反对称的（因此它需要乘上一个对称的空间波函数），而自旋三态为对称态（因此需要

乘上一个反对称的空间波函数）。很显然，自旋单态为成键态，自旋三态为反成键态。这样，我们

就可以理解为什么化学家告诉我们共价键要求两个电子占据总自旋为零的自旋单态。
8
 

*习题 5.6 想象两个无相互作用的、质量均为 m、处于无限深方势井的粒子。如果一个粒子处于 nψ
态（方程 2.28），另一个粒子处于 lψ （ l n≠ ），计算

2
1 2( )x x< − >。假定：(a) 粒子可分辨；(b)  

粒子为全同波色子；(c) 粒子为全同费米子。 

习题 5.7 设想你有三个粒子，一个处在态 aψ ，一个处在 bψ ，一个处在 cψ 。假定 aψ ， bψ ， cψ 正

交，构造三粒子体系的状态波函数（类比方程 5.15，5.16 和 5.17）用来代表：(a) 可分辨粒子；

(b) 全同波色子；(c)全同费米子。记住(b)的情况为：任意两个粒子交换满足对称性；(c)的情况

为任意两个粒子交换满足反对称性。注释：这里有个很有用的构造反对称波函数的方法：建立斯莱

特行列式，它的第一行为 1( )a xψ ， 1( )b xψ ， 1( )c xψ ……第二行为 2( )a xψ ， 2( )b xψ ， 2( )c xψ ……

以此类推。（这种方法适用于任意数量的粒子系统。） 

 

5.2 原子 
一个中性原子，原子序数为 Z，由一带电量为 Ze 的重核子和环绕其周的 Z 个电子组成。系统的哈

密顿为：
9
 

  (5.24) 

大括号中的项表示第 j个电子的动能加上它处于核子电场中的势能；第二项的求和式（该求和取遍

除 j=k 外的所有 j，k 的值）是不同电子间相互排斥作用相联系的势能（求和号前的 1/2 是扣除因

求和重复计入的电子对）。接下来的问题是如何求解薛定谔方程， 

 ,H Eψ ψ=  (5.25) 

中的波函数 1 2( , ,... )zψ r r r 。因为电子是全同费米子，并非所有的解都是可接受的：只有那些满足总

波函数（包括自旋和空间位置）， 

 1 2 1 2( , ,... ) ( , ,... ),z zψ χr r r s s s  (5.26) 

在交换任意两电子时为反对称的才是要求的解。特别有，两个电子不可能占据同一个状态。 

                                                        
6 当原子核之间有共享电子时存在共价键，它使原子靠拢。它不需要涉及两个电子⎯在 7.3 节我们会遇到仅涉及一

个电子的共价键。 
7 在自旋与空间坐标没有耦合时，我们可以假定自旋和空间坐标是可分离的。这就是说得到自旋向上的几率是不依

赖于粒子的空间位置的。在耦合存在时，一般态的形式应为线性组合： ( ) ( )ψ χ ψ χ+ + − −+r r ，见习题 4.55。 
8 用不规则的语言，这种情况经常被说成是两电子的指向相反（一个自旋向上，另一个向下）。这种说法太简略，

因为对 m＝0 的三重态也是这种情况。精确的说法应该是它们处于自旋单态。 
9 我假定原子核是固定的。利用约化质量计及原子核运动的方法仅对两体问题有效；庆幸的是原子核质量远远大于

电子，原子核运动所引起的修正比氢原子时还要小很多（见习题 5.2(a)）, 原子核越重修正越小。由于电子自旋与

磁场的相互作用，相对论修正，原子核的有限尺度，有很多有趣的效应。在后几章我们会提及这些效应，但是所有

这些效应都是对方程 5.24 中纯库仑项的微小修正。 
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可惜的是，哈密顿量为方程 5.24 形式的薛定谔方程除了在 Z=1（H）时，都无法得到精确解（至

少至今尚未得到）。在实践当中，我们必须诉诸于各种近似方法。有些近似方法我们将在本书的第

二部分探讨；现在呢，我只打算大概介绍一下，在忽略所有电子间相互作用项的情况下所得到的解

的数值特征。在 5.2.1 节，我们将研究一下氦原子的基态和激发态，5.2.2 我们将考察原子序数更

高的原子的基态。 

问题 5.8 假设对哈密顿量(方程5.24) 你可以找到满足薛定谔方程（方程5.25）的解 1 2( , ,... )zψ r r r 。

描述一下你将如何用它来构造一个完全对称或反对称的函数，且同时满足具有相同能量的薛定谔方

程。 

5.2.1 氦原子 
氢之后最简单的原子就是氦（Z=2）了。它的哈密顿量， 

  (5.27) 

包括了两个类氢原子（核子电量为 2e）的哈密顿量，一个描述电子 1，另一个描述电子 2。还包括

了表示电子间相互排斥的最后一项，而所有的麻烦正是这最后一项带来的。如果我们能够简单的忽

略掉它，薛定谔方程就可以分离变量，解也可以表示成两个类氢原子波函数的简单乘积了： 

  (5.28) 

在氢原子的公式中的波尔半径现在需用波尔半径的一半代入（方程 4.72）, 能量为波尔能量（方

程 4.70）的 4 倍——如果你不知原因，参看问题 4.16。系统总能量为 

  (5.29) 

其中
213.6 /nE n eV= − 。特别地，基态为： 

  (5.30) 

（参见方程 4.80），进而可以得到它的能量为： 

  (5.31) 

因为 0ψ 是一个对称函数，自旋态因此必须为反对称态，所以氦原子的基态应该是单态，两电子自

旋反向。氦原子的基态在实际中也确实为单态，但实验测得的能量值为-78.975eV，所以这种去掉

电子间相互作用的近似是不够精确的。这并不令人意外：因为我们忽略的电子间排斥力并不能算是

小量。但欣慰的是，我们依然可以确定它是正值－因为它导致总能量从-109 变为-79eV（参见问题

5.11）。 

氦原子的激发态是一个电子处于类氢原子基态，另一个电子处于激发态： 

  (5.32) 

 [如果你试图让两个电子都处于激发态，总有一个电子立刻跌回基态，同时释放出足够的能量让另

一个电子进入连续态（E>0），最终产物为一个氦离子（He
+
）和一个自由电子。这是一个基于其自

身理由的有趣体系（见问题 5.9），但现在还不是我们的重点问题。] 按照常规的方法（5.10），我

们既可以构造出对称函数，也可以构造出反对称函数；前一种和反对称的自旋单态结合（形成仲氦），

后一种和对称的自旋三态结合（形成正氦）。基态当然是仲氦；激发态上的氦既可能是正氦，也可

能是仲氦。因为对称的空间波函数态将使电子相靠近（我们在 5.1.2 节中已经讨论过），我们预测

到仲氦会有更高的相互作用的能量。通过实验，我们也证实了仲氦的状态确实比对应的正氦的能量

要高（见图 5.2）。 
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图 5.2： 氦原子能级图（符号的解释在 5.2.2 节）。注意到仲氦能量都比对应的正氦能量高。垂直

轴的数值是相对于氦离子（He
+
）基态的：4×（－13.6）eV=－54.4eV；；减去 54.5eV 就得到状态

的总能量。 

习题 5.9 

(a) 假设你将两个电子放入氦原子 n=2 的能态；那么发射电子的能量将是多少？ 

(b) （定量）描述氦离子 He
+
的光谱。 

习题 5.10 (定量)讨论在下述两种情况下氦原子的能级图： 

（a） 电子是全同波色子； 

（b） 假设电子是可分辨的粒子，它质量和电量没有变化，并且自旋仍为 1/2，即仍有自旋单态

和自旋三态。 

**问题 5.11 

(a) 计算态 0ψ （方程 5.30）下的 ( )< >r r1 21 - 。提示：首先在极坐标下积分
3

2d r ，极轴沿 1r
方向使： 

 
θ2的积分是容易的，但要注意根号下只能取正值。所以我们需要把 2r 分为两部分，第一部

分从 0 积到 r1，第二部分从 r2积到∞。（答案是 5/4a）。 

(b) 应用（a）的结果估算氦原子基态的电子相互作用能的大小。结果用电子伏特表示，并将

结果加到 E0（方程 5.31）上，从而得到修正后的氦原子基态能量。和实验测量值相比较。

（当然，我们使用的仍然是一个近似波函数，所以不要指望两个值完全吻合。） 

 

5.2.2 元素周期表 
对于质量更大的原子，它们的基态电子组态可以以非常类似的方式组合在一起。近似地（忽略
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所有电子间的排斥力），每个电子都将占据一个单粒子的类氢原子态（n, l, m）,我们称之为轨道，

它受到一个带电量为 Ze 的库伦场作用。如果电子是波色子（或可分辨粒子），它们都将跌落到基态

（1，0，0），而化学也将变得单调无味。但实际上，电子是费米子，因为受到泡利不相容原理的制

约，一个轨道上只能有两个电子（一个自旋向上，一个自旋向下——或者更精确地说，处于自旋单

态）。对一个给定的 n，将有
2n 个类氢波函数（能量均为 En），所以，n=1 这个壳层能容纳两个电子，

n=2 壳层能容纳 8 个，n=3 容纳 18 个，即第 n 个壳层可以容纳 2n2
个电子。定性的看，周期表的一

横行将相应的填满每一个壳层（如果事实就是这样，周期表各行的长度将分别为 2，8，18，32，

50 等，而不是 2，8，8，18，18 等；但马上我们就会看到电子间的排斥力作用是如何把多出来的

情况给排除掉的）。 

氦原子的 n=1 壳层是被填满的，所以下一个原子：锂原子（Z=3）不得不把一个原子放进 n=2
的壳层。对于 n=2，可以有 l=0 或 l=1；那么这第三个电子到底选择哪个 l 呢？在不考虑电子间相

互作用时，两个 l 将具有相同的能量（因为它们的波尔能量决定于 n，而不是 l）。但排斥力的存在

将倾向于选择 l 较小的情况。因为角动量趋向于将电子甩向外，电子越靠外，它里面的电子对原子

核的屏蔽效应就越明显（粗略而言，最内层电子可以感受到核子的有效电荷大小为 Ze，而最外面

的电子感受到的核子有效电荷很难大于 e）。所以，在一个壳层内，能量最低的状态（也就是结合

最紧的电子）是 l=0 的情况，当 l增大时，能量也随之增大。正因为这个原因，锂原子的第三个电

子态为（2，0，0）。再下一个原子（铍原子，Z=4），的第四个电子也将填入这个能态（取和第三个

电子相反的自选方向），但对于接下来的 Z=5 的硼原子，它就不得不利用 l=1 的能态了。 

继续这个过程，当进行到 Z=10 的氖原子时，n=2 的壳层将被填满，我们将来到周期表的第三

横行并开始在 n=3 的壳层安排电子。首先， 0l = 的元素有两个（钠和镁）， 1l = 的有六个（从铝到

氩）。在氩后面本该有 10 个 n=3， 2l = 的原子；但是此时的屏蔽效应已经强到可以和下一个壳层发

生了重叠，所以从 Z=19 的钾到 Z=20 的钙选择了 n=4， 0l = 的能态而不是 n=3， 2l = 。接下来我

们跳回去安排 n=3， 2l = 的几个流浪汉（从钪到锌），接下来的是 n=4， 1l = （从镓到氪），我们再

次提前跳到下一行（n=5），然后之后再回到 n=4， 2,3l = 轨道填满 n=4 壳层。关于这些复杂问题的

更多细节，你可以参考任何一本原子物理方面的书。
10
 

下面我需要介绍一下古老的原子态命名方法，否则我就是失职了，因为所有的化学家和大多数

的物理学家都在使用它（特别是出研究生考试卷子的那群人，他们喜欢这种东西）。这种命名来源

于十九世纪的光谱学家， 0l = 叫做 s（sharp）, 1l = 叫做 p（principal）， 2l = 叫做 d（diffuse），

3l = 叫做 f (fundamental）；之后我猜他们八成想不出了，因为之后的命名就是按照字母表顺序了

（g,h,I,但是跳过了 j——仅仅为了显得与众不同，k，l，等等。）。
11
某个电子的状态是由 nl 对来

表示的，其中 n 表示所处的壳层， l 表示了轨道角动量；磁量子数 m 没有被列出，但是一个指数标

志被用来表示某状态被几个电子所占据。所以，电子组态： 

 
2 2 2(1 ) (2 ) (2 )s s p  (5.33) 

告诉我们：有两个电子处于轨道（1，0，0），两个电子处于轨道（2，0，0），两个电子处于轨道（2，

1，1）、（2，1，0）和（2，1，—1）的某种组合中。这个电子组态正是碳的基态。 

在这个例子中，有两个电子的轨道角动量量子数是 1，所以，总的轨道角动量量子数 L（我们

用大写的 L表示，而不是 l，以便于表明它是和总量联系的，而和某个单个粒子无关。）可以是 2，

1 或 0。同时，两个（1s）电子被禁锢在单态，总自旋为 0，同样还有（2s）态的两个电子，但是

（2p）态的两个电子可以处在单态或三重态。所以，总自旋角量子数 S（同样是大写的，表示是总

量）可以是 1 或 0。显然，总的动量（轨道加自旋）J 可以是 3，2，1 或 0。这里有一个法则称为

洪特（Hund）法则（参见习题 5.13），它可以用来找到某个原子总的角动量 J 是多少。结果是这样

表示的： 

 
2S+1

JL , (5.34) 

（其中 S 和 J 为数字，L 是字母——大写是因为我们讨论的是总量）。碳原子基态为
3
P0：总自旋为

                                                        
10 例如,参见 U. Fano 和 L. Fano, 原子和分子的基础物理, Wiley,New York(1959), 第 18 章, 或者 G. Herzberg 的, 原子

光谱和原子结构, Dover NewYork (1994)。 
11 主壳层也是任意命名的，从 K 开始（不要问我为什么），K 壳层是 n＝1，L 是 n＝2， M 是 n＝3，依次类推（不

过至少它们还是遵照字母表顺序的）。 
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1（因而左上角为 3），总轨道角动量为 1（所以是 P），总角动量为 0（因而右下角为 0）。下面的表

5.1 列出了周期表前四行元素的电子组态和总角量子数（运用式 5.34 的表示方法）。
12
 

*问题 5.12 

(a) 按照式 5.33 的写法，写出周期表前两行（氖之前）元素的基态电子组态，并在 5.1 表中对照

结果是否正确。 

(b) 按照式 5.34 的写法，写出前四种元素对应的总角量子数。并列出硼、钙、氮的所有可能组态。 

**习题 5.13 

(a) 洪特第一定则告诉我们：在其它量都相同时，总自旋（S）取最大值的状态的能量最低。

这个定则如何预测氦原子激发态的情况？ 

(b) 洪特第二定则告诉我们：当自旋给定时，总轨道角量子数（L）取最大值且同整体的反对

称性一致时，将具有最低的能量。为什么碳原子不可能有 L=2？提示：“梯子最顶端”（ML=L）

是对称的。 

(c) 洪特第三定则告诉我们：如果次壳层（n，l）填充不到一半，则能量最低态满足：J= L-S ；

如果填充超过一半，则 J=L+S 态能量最低。应用这个定则解决硼的不确定性问题（即问题

5.12（b））。 

(d) 应用洪特定则以及对称自旋态必须配之空间位置反对称态（反之亦然）这个结论解决碳原

子和氮原子的不确定性问题（即问题 5.12（b））。提示：爬到“梯子的顶端”总可以得到

一个对称态。 

习题 5.14 镝原子（66 号元素，处在周期表的第六行）的基态为
5

8I 。求总自旋、总轨道和总角动

量的量子数。并写出镝原子的一种可能的电子组态。 

                                                        
12 在 36 号元素氪之后，情况变得更复杂（精细结构开始对次序有显著的影响）所以表终止在这里并非是为了节省

空间。 
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表 5.1：周期表前四行元素的基态电子组态 
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5.3 固体 
在固态物体中，少数价电子因为受到的束缚力较弱，将变得更自由，在固体当中晃来晃去。对

它产生力作用的不再仅仅是单个的“母”原子，而变成了整个晶格形成的势场。在这一节，我们将

介绍两种相当重要的简化模型：第一种是索末非的电子气体理论，该理论忽略了所有力的作用（除

了限制性边界），把晃来晃去的电子看做一个盒子里的自由粒子（可看作是三维情况下的无限深方

势阱）；第二种是布洛赫理论，它引入了一种周期势场来表示这种规则化排列且带正电的核的吸引

作用（但它仍然忽略了电子间的排斥作用）。这两种模型虽然仅仅是建立固体量子理论崎岖之路上

迈出的第一步，但它却成功地揭示了泡利不相容原理在固体理论中的重要地位，并且为理解导体、

半导体、绝缘体的重要电学性质提供了极具启发性的思路。 

5.3.1 自由电子气体 
假设我们所讨论的是一块方形固体，三边长分别是 lx，ly，lz，且固体中的电子在阱内没有受

到任何力的作用： 

 
0,   0 ,  0 ,  0< ;

( , , )
,          

x y zx l y l z l
V x y z

< < < < <⎧
= ⎨

∞⎩

如果

其余地方.
 (5.35) 

将薛定谔方程， 

 
在直角坐标系下分离变量：ψ（x, y, z）=X(x)Y(y)Z(z)，其中： 

 
有 E=Ex+Ey+Ez。令 

 
得到通解为： 

 
边界条件要求 X(0)Y(0)Z(0)=0，因而 Bx=By=Bz=0,  X(lx)=Y(ly)=Z(lz)=0，所以： 

  (5.36) 

其中每个 n都是正整数： 

  (5.37) 

归一化的波函数为： 

  (5.38) 

允许的能量为： 

 

  (5.39) 

其中，k 为波矢量的量值， ( , , ).x y zk k k≡k  
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图 5.3: 自由电子气. 格子中的每一个交点代表一个定态. 阴影立方体为一个态所占据的体积. 

如果你想象一个三维空间，三个轴分别为 , ,x y zk k k ，在 ( / ), (2 / ), (3 / ),...x x x xk l l lπ π π= ，

( / ), (2 / ), (3 / ),...y y y yk l l lπ π π= 和 ( / ), (2 / ), (3 / ),...z z z zk l l lπ π π= 处分别画平面，每一个交点表

示一个不同的（单粒子）定态（图 5.3）。在这个格子中切割出来的每个小块（也就是每个状态），

在这个“k 空间”中所占用的体积为： 

  (5.40) 

其中 x y zV l l l≡ 为固体自身的体积。假设此样品有 N 个原子，每个原子贡献 q 个自由电子。（事实上，

N 将是一个相当大的数字⎯对于宏观尺寸的物体来说，这个数字将是阿福加德罗常数量级的⎯但 q

却是一个很小的数字——通常为 1或者 2。）如果电子是波色子（或可分辨的电子），它们都将处于

基态 111ψ 。
13
但是实际上电子是费米子，它服从泡利不相容原理，所以每个态只能容纳两个电子。

它们将占据 k 空间一个球的八分之一，
14
该球半径 kF 由每对电子所占用的体积π

3
/V 决定（方程

5.40）： 

 
所以， 

  (5.41) 

其中， 

                                                        
13 我假定这里没有热激发，或其它的扰动，使体系从基态激发。如果你不介意，我讨论的是一个“冷”固体，在这

个意义上，远在室温以上，一个固体仍然是冷的（见习题 5.16（c）。 
14 因为 N 是一个很大的数，我们无需担心格子参差不齐的边缘与近似表示的光滑球面的差别。 
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   (5.42) 

称为自由电子密度（单位体积内自由电子的数目）。 

k 空间中被占据和未被占据的分界面称为费米面（所以下标用 F 表示）。对应的能量称为费米

能量，EF；对于一个自由电子气体有， 

   (5.43) 

自由电子气体的总能量可以用如下的方法计算出来：一个厚度为 dk 的球壳（图 5.4）体积为 

 

 
图 5.4： k 空间中一个球壳的八分之一。 

所以球壳中的电子态数目为： 

 

每个态的能量为
2 2 / 2k m= （方程 5.39），所以整个球壳所具有的能量为： 

   (5.44) 

 

所以，总能量为： 

   (5.45) 

这个能量所扮演的角色和正常气体内能(U)的角色很相似。特别地，它对“墙壁”施加一个压

力，如果盒子扩大了 dV，那么总能量就会下降： 

 
它可以被看做是量子压力 P 在盒子外侧所做的功（dW=PdV）。显然有： 

   (5.46) 

到此现在，我们就可以部分的解决低温固体为什么不会简单地坍缩：固体受到一个内部的稳定压力，

这个压力和电子间的排斥力（我们已经忽略了它）无关，也和热运动无关（我们也已经排除了它），

它属于一种量子效应，来源于全同费米子波函数的反对称条件。我们把它成为简并压，虽然说“排
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斥压力”可能会更贴切一些。
15
 

习题 5.15 计算出每个自由电子的平均能量是费米能级的几分之几？答案：（3/5）EF。 

习题 5.26 铜的密度为 8.96g/cm
3
，原子量为 63.5g/mole。 

(a) 计算铜的费米能级（方程 5.43）。假定 q=1，单位选为电子伏。 

(b) 费米速度为多少？提示：EF=（1/2）mv
2
。将铜中的电子假定为非相对论的是否合适？ 

(c) 温度为多少时铜的特征热能（为 kBT，其中 kBT 为波尔兹曼常数，T 为绝对温度）和费米能量

相同？注：这个温度被称为费米温度。只要实际的温度远远小于费米温度，则大部分的电子

将会处于最低的能态，此时该物质就可以被视为“冷的”。因为铜的熔点为 1356K，固态铜总

是可以被视为冷的。 

(d) 用电子气体模型计算铜的简倂压力（方程 5.46）。 

习题 5.17 物质的体积模量的定义为压力的减小量和因此导致的单位体积变化量的比： 

 
证明自由电子气体模型中的 B=（5/3）P，应用 5.16（d）中的结果估算铜的体积模量。注：实验值

为 13.4×10
10
N/m

2
，但是不要期待你的估算值和实验值完全吻合——毕竟我们忽略了所有电子—核

子、电子—电子的相互作用。但实际上，你会发现估算值和实验值依然令人吃惊的相近。 

5.3.2 价带结构 
固体内规则化排列且带正电的基本固定不动的核子会对电子产生力的作用，现在我们把这个力

考虑进来，进一步完善自由电子气体模型。定性来看，电子的行为，很大程度上决定于势场的周期

性⎯势场的具体形状仅对细节有关。为了帮助你理解，我将举出一个最简单的例子：一维狄拉克梳，

它由无数平均分布的狄拉克函数峰组成（图 5.5）。
16
但首先，我要介绍一个强大的定理，它可以大

大地简化周期势的分析过程。 

周期势的定义是每经过一个固定的距离 a 就会重复自身的势场： 

 ( ) ( ).V x a V x+ =  (5.47) 

布洛赫定理告诉我们，对于含周期势的薛定谔方程， 

  (5.48) 

它的解必定具有如下形式： 

  (5.49) 

其中，K 为某些适当的常数（这里我们称之为常数是因为它和 x 无关；但是它有可能和 E 有关系）。 

 
图 5.5：狄拉克梳，方程 5.57。 

证明：令 D为“位移”算符： 

 ( ) ( ).Df x f x a= +  (5.50) 

对于一个周期势（方程 5.47），D 和哈密顿算符对易： 

 [ , ] 0,D H =  (5.51) 

因此，我们可以任意选择 H 的本征函数使它同时是 D 的本征函数：Dψ=λψ，或者， 

                                                        
15 我们用无限深的直角势阱的特殊的例子导出了公式 5.41, 5.43, 5.45 及 5.46,但是它们对任何形状的容器都成立, 只
要粒子的数目足够大。 
16 让δ函数向下可能更自然，以代表核对电子的吸引力。但是这样将同时存在负能解和正能解，使计算变得非常麻

烦（见习题 5.20）。因为这里我们仅想探讨周期性产生的结果，采用这种形状更简单一些，或者你也可以认为原子

核是处在 / 2,  3 / 2,  5 / 2,....a a a± ± ±  
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 ( ) ( ).x a xψ λψ+ =  (5.52) 

现在，λ显然不为零（因为方程 5.52 适用于所有的 x——我们很容易发现若λ为 0， ( )xψ 将为零，

它显然不是允许的波函数）；同其它非零复数一样，λ可以写为指数式： 

 = ,iKaeλ  (5.53) 

（其中 K 为某些适当的常数）。证毕。 

以现在我们所知的来看，方程 5.53 仅仅是一种书写本征值λ的新的方式，但一会儿我们就会

发现 K 实际上是实数，所以虽然 ( )xψ 不是周期性的，但
2( )xψ 满足： 

  (5.54) 

这个结果和我们所期待的正好一致。
17
 

当然，某个固体物质不可能无限大，它的边界一定会破坏周期势 V（x），导致布洛赫不再适用。

但是，对于任何宏观的晶体，它都具有阿福加德罗常数量级的原子数目，很难想象，边界效应会对

对位于固体内部深处的电子有明显影响。这就启示我们可以用下面的方法来修正布洛赫定理： 以
2310N ≈ 为周期，我们把 x 轴首尾相连弯成一个园；这样，形式上我们可以加上边界条件： 

 ( ) ( ).x Na xψ ψ+ =  (5.55) 

由它可以推出（利用方程 5.49）： 

( ) ( ),iNKae x xψ ψ=  

所以
iNKae =1，或者 NKa=2πn，因此有： 

  (5.56) 

特别地，对于这种排列方式，K 一定是实数。布洛赫定理的优点就是我们仅需求解一个晶格内的薛

定谔方程（比如，区间0 x a≤ ≺ ）；递推方程 5.49 就可以得到固体各处的解了。 

现在，我们假设势场由一系列狄拉克函数峰（狄拉克梳）： 

 
1

0
( ) ( ).

N

j
V x x jaα δ

−

=

= −∑  (5.57) 

（在图 5.5 中，我们需要把 x 轴想象成被弯成了一个圈，所以第 N 个峰实际上将出现在 x=－a 处。）

不会有人认为这就是现实中的情形，但是请记住，周期性的影响是我们现在唯一考虑的因素；另外

一个典型例子是采用重复的矩形势，
18
许多作者仍然喜欢这种方法。

19
在0 x a< < 内势能为零，所

以： 

 
或者， 

 
其中，和往常一样， 

  (5.58) 

通解为： 

  (5.59) 

根据布洛赫定理，紧邻原点左侧晶包的波函数为： 

                                                        
17 的确，我们可以尝试相反的过程，从方程 5.54 出发, 去证明布洛赫定理.。但是会出现问题, 仅由方程 5.54，在方

程 5.49 中会允许出现依赖 x 的相因子。 
18 见 R. de L. Kronig and W. G. Penney. Proc. R. Soc. Lond., ser. A. 130. 499(1930). 
19 例如，参见 D. Park, 量子理论导论，第 3 版， McGraw-Hill, New York(1992)。 
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  (5.60) 

在 x=0 处，ψ必须连续，所以： 

  (5.61) 

波函数的微分是不连续的，不连续的程度和狄拉克函数的强度成比例（方程 2.125，但须将α变号，

因为现在是峰，而不是阱）： 

 [ ] 2

2cos( ) sin( )iKa mkA e k A ka B ka Bα−− − =
=

 (5.62) 

求解方程 5.61 中的 sin( )A ka 得到 

  (5.63) 

把上式代入方程 5.62，消去 kB ，我们得到： 

2
2

2cos( ) 1 cos( ) sin ( ) sin( )iKa iKa iKa me ka e ka e ka ka
k
α− −⎡ ⎤ ⎡ ⎤− − + =⎣ ⎦ ⎣ ⎦ =

 

化简后可以得到： 

 2cos( ) cos( ) sin( )mKa ka ka
k
α

= +
=

 (5.64) 

这是一个主要的结果，其它都可以由此导出。对于克朗尼希-朋奈（Kronig－Penney）模型（见脚

注 18），方程会更复杂一些，但它的一些定性特征和上面讨论的结果有很多相同之处，我们下面来

作具体讨论。 

方程 5.64 决定了 k 的可能值，也因此决定了允许的能量值。为了能更简单的表示，我们令 

 2,   ,m az ka αβ≡ ≡
=

 (5.65) 

所以，方程 5.64 的右边可以写为： 

 
sin( )( ) cos( ) .zf z z

z
β≡ +  (5.66) 

常数β 是表征狄拉克函数“强度”的一个无量纲量。在图 5.6 中画出了β =10 时的 f(z)。需要特

别注意的是 f(z)超出了(－1,+1)的范围，在这些超出的范围内，方程 5.64 是不可解的，因为

cos( ) ,Ka 很显然不可能比 1 大。这些间隙表示被禁止的能量，称为能隙；它们被允许能量的能带

所分离。在一个给定的能带中，实际上所有能量都是允许的，因为根据方程 5.56， 2 / ,Ka n Nπ=  

N 是一个很大的数，n 为任意整数。你可能会想要在图 5.6 中画上 N 条水平线，取值是 cos(2 / )n Nπ
从(+1，－1)的所有值（即从 n=0 到 n=N/2），之后再到+1（n=N－1）⎯在这一点，布洛赫因子

iKae 完

成一个振荡周期，因此不会因为 n 继续增加而产生新解。这些线与 f(z)的每个交点表示一个允许

的能量。显然，每个能带中有 N 个状态。因为这些线相距很近，在很多情况下，它们都可以被视为

是连续的（图 5.7）。 
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图 5.6： β =10 时 f(z)（方程 5.66）的图像，可以看出允带被禁带（此处 ( ) 1f z > ）所分割。 

 图 5.7：周期势所允许的能量基本形成了连续带。 

到目前为止，我们仅仅在势场中放入了一个电子。在实际中，这个值将是 Nq，其中 q 是每个

原子具有的“自由”电子数。因为泡利不相容原理的存在，只有两个电子可以占据一个相同的空间

态，所以，如果 q=1，它们将填充第一能带的一半，如果 q=2，它们将完全填满第一能带，如果 q=3，

它们将第二能带的一半，依此类推⎯这都是在基态时的情况。（在三维中，对于实际当中具有的势

能，能带结构会更加复杂，但仍满足禁带分割允带——这种能带结构正是周期性势场的标志。） 

现在，如果一个能带被完全填满，此时如果要激发一个电子就需要一个较大的能量，因为电子

需要跳过一个禁带，这样的材料称之为绝缘体。相反地，如果一个能带是部分填充的，激发一个电

子只需要一个很小的能量，这种材料通常为导体。如果我们对绝缘体进行掺杂，加入一些 q偏小或

偏大的原子，这些杂质原子将会产生一些“多余”电子进入高一能带，或者在原来被填满的能级中

产生一些空穴，这两种情况都会在绝缘体中产生微弱的电流；这种材料我们称之为半导体。在自由

电子模型中，所有的固体都应当是很好的导体，因为在允带间中没有很大的带隙。只有应用了能带

理论我们才成功地解释了固体中电子的导电性。 
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习题 5.18 

(a) 利用方程 5.59 和 5.63，证明处于周期性狄拉克函数势中的一个粒子的波函数可以写为： 

 
（不需要求出归一化常数 C 的具体值。） 

(b) 这里存在一个例外：在一个能带顶端，z 是π的整数倍（图 5.6），(a)将导致 ( ) 0.xψ =  找出

这种情况下正确的波函数。注意在每个狄拉克函数导致ψ产生的变化。 

习题 5.19 找出β=10 时，第一允带底端的能量大小，精确到千分位。为了便于讨论，令 / 1a eVα = 。 

**习题 5.20 假设此时的情况是狄拉克函数阱，而不再是峰（也就是改变方程 5.57 中α的符号）。

分析这种情况，建立类似于图 5.6 和 5.7 的图像。对于正能量，我们不需要更多的计算（只需要将

方程 5.66 做一下适当的修改），但是对于能量为负的情况，我们就需要重新计算——并且将它们也

表示在图表上（这样，图像将包含 z 负轴的情况）。此时，第一允带将有多少个态存在？ 

习题 5.21 证明绝大多数由方程 5.64 决定的能量是二重简并的。哪些情况属于例外？提示：通过

验证 N=1，2，3，4，…时的情况，发现规律。在每种情况下，cos(Ka)的可能值是多少？ 

 

5.4 量子统计力学 
在绝对零度，一个物理系统将处在它的能量最低状态。当我们把温度提高时，随机的热激发将

开始占据激发态，这就导致了一个这样的问题：如果我们有数量很大的 N 个粒子，它们处于温度 T

下的热平衡状态，此时，随机选取一个粒子，它的能量为确定值 Ej的概率是多少？注意，这里所讨

论的“概率”和量子力学中的不确定性是没有关系的——同样的问题在经典统计力学也存在。我们

之所以仅仅要求一个几率的回答是因为这里粒子的数量是巨大的，我们不可能精确地跟踪所有的单

个粒子，这和该体系处于经典力学体系还是量子体系是没有关系的。 

统计力学的基本假设是：在热平衡时，每一个具有相同总能的态出现的概率是相等的。随机热

运动不停地将能量从一个粒子传递到另一个粒子，从一种形式（转动能，动能，振动能）到另一种

形式，但总能量却是守恒的（不受外部影响时）。这个假设（含义很深刻，值得你深思熟虑一番）

说明这种不断的能量再分布不会偏爱于任何特定的状态。温度 T 仅是热平衡下系统总能量的一种量

度。量子力学在这个问题上唯一引入的新概念是：我们该如何求不同的状态（实际上，因为量子态

是分立的，它将比经典框架下的计算简单），而这又取决于粒子是可分辨的，全同波色子，还是全

同费米子。这种讨论是比较直接简单的，但数学计算却比较繁杂，所以，这里我将举一个异常简单

的例子，帮助你对遇到一般问题时能有一个清晰的认识。 

5.4.1 一个例子 
假设我们有三个无相互作用的粒子（质量均为 m），处于一维无限深方势阱中（见 2.2 小节）。总能

量为： 

  (5.67) 

（见方程 2.27），其中 nA，nB，nC为正整数。现在为了便于讨论，我们假设 E=363
2 2 2( / 2 )maπ = ，

也就是： 

 
2 2 2 363A B Cn n n+ + =  (5.68) 

可以发现，这三个正整数平方和为 363 的组合方式总共有 13 种：三个均为 11，两个为 13 一个为 5

（包含三种排列），一个为 19，两个为 1（同样，包含三种排列），或者一个为 17，一个为 7，一个

为 5（包含 6种排列）。因此（nA，nB，nC）排列总是其下几种排列中的一种： 

（11，11，11）， 

（13，13，5），（13，5，13），（5，13，13）， 

（1，1，19），（1，19，1），（19，1，1）， 

（5，7，17），（5，17，7），（7，5，17），（7，17，5），（17，5，7），（17，7，5）。 

如果粒子是可分辨的，每个排列都代表一个不同的量子态，按照统计力学的基本假设，在热平
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衡时这些态出现的几率是完全相等的。
20
但是，我所感兴趣的并不是具体哪个粒子出现在具体哪一

个（单粒子）态上，我所关心的是对于每个态上的粒子数——即占有数，态 nψ 的 Nn。三粒子系统

的所有占有数的集合我们称之为组态。如果三个粒子都处于 11ψ ，则其组态为： 

 (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,...)  (5.69) 

（即， 11 3N = ，其它都为零）。如果两个粒子处于 13ψ ，一个处于 5ψ ，组态为： 

 (0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,...),  (5.70) 

（即，N5=1，N13=2，其它都为零）。如果两个粒子处于 1ψ ，一个处于 19ψ ，组态为： 

 (2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,...),  (5.71) 

（即，N1=2，N19=1，其它都为零）。如果一个粒子处于 5ψ ，一个处于 7ψ ，一个处于 17ψ ，组态为： 

 (0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,...),  (5.72) 

（即，N5=N7=N17=1，其它都为零。）其中，最后一个是出现几率最大的组态，因为它有六种不同排列，

而中间的两种组态有三种排列，第一种仅有一种排列方式。 

现在回过头来看我最初提出的问题，如果我们随机从三个粒子中选取一个出来，那么该粒子的

能量为确定（允许的）能量 En的概率（Pn）是多少？要想得到 E1的唯一方法就是系统处于第三种组

态（式 5.71）；而系统处于此组态的概率为 3/13，在该组态能量为 E1的概率为 2/3，所以 P1=(3/13) 

×(2/3)=2/13。要得到 E5，我们既可以取组态 2（式 5.70），处于此组态的概率为 3/13，在该组态

能量为 E5的概率为 1/3），也可以取组态 4（式 5.72），处于此组态的概率为 6/13，在该组态能量为

E5的概率为 1/3），所以 P5=(3/13)×(1/3)+(6/13)×(1/3)=3/13。要得到 E7，只能取组态 4：P4=(6/13)

×(1/3)=2/13。类似地，E11只能由组态 1 得到（式 5.69），处于此组态的概率为 1/13，在该组态能

量为 E7的概率为 1：P11=(1/13)。同样地，P13=(3/13)×(2/3) =2/13，P17=(6/13)×(1/3) =2/13，

P19=(3/13)×(1/3) =1/13。验证可得： 

1 5 7 11 13 17 19
2 3 2 1 2 2 1 1

13 13 13 13 13 13 13
P P P P P P P+ + + + + + = + + + + + + =  

这就是粒子为可分辨粒子时的情况。可是，如果它们为全同费米子，反对称要求（为简化问题，

我们忽略自旋，或者也可以认为它们都处于相同的自旋态）的制约将排除前三种组态存在的可能性

（因为这几种组态，有两个甚至三个粒子都处于相同的态）。第四种组态仅有一种状态（见问题 5.22

（a））。所以，对于全同费米子，P5 =P7 =P17 =1/3（总概率和依然为 1）。另一方面，如果粒子为全

同波色子，对称性要求允许每种组态仅有一个状态（见问题 5.22（b）），所以 P1=(1/4)×(2/3) =1/6, 

P5=(1/4)×(1/3)+(1/4)×(1/3)=1/6, P7=(1/4)×(1/3) =1/12, P11=(1/4)×(1)=(1/4), P13=(1/4)

×(2/3) =1/6, P17=(1/4)×(1/3) =1/12, P19=(1/4)×(1/3)=1/12。它们的和同样为 1。 

举这个例子的目的是让你清楚粒子的属性是如何决定了粒子态数目的。从某种角度来看，这个

问题实际上比现实中的问题更复杂。现实中，N值极大，而当 N 值增大时，概率最大的组态（例如

在可分辨粒子系统中 N5 =N7 =N17 =1 的组态）的概率将进一步增大。当 N 足够大时，它的概率将远

远大于其它情况，因而在统计上，我们完全可以忽略其它所有组态的存在：
21
在平衡时，粒子能量

的分布为其概率最大的组态。（如果该结论对 N=3 的可分辨粒子成立——但实际并不成立——我们

可以得出 P5 =P7 =P17 =1/3。）我们将在 5.4.3 小节重回这个问题，但是现在，我们需要首先推广计

算态数目的过程。 

*习题 5.22 

 (a) 一个系统有三个全同粒子费米子，一个处在ψ5，一个处在ψ7，一个处在ψ17, 构造该系统的

反对称波函数ψ(xA, xB, xC)。 

 (b) 一个系统有三个全同粒子波色子，在下面几种情况下，计算该系统的对称波函数ψ(xA, xB, 

xC)：(i) 三个粒子都处于ψ11，（ii）两个处于ψ1，一个处于ψ19，（iii）一个处于ψ5，一个

                                                        
20 如果粒子间完全没有相互作用，它们如何维持热平衡将是个问题。我并不忧虑这个⎯也许上帝会定期来访安排事

情（并且小心谨慎不改变能量）。当然在现实世界，能量的不断重新分布是由粒子间的相互作用引起的，所以，如

果你不同意上帝的介入，可认为存在极弱的相互作用⎯对热激发是足够的，但是有不足以改变定态及其能量。 
21 这是大数统计令人惊讶的反直觉的事实。一个很好的讨论见 Ralph Baierlein 所著，热物理，Cambridge U.P. （1999）
2.1 节。 
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处于ψ7，一个处于ψ17。 

*习题 5.23 假设你有三个（无相互作用）粒子，处在热平衡状态，位于一位简谐振子势中，总能

量为E (9 / 2) .ω= =  

  （a）如果粒子为可分辨粒子（质量都相同），则可能的占有数组态是什么？每种组态有多少种不

同的（三粒子）状态？最概然组态是什么？如果你随机选取一个粒子并测量它的能量，你将可

能得到哪些值，它们的概率分别为多少？最概然能量为多少？ 

  （b）如果粒子为全同费米子呢？（忽略自旋）。 

  （c）如果粒子为全同波色子呢？（忽略自旋）。 

5.4.2 一般情况 
现在考虑一个任意势，它的单粒子能量为 E1，E2，E3，……，简并度分别为 d1，d2，d3，……（即：

共有 dn个能量为 En的不同的单原子态）。假设我们将 N 个粒子（质量均相等）放入此势中；我们关

心的是它的组态（N1, N2, N3,…），它表示有 N1个粒子能量为 E1，N2个粒子能量为 E2，等等。问题：

总共有多少种不同的方法可以得到这个组态（或者，更精确来说，总共有多少不同的状态对应于这

个组态）？答案，Q(N1, N2, N3,…), 取决于粒子是可分辨粒子，全同费米子，还是全同波色子，

所以我们将分别讨论这三种情况。
22
 

首先，假设粒子是可分辨的。总共有多少种（从 N 个候选粒子）选出 N1个粒子放进第一个“箱

子”的方法？答案为二项式系数：“从 N 中拿出 N1个”， 

   (5.73) 

因为第一个粒子的选择有 N 种，第一个粒子被选出后第二个粒子的选择就剩下了（N－1）种，以此

类推： 

 
然而，这种方法重复计算了这 N1个粒子的 N1!种不同排列，但实际上我们并不在乎第 37 号粒子是第

一个被选出来还是第 29 个被选出来的；所以我们将上面的结果除以 N1!，也就证明了式 5.73。现

在我们考虑一号箱子里的这 N1个粒子有几种排列方法？这个箱子里总共有个 d1个状态，所以，每

个粒子都有 d1种选择；显然，总共有(d1) 
N1
种可能的排列。所以，从 N 个粒子中选出 N1个放入所

含状态数为 d1的箱子的方法数为： 

 
同样的方法我们可以得到二号箱子中的排列方法，唯一的差别就是对于二号箱子，只有（N－N1）

个粒子可供选择了： 

 
以此类推，我们得到： 

 

Q(N1, N2, N3,…) 

   (5.74) 

（现在，你应该停下来，通过 5.4.1 的问题 5.24 来验证这个结果的正确性。） 

对于全同费米子，问题会简单很多。因为它们是不可分辨的，哪个粒子到底在哪个状态是无关

                                                        
22 这里所用的方法非常类似 Amnon Yariv, 量子立力学理论和应用导论, Wiley, New York (1982)。 
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紧要的——反对称化的要求意味着对应于一套单粒子态占据方式的 N粒子态仅有一种，另外，每一

个单粒子态最多只能容纳一个粒子。从第 n 号箱子的所有量子态中选出 Nn个的方法数目为：
23
 

 
所以， 

   (5.75) 

（通过 5.4.1 的问题 5.24 来验证这个结果的正确性。） 

对于全同波色子，计算会复杂一些。同样地，对称化要求意味着对应于一套单粒子态占据方式

的 N 粒子态仅有一种，但这里并不要求每一个个体量子态最多只能容纳一个粒子。对于第 n 个箱子，

问题变成：把 Nn个全同粒子放入 nd 个状态有多少种方法？解决这个组合问题有很多途径；一个很

巧妙的方法是这样的：我们让点代表粒子，叉号代表隔板，所以，如果 nd =5，Nn=7，则： 

 
表示：有两个粒子处于第一个状态，一个处于第二个状态，三个处于第三个状态，一个处于第四个

状态，零个处于第五个状态。注意这里有 Nn 个点，（ nd －1）个叉号（隔板将点分为成了 nd 组）。

如果每个点和叉号都做上了标记，将有(Nn+ nd －1)!种不同的排列方法。但是此时所有的点都是相

同的——它们的排列（共 Nn!种）并不会改变系统状态。同样地，所有的叉号也都相同——它们的

排列（共(dn－1)!种）亦不会改变系统状态。所以实际上共有： 

  (5.76) 

种把 Nn个全同粒子放入有 nd 个状态的第 n 个箱子的不同方法。我们得到： 

  (5.77) 

（通过 5.4.1 的问题 5.24 来验证这个结果的正确性。） 

*习题 5.24 对 5.4.1 小节中的例子，验证式 5.74，5.75 和 5.77。 

**习题 5.25 利用归纳法得出式 5.76。这个组合的问题是这样的：把 N 个全同的球放入 d 个篮子总

共有多少种不同的方法？（此时可以不考虑下标 n 的问题）。你可以把 N个球都放进第三个篮子里；

或者一个放进第十五个，其它都放进第二个篮子；再或者两个放进第一个篮子，三个放进第三个篮

子，其他所有都放进第七个篮子，等等。具体计算 N=1，N=2，N=3，N=4 时的情形；之后你就可以

归纳出一般性的结论了。 

5.4.3 最概然组态 
热平衡时，具有总能量为 E，粒子数为 N 的每个态出现的概率都是相等的。所以，最概然组态

(N1, N2, N3,…)的条件是得到它的排列组合方法最多——也就是说，该组态的 Q(N1, N2, N3,…)是

一个极大值，且满足： 

   (5.78) 

和 

  (5.79) 

                                                        
23 如果 n nN d> ，这将为零，也的确如此，只要我们认为负数的阶乘为无限大。 
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求解使具有多个变量的函数 1 2 3( , , ,...)F x x x 取到极大值且受到条件 1 1 2 3( , , ,...) 0f x x x = ，

2 1 2 3( , , ,...) 0f x x x = ,…等的约束的最方便的方法是拉格朗日乘子法。
24
我们引入一个新的函数： 

  (5.80) 

并令它所有的偏微分为零： 

   (5.81) 

在这里，我们将 Q 取对数形式会简化问题——它可以将乘积变成求和。由于对数函数是单调函

数，Q 和 Ln(Q)的最大值在同一点。所以，我们令 

   (5.82) 

其中α和β是拉格朗日乘子。令 G对α和β的偏微分为零，将重现限制条件 5.74 和 5.79；余下的

事，只需令 G 对 Nn的偏微分为零。 

如果粒子是可分辨的，则 Q 由 5.74 式给出，我们得到： 

   (5.83) 

假定有关的占有数（Nn）较大，我们可以利用斯特林（Stirling）近似公式：
25
 

  (5.84) 

G 近似为： 

  (5.85) 

进而有： 

  (5.86) 

令此方程为零，求解 Nn，我们就得到了可分辨粒子的最概然占有数，为： 

  (5.87) 

  如果粒子为全同费米子，Q 由 5.75 式给出，我们得到： 

                                                        
24 例如，见 Mary Boas， 物理学中的数学方法，第二版， Wiley，NewYork （1983），第 4 章，第 9 节。 
25 在斯特林级数中保留更多的项可以改进斯特林近似公式，不过对我们的目的而言前两项就足够了。 见 Georage 
Arfken 和 Hans-Jurgen Weber, 物理学家的数学方法, 第 5 版, Academic Press, Orlando2000), 10.3 节。如果涉及的适当

的占有数不是很大⎯如 5.4.1 节中⎯则统计力学就失效了。要点时当处理巨大数时统计的结论是可靠的。当然，这

里总有不被占据的能量极高的单粒子态；幸运的是斯特林公式对 z＝0 也成立。我用了“适当的”这个词以排除处

在 nN 即不是很大也不为零之间的那些态。 
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  (5.88) 

此时，我们不仅必须假定 Nn很大，而且还得假定 n nd N>> ，
26
因此斯特林公式可以应用于所有项。

因此： 

  (5.89) 

因此， 

  (5.90) 

令此方程为零，求解 Nn，我们就得到了全同费米子的最概然占有数，为： 

   (5.91) 

最后，我们考虑全同波色子的情况，Q 由 5.77 式给出，我们得到： 

   (5.92) 

和通常一样，假定 Nn较大，利用斯特林公式： 

  (5.93) 

所以 

  (5.94) 

令上式为零，解出 Nn，我们就得到了全同波色子的最概然占有数，为： 

   (5.95) 

（为了和在计算费米子时引入的近似保持一致，我们应该去掉分子上的1，之后我们都将这样处理。） 

                                                        
26 一维时能量是非简倂的（见习题 2.45）,但是在三维情况时 nd 通常随 n的增加而迅速增加(例如,对氢原子

2
nd n= ). 

所以对大多数占据态假定 1nd >> 也并非不合理. 另一方面, 在绝对零度时, nd 肯定也不会比 nN 大许多, 因为此

时费米面以下的态都是填满的, 因此 n nd N= . 这里我们再次被斯特林公式对 z=0 也成立的事实挽救. 
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习题 5.26 边和坐标轴平行的矩形内接椭圆
2 2( / ) ( / ) 1x a y b+ = 内，利用拉格朗日乘法计算出在那

种情况下，矩形的面积取得最大值。 

问题 5.27 

（a）找出 z=10 时，斯特林近似的误差百分比。 

（b）使误差小于 1%的最小的整数 z为多少？ 

 

5.4.4 α和β的重要物理意义 
参数α和β是由于拉格朗日乘子的引入而出现的，它和粒子总数以及总能量有关。在数学上，

将占有数表达式（5.87 式，5.91 式，5.95 式）代入之前的两个限制条件（即 5.78 式和 5.79 式）

就可以求出α和β。然而要想求出这个和式，我们需要知道所讨论的势场所允许的能量（ nE ）和

它的简并度（ nd ）。作为一个例子，我们将介绍一下理想气体的情况——含有大量无相互作用的粒

子，质量均相等，处于三维无限深势阱。这个例子可以帮助我们体会α和β的重要物理意义。 

在 5.3.1 节中，我们计算出了允许的能量（5.39 式）： 

  (5.96) 

其中， 

 
和往常一样，我们将 k 看做连续变量从而将求和转变为积分，k 空间的密度为每

3 /Vπ 体积有一个

状态（或者对于自旋 s，为 2s+1 个状态）。将第一象限内的八分之一球壳作为我们的“箱子”（见

图 5.4），则“简倂度”（即，箱子内的状态数）为： 

  (5.97) 

对于可分辨粒子（5.87 式），第一个限制（5.78 式）变成， 

 
所以， 

  (5.98) 

第二个限制（5.79 式）为， 

 
或者将 5.98 式代入得到： 

  (5.99) 

（如果你将自旋因子 2s+1 加进 5.97 式中，可以发现在这里它将被抵消掉，所以 5.99 式此时对所

有自旋都是成立的。） 

这个结果（5.99 式）使我们想到了经典统计里描述温度 T 下一个原子的平均动能的公式：
27
 

                                                        
27 例如，参见 David Halliday，Robert Resnick，和 Jearl Walker， 物理基础，第 5 版，Wiley， NewYork （1997），
20－5 节。 
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  (5.100) 

其中 kB为波尔兹曼常数。这说明β和 T 相关： 

  (5.101) 

要证明这个结论它不仅适用于三维无限深势阱可分辨粒子，也适用于一般的情况，我们需要在热平

衡态下计算出其它物质的β值也都和可分辨粒子的一样。很多书上对此都有详细地证明，
28
但是这

里我将不再重述——我将简单地采用 5.101 式作为温度 T的定义。 

习惯上，常用把α（从 5.98 式可以显然的看出它是 T 的函数）用化学势代换， 

  (5.102) 

并且把 5.87，5.91 和 5.95 式重写为粒子在一个能量为ε 的（单粒子）态的最概然粒子数（要从处

在某－能量的粒子数得到处在该能量上的某一个态的粒子数，只要将前者除以简并度即可）： 
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麦克斯韦－波尔兹曼分布

1
费米－狄拉克分布

1
波色－爱因斯坦分布

 (5.103) 

麦克斯韦—波尔兹曼分布是经典的结果，适用于可分辨粒子；费米—狄拉克分布适用于全同费米子；

波色—爱因斯坦分布适用于全同波色子。 

   费米—狄拉克分布在温度 T→0 时将会出现一种独特的现象： 

 
所以， 

  (5.104) 

能量小于μ(0)的态都将被占据，能量大于μ(0)的态都未被占据（图 5.8）。很显然，化学势在绝

对零度时的值就是费米能： 

                                     （5.105） 

当温度升高时，费米—狄拉克分布原来的突变处将变的较平滑（图 5.8）。 

 
图 5.8：T=0 以及 T>0 时的费米—狄拉克分布。 

现在回到理想气体的例子，对于可分辨粒子：我们得到温度 T 时的总能量为（5.99 式）： 

                                                        
28 例如，参见 Yariv（脚标 22），15.4 节。 
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  (5.105) 

 

而化学势（由 5.98 式）为： 

  (5.106) 

类似地，我们用 5.91 式或 5.95 式代换 5.87 式，就可以得到全同费米子或全同波色子理想气体的

相应公式。第一个约束条件（5.78 式）变为： 

  (5.107) 

（正号为费米子，负号为波色子），第二个约束条件（5.79 式）为： 

  (5.108) 

从第一个约束条件（5.108 式）我们可以求得μ(T)，从第二个约束条件（5.109 式）我们可以得到

E(T)（比如，从第二个，我们还可以得到热容为：C= /E T∂ ∂ ）。不幸的是，这几个积分不能积为初

等函数，我把这个问题留给你们去进一步研究（见习题 5.28 和 5.29）。 

习题 5.28 计算绝对零度时全同费米子的积分（5.108 和 5.109 式）。将结果同 5.43，5.45 对比。

（注意对于电子，我们需要考虑自旋简并，应将结果乘上因子 2。） 

***习题 5.29 

(a) 证明对于波色子，它的化学势必须小于所允许的最小能量。提示：n (ε )不能为负。 

(b) 特别是, 对于理想波色气体，μ(T)<0 对所有 T 都成立。对这种情况, 证明当 T 下降时μ(T)

单调递增，假设 N 和 V都为常数。提示：研究 5.108 式取负号时的情况。 

(c) 当μ(T)上升为零时（不断降低 T 时），将出现一个转折点（称为波色凝聚）。计算μ=0 时的积

分值，我们就可以得到这个现象出现的临界温度 Tc。在临界温度以下，所有粒子将聚集在基态。

此时，将求和变成积分的计算方法将不再适用。提示： 

   (5.109) 

其中Γ是欧拉的伽马函数，ξ 是黎曼 zeta 函数。查表得出合适的数值。 

(d) 找出
4
He 的临界温度。它在该温度下的密度为 0.15g/cm

3
。评价：临界温度的实验测定值为 2.17K。

4
He 在临近温度附近的显著属性的更多内容，可以从脚注 29 提到的书中查到。

29
 

5.4.5 黑体光谱 
光子(电磁场的量子)是自旋为 1 的全同波色子，但是由于光子没有质量, 本质上是相对论的, 

使它比较独特。如果你接受下面四个假定, 我们可以把它纳入本章的讨论。这四个假定不属于非相

对论量子力学： 

1． 一个光子的能量与它的频率满足普朗克方程： .E hυ ω= = =  

2． 波数 k 和频率满足 2 / / ,k cπ λ ω= = c 为光速。 

3． 只有两个自旋态存在（量子数 m 可以为+1 或—1，但不能为 0）。 

4． 光子数不守恒；当温度升高时，光子数（每单位体积的）将增加。 

考虑到这四个假定，第一个约束条件（5.78 式）将不再适用，为此我们可以令 5.82 式及其它

有关式子中的α→0。因此，光子的最概然占有数（5.95 式）为： 

  (5.110) 

                                                        
29 参见 F. Mandl, 统计物理, Wiley,London (1971), 11.5 节. 
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对于处于体积为 V 的盒子里的自由光子， kd 由 5.97 式乘以自旋因子 2（3 项中两项）给出，
30
用ω

代替 k（乘因子 2）我们得到： 

  (5.111) 

所以，处在频率范围 dω的能量密度 为  其中， 

  (5.112) 

这就是普朗克的著名的黑体光谱公式，它给出了处在温度 T 的平衡电磁场中单位频率的能量密度。

图 5.9 中给出三个温度下的图像。 

问题 5.30 

(a) 利用 5.113 式确定波长范围 dλ内的能量密度。提示：令 ，之后求出

。 

(b) 推导出黑体能量密度取最大值处的维恩位移公式： 

  (5.113) 

提示：你需要利用计算机或计算器求解超越方程(5—x)=5e
-x
, 将结果精确到千分位。 

 
图 5.9：普朗克的黑体光谱公式，5.113 式。 

问题 5.31 推导黑体辐射总能量密度的斯蒂芬-玻尔兹曼公式： 

  (5.114) 

                                                        
30 实际上, 我们没有权利使用这个公式, 这个公式是由(非相对论)的薛定鄂方程导出, 不过幸运的是, 在相对论中

简倂度也是与此严格相同. 参见习题 5.36. 
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提示：利用 5.220 式计算积分。注意：  

 

第 5 章补充问题 
习题 5.32 假设有两个无相互作用的粒子，质量均为 m，处于一维谐振子势（2.43 式）中。如果一

个粒子处于基态，另一个处于第一激发态，对下列三种情况分别计算
2

1 2( )x x< − >：(a) 它们是

可分辨粒子，(b) 它们是全同波色子，(c) 它们是全同费米子。忽略自旋（如果你困惑这个，可假

设两者都处于相同的自旋态）。 

习题 5.33 假设你有三个粒子和三个不同的单粒子态（ ( )a xψ ， ( )b xψ 和 ( )c xψ ）。对于下列几种情

况，可以组成多少种三粒子态：(a) 它们是可分辨粒子，(b) 它们是全同波色子，(c) 它们是全同

费米子。（如果粒子是可分辨的，粒子不一定必须要处于不同的状态—— 1 2 3( ) ( ) ( )a a ax x xψ ψ ψ 也是

一种可能的状态。） 

习题 5.34 计算处于二维无限深势阱的无相互作用电子的费米能。令σ 为单位面积内的自由电子

数。 

***习题 5.35 有些冷星体（称为白矮星）的稳定存在是因为电子气体的简并压（5.46 式）的存在

抵抗了引力坍缩的发生。假设密度为常数，这种星体的半径 R 可以用如下方法计算出来： 

(a) 用半径，核子（质子和光子）数 N，每个核子的电子数 q 和电子质量 m 为参数，写出电子总能

量的表达式。 

(b) 查表或计算，得出密度均匀的球体的引力能。结果用 G（引力常数），R，N 和 M（一个核子的质

量）表示。注意：引力能为负数。 

(c) 找出下列两种情况时的半径：(a)总能量为正，(b)总能量取最小值。答案： 

 
   (注意当总质量增大时半径将减小！)除了 N之外都将真实值代入，q取 1/2 (实际上当原子量增

加时，q 将略有减小，但在这里我们可以忽略)。答案：  

(d) 计算质量大小和太阳相同的一个白矮星的半径, 以千米单位。 

(e) 计算出上一问中白矮星的费米能量（以电子伏单位），并将结果与一个电子的静能比较。注意

这个系统已危险地进入了相对论框架（见问题 5.36）。 

***习题 5.36 只要将经典动能，
2 / 2E p m= 代换为相对论的

2 2 2 4 2E p c m c mc= + − ，我们就

可以把自由电子气体理论（5.3.1 节）扩展到相对论框架下。动量还是通过： =p k= ，和波矢量

联系起来。特别地，在极相对论极限下， E pc ck≈ = = 。 

(a) 将 5.44 式中的
2 2 / 2k m= 换成极端相对论下的 ck= ，计算此时的 totE 。 

(b) 对于极端相对论下的电子气体，重复习题 5.44 中的(a)、(b)计算。注意此时不管 R 为多少，

都不存在稳定的极小值；如果总能量为正，简并力将超过引力，星体将扩大；如果总能量为负，

引力占上风，星体将坍缩。找出临界核子数 Nc，当 N>Nc 时星体将坍缩。它被称为钱德拉塞卡

(Chandrasekhar)极限。答案：
572.4 10× 。对应的星体质量为多少？（将答案表示为太阳质量

的倍数）。质量大于此的星体将不会形成白矮星，而是进一步的坍缩，形成（如果条件满足的

话）中子星。 

(c) 当密度极大时，逆 β 衰变：e p n v− ++ → + 将把所有的质子和电子转变成中子（释放出中微

子，并在这个过程中带走能量）。最终中子的简并压将使坍缩停止，就像电子简并对中子星的

作用（见问题 5.35）。计算质量大小和太阳相同的一个中子星的半径。同样，计算出它的(中子)

费米能量，并将结果与一个中子的静能比较。将中子星视为非相对论的是否合理？ 

***习题 5.37 

(a) 计算出处于三维谐振子势（问题 4.38）中的可分辨粒子的化学势和总能量。提示：5.78 和 5.79

式中的求和式可以精确计算出，所以这里无需进行像在无限深势阱情况时的积分近似。注意：

将几何级数， 



 30

  (5.115) 

求导得到： 

 
更高级的求导结果和上式很类似。答案： 

   (5.116) 

(b) 讨论 Bk ω� = 的极限情况。 

(c) 根据能均分定理，
31
讨论 Bk ω� = 的经典极限情况。处于三维谐振子势中的粒子自由度为多少？ 

 

 

                                                        
31 例如, 参见 Halliday 和 Resnick (脚标 27), 20-9 节. 
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第二部分  应用 

第 6 章 不含时微扰理论 

6.1 非简并微扰理论 

6.1.1 一般公式表达 

假设对于某些势场（比如，一维无限深势阱），我们已经解出了（定态）薛定谔方程： 

  (6.1) 

从而可以得到一套完备的正交本征函数，
0
nψ ， 

  (6.2) 

及对应的能量本征值
0
nE 。现在，我们对这个势进行微小扰动(比方说,在势阱底部加入一个小突起⎯

图 6.1)。我们期望可以找到新的本征函数和本征值： 

  (6.3) 

但是除非我们非常幸运，对于这个有些复杂的势场，一般我们是不可能精确求解薛定谔方程的。微

扰理论是一套系统的理论，它可以利用已得的无微扰时地精确解求出有微扰时的近似解。 

 

图 6.1：受到小微扰的无限深势阱。 
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首先，我们将哈密顿量写成两项之和： 

  (6.4) 

其中 'H 是微扰（上标 0 总是表示非微扰量）。此时，我们将λ取为一个很小的数；稍后我们会将

取它为 1，H 将为真实的哈密顿量。下面我们把 nψ 和 nE 展为λ的幂级数： 

  (6.5) 

  (6.6) 

其中，
1
nE 为第 n 个本征值的一级修正，

1
nψ 为第 n 个本征函数的一级修正；

2
nE 和

2
nψ 为二级修正，

以此类推。将 6.5 和 6.6 式代入 6.3 式，得到： 

 

或（将λ幂次相同的项合并） 

 

对于零级（
0λ ）项1有 ，这没有什么新的内容（它就是 6.1 式）。对于一级（

1λ ）项

有， 

  (6.7) 

对于二级（
2λ ）项有， 

  (6.8) 

以此类推。（方程中并没有λ——它仅仅用来更清楚地按数量级分出各方程——所以现在把λ取为

1。） 

6.1.2 一级近似理论 

将
0
nψ 与 6.7 式进行内积运算（即乘以( 0

nψ )*后积分）， 

                                                        
1 级数展开的唯一性（见第 2 章，脚标 25）保证了相同幂次的系数是相等的。 
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但是
0H 为厄米算符，所以 

 

它和右边第一项相抵消。又有
0 0 1n nψ ψ = ，所以，2 

  (6.9) 

这就是一级近似理论的一个最基本的结果；在实际中，它也是量子力学最重要的方程。它说明能量

的一级修正就是微扰在非微扰态中的期待值。 

例子 6.1 无微扰的无限深势阱波函数为（2.28 式）： 

 

 

图 6.2：存在于整个势阱的常微扰。 

假定我们简单地通过将“阱底”抬高一个常数量 V0（图 6.2），实现对系统的微扰。找出能量的一

级修正。 

解：在这例子中， 'H = V0，第 n 个能态能量的一级修正为： 

                                                        
2 我们写

0 ' 0
n nHψ ψ 还是

0 ' 0
n nHψ ψ （多一个竖杠）是无关紧要的，因为我们用波函数本身去标记态。不过

后一种标记可能更好，因为它使我们摆脱了这个特定的习惯。 
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因此，修正后的能级为
0

0n nE E V≅ + ；它简单地被抬高了 V0。这是自然地！这里唯一的意外就是

能量的一级近似竟然得到了一个精确解。明显地，对于常数微扰，所有更高级的修正都将为零。3另

一方面，如果这个常数微扰仅覆盖了势场的一半（图 6.3），则有， 

 

在这种情况，每个能级都被抬高了 V0/2。这可能并不是精确解，但是作为一级近似，它还是合理的。 

 

图 6.3：存在于半个势阱的常数微扰。 

 

6.9 式是能量的一级修正；为了找到波函数的一级修正，我们首先重写 6.7 式： 

   (6.10) 

方程右边是已知函数，所以方程是关于
1
nψ 非齐次微分方程。现在，无微扰的波函数是完备的，所

以
1
nψ （像其它其它函数一样）可以表示为它们的线性组合： 

  (6.11) 

求和时没有必要包含m n= 项，因为如果
1
nψ 满足 6.10 式，对于任意α ，

1 0( )n nψ αψ+ 亦满足。我

                                                        
3 顺便提及，这个结论是与无限深势阱的特性是无关的⎯只要微扰是常熟，这个结论总是成立。 
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们可以利用这个结果将
0
nψ 项去掉。4如果我们确定了系数

( )n
mc ，问题也就得到了解决。 

现在，将 6.11 式代入 6.10 式，并利用
0
mψ 满足无微扰薛定谔方程的事实（6.1 式），我们得到： 

 

取
0
lψ 与上式的内积， 

 

如果 l n= ，左边为零，我们就再次得到了 6.9 式；如果 l n≠ ，我们得到： 

 

或者， 

 (6.12) 

所以， 

   (6.13) 

注意到只要无扰动能级是非简并的,上式的分母就不会为零(因为不存在m n= 的系数)。但如果两个

无微扰态具有相同的能量，我们就会遇到很大的麻烦(分母将为零)；在这种情况时, 我们需要一个

简并微扰理论，我将在 6.2 节中介绍它。 

这样，我们就完成了一级微扰理论：能量的一级修正
1
nE 由 6.9 式给出，波函数的一级修正

1
nψ

                                                        
4 另外，观察 6.5 式可发现任何在

1
nψ 中的

0
nψ 分量都可以通过结合进第一项中去除. 事实上, 选择

( ) 0n
nc = ⎯加上

6.5 式中
0
nψ 的系数为 1⎯保证了 nψ 的归一化(到一级λ ): 

( ) ( )0 0 1 0 0 1 2 ... ....n n n n n n n nψ ψ ψ ψ λ ψ ψ ψ ψ λ= + + + + , 由无微扰态的正交归一性, 第一项为 1, 只要

1
nψ 中的无

0
nψ 分量, 第二项也为零. 
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由 6.13 式给出。但我需要提醒你：经管微扰理论经常可以得到精确的能量修正值（即，
0 1
n nE E+ 和

精确值 nE 非常接近），但对于波函数的计算却不是太理想。 

*习题 6.1 假设我们在无限深方势阱的中心加入一个狄拉克峰的扰动： 

 

其中，α 为常数。 

(a) 给出能量的一级修正。解释为何对偶数 n 能量没有受到扰动。 

(b) 给出基态波函数一级修正
1
1ψ 展开式(6.13 式)的前三个非零项。 

*习题 6.2 对于谐振子[ 2( ) (1/ 2)V x kx= ], 允许的能量为： 

 

其中 k mω = ，称为经典频率。现在假设弹性系数少许增大： (1 )k kε→ + 。（也许我们冷却了

弹簧，它变得不那么有弹性了。） 

(a) 找出新能量的精确值（这种情况很平庸）。将你的结果展开为ε 的幂级数，取到第二级。 

(b) 现在，利用 6.9 式计算能量的一级修正。 'H 是什么？将你的结果和(a)中的对比。提示：在这

个问题中，积分计算是不必要的（事实上，也是不许可的）。 

习题 6.3 两个全同波色子被放入一个无限深方势阱中（2.19 式）。两者通过势场，  

 

有微弱的相互作用：（V0是具有能量量纲的一个常数， a 为势阱宽度）。 

(a) 首先忽略粒子间的相互作用，找出基态和第一激发态——包括波函数和对应的能量。 

(b) 利用一级微扰理论估算粒子相互作用对基态、第一激发态能量的影响。、 

6.1.3 二级能量修正 

和前述一样，将
0
nψ 与二级近似方程（6.8 式）求内积： 
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再次利用
0H 的厄米性： 

 

因此左边第一项和右边第一项相抵消。由
0 0 1n nψ ψ = ，我们就得到一个关于

2
nE 的方程： 

  (6.14) 

但是， 

 

（因为求和不包括m n= 项，其它项都是正交的），所以， 

 

或，最终有， 

  (6.15) 

这就是二级微扰近似理论的一个基本的结果。 

我们可以进一步计算波函数的二级修正（
2
nψ ）、能量的三级修正，等等，但是在实际中，一般

计算到 6.15 式就能足够用了。5 

 

                                                        
5 用简洁标记

0 ' 0 0 0,  mn m n mn m nV H E Eψ ψ≡ Δ ≡ − , 对 n 能级的头三个修正可写为 

             

2 2
1 2 3

2
,

,  ,  .nm nmnl lm mn
n nn n n nn

m n l m n m nnm nl nm nm

V VV V VE V E E V
≠ ≠ ≠

= = = −
Δ Δ Δ Δ∑ ∑ ∑  

三级修正在 Landau 和 Lifschitz 所著量子力学: 非相对论理论, 第 3 版, Pergamon, Oxford(1977), 136 页给出; 四级和

五级修正(同时给出推导更高级修正公式的一般技术)由 Nicholas Wheeler 所著高阶譜微扰给出(未发表的 Reed 
College 报告,2000). 阐明不含时微扰理论的其它方法包括 Delgarno-Lewis 方法和与其密切相关的”指数”微扰理论(例
如,参见 T. Imbo 和 U. Sukhatme,  Am. J. Phys. 52, 140 (1984), for LPT, 参见 H. Mavromatis, Am. J. Phys. 59,783(1991), 
for Delgarno-Lewis).  
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*习题 6.4 

(a) 给出习题 6.1 中势的能量的二级修正（
2
nE ）。注：你可以直接求出级数的和，对偶数的 n 得到

。 

(b) 对习题 6.2 中的势, 计算基态能量的二级修正（
2
0E ）。验证你的结果和精确解是一致的。 

**习题 6.5 一个带电粒子位于一维谐振子势中。假设我们加入了一个微弱的电场（E），从而使势能

发生了大小为 'H qEx= − 的偏移。 

(a) 证明能量一级修正为零，并计算出能量的二级修正。提示：见习题 3.33。 

(b) 在这个例子中，薛定谔方程是可以直接求解的，只要将变量变成：
2' ( / )x x qE mω≡ − 。给出

能量的精确值，并证明它们和微扰理论是一致的。 

6.2 简并微扰理论 

如果无微扰态是简并的⎯即，有两个（或更多）不同的状态（
0
aψ 和

0
bψ ）有相同的能量⎯则前

述的微扰理论将不再适用：
( )b
ac （6.12 式）和

2
aE （6.15 式）将为无限大（除非分子也为零, 

0 ' 0 0a bHψ ψ = ⎯稍后会发现这个点很重要。）因此，在简并情况下，即使是能量的一级近似（6.9

式）也是靠不住的，我们必须寻找新的解决方法。 

6.2.1 二重简并 

假设： 

  (6.16) 

0
aψ 和

0
bψ 均已归一化。注意到任何这两个态的任意线性组合： 

  (6.17) 

依然是 H0 的本征态，本征值仍为 E0： 

  (6.18) 

一般来讲，微扰（ 'H ）将“打破”（或“消除”）简并状态：当我们增大λ的值时（从 0 到 1），原
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来无简并时的能量 E0 一般会分裂成两部分（图 6.4）。从相反方向考虑，当我们去掉微扰，“上”能

态将降低至
0
aψ 和

0
bψ 的一个线性组合，“下”能态也将变为

0
aψ 和

0
bψ 的一个线性组合，并且两者相

互正交, 但是我们预先不知道如何选取一个“好的”线性组合。由于这个原因，我们甚至不能计算

能量的一级修正（6.9 式）——\我们不知道\应该选用什么零级波函数。 

 

图 6.4：通过微扰“消除”简并。 

因此，我们调整一般表达式（6.17 式）中的α 和 β 来寻找“好的”零级波函数。我们想求解

薛定谔方程， 

 ,H Eψ ψ=  (6.19) 

其中
0 'H H Hλ= + ，且， 

  (6.20) 

将这几个式子代入 6.19 式，并将λ幂次相同的项合并（和之前一样），得到： 

 

但是
0 0 0 0H Eψ ψ= （6.18 式）所以第一项可以消去；

1λ 项的系数为： 

  (6.21) 

0
aψ 与上式取内积： 

 

由于 H0 是厄米算符，左边第一项和右边第一项相抵消。将其代入 6.17，并利用正交条件（6.16 式），
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我们得到： 

 

或者，写成更紧凑的形式： 

  (6.22) 

其中， 

  (6.23) 

类似地，与
0
bψ 的内积满足： 

  (6.24) 

注意到 W（在理论上）是已知的——它们是 'H 相应于
0
aψ 和

0
bψ 的“矩阵元”。将 6.24 式乘上

abW ，并利用 6.22 式消去 abWβ ，我们发现： 

  (6.25) 

如果α 不为零，6.25 式可化为关于
1E 的方程： 

  (6.26) 

利用二次方程求解公式，并注意到
*

ba abW W= ，我们可以得到： 

  (6.27) 

这就是简并微扰理论的基本结果；两个根对应于两个受到扰动的能量。 

但如果α 为零呢？此时，β =1，由 6.22 式可知 0abW = ，由 6.24 式可知
1

bbE W= 。它们实际

上是包含在 6.9 式里的，对应负号项（正号项对应于α =1，β =0）。此时的结果： 

 

和我们用非简并微扰理论（6.9 式）得出的结果完全一致。这仅仅是巧合而已：
0
aψ 和

0
bψ 已经是“好

的”线性组合了。显然，如果我们能在一开始就猜出“好的”波函数就再好不过了——这样的话，
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我们就可以直接利用非简并态微扰理论了。而事实上，利用下面的这个定理，我们总是可以做到这

一点： 

定理： 设 A 为一厄米算符，它和
0H 、 'H 都对易。如果

0
aψ 和

0
bψ （

0H 的简并本征函数）同

样也是 A 的具有不同本征值的本征函数， 

 

则 0abW = （因此，
0
aψ 和

0
bψ 是“好的”波函数，可以利用非简并微扰理论）。 

证明：已知，[ , '] 0A H = ，所以 

       

      但是μ ν≠ ，所以 0abW = 。证毕。 

启示．．：如果你遇到简并态问题，寻找和．．．
0H 、． 'H 都对易的厄米算符；把同为．．．．．．．．．．．．

0H 和．A．本征函．．．

数的波函数选为零级波函数．．．．．．．．．．．．。如果你找不到这样的算符，你就不得不求助于 6.27 式，但在实际中，

一般都用不到。 

习题 6.6 设两个“好的”零级波函数为： 

 

其中，α±和 β± (满足归一化)由 6.22 式（或 6.24 式）决定。证明： 

(a) 0ψ± 是正交的（< 0ψ+ | 0ψ− >=0）; 

(b) < 0ψ+ | 'H | 0ψ− >=0; 

(c) < 0ψ± | 'H | 0ψ± >= 1E± ,其中
1E± 由 6.27 式给出。 

习题 6.7 假设有一个质量为 m 的粒子可以在一个长度为 L 的一维闭合区域自由运动（例如，一个

小球在长度为 L 的圆环线上做无摩擦运动，见习题 2.46）。 
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(a) 证明定态为： 

 

   其中， 0, 1, 2,....n = ± ± ，允许的能量为： 

 

注意到，除了基态（n=0）之外，能量都是二重简并的。 

(b) 假设引入微扰： 

 

其中，a L� 。（这个微扰在势场 x=0 处加上了一个小凹槽，就像我们将线圈弯了一下，形成了一

个小“陷阱”。）利用 6.27 式，给出 nE 的一级修正。提示：为了计算积分，需利用 a L� 将极限从

/ 2L± 扩展到±∞；毕竟， 'H 在 a x a− < < 之外基本为零。 

(c) nψ 和 nψ− 的“好的”线性组合是什么？证明利用这些态，你可以利用 6.9 式得出一级修正。 

(d) 找到一个满足定理的厄米算符 A，并证明 H0 和 A 的共同本征函数和我们在（c）中用过的一样。 

6.2.2 高重简并 

在前面一节中，我假设简并都是二重的，但是很容易将这个方法推广到高重简并情况。将 6.22

式和 6.24 式用矩阵形式写出： 

  (6.28) 

显然，所有的 E1 值都是 W 矩阵的本征值；6.26 式是该矩阵的特征方程，“好的”无微扰态的线性

组合就是 W 矩阵的本征矢量。 

对于 n 重简并，我们要找到 n n× 矩阵 

  (6.29) 
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的本征值。用线性代数的语言来说，寻找“好的” 零级近似波函数就是：在简并的子空间中寻找

一组基，使矩阵 W 对角化。同样地，如果你可以找到一个算符 A 和 'H 对易，并选用同为
0H 和 A

本征函数的波函数，此时 W 矩阵将自动对角化，而不必再求解复杂的特征方程。6（如果你对我从

二重简并到 n 重简并的推导过程，请做习题 6.10。） 

例题 6.2 考虑三维无限深方势阱： 

  (6.30) 

定态为： 

   (6.31) 

其中，nx,ny,nz为正整数。对应的允许能量为： 

   (6.32) 

注意到基态（ 111ψ ）是非简并的；它的能量为： 

   (6.33) 

但是第一激发态却是（三重）简并的： 

   (6.34) 

它们的能量同为： 

   (6.35) 

现在我们引入微扰： 

   (6.36) 

                                                        
6 简并微扰理论涉及哈密顿简并部分的对角化. 关于矩阵的对角化(对易矩阵的同时对角化)的讨论见附录(A5 节). 
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图 6.5：微扰导致阴影区域的势能提高了 V0。 

它使立方体中的四分之一区域的势能提高了 V0（见图 6.5）。基态能量的一级修正由 6.9 式给出： 

   (6.37) 

这正是我们预计的结果。 

对于第一激发态，我们需要利用简并微扰理论。第一步是构造 W 矩阵。它的对角元素对于基

态是相同的（除了一个正弦函数的变量由 /x aπ 变为了 2 /x aπ ）；你可以自行进行验证： 

 

非对角元素比较有趣： 

 

但是 z 积分是零（ acW 同样也为零）。所以， 

0ab acW W= =  

最后， 



 15

 

因此， 

   (6.38) 

其中  

W 的特征方程（或者用 4W/V0,它更容易计算一些）为： 

 

本征值为： 

 

对于λ一次幂项有, 

  (6.39) 

其中，
0
1E 为无微扰时的能量（6.35 式）。微扰将消除简并，使

0
1E 分裂为三个不同的能级（见图 6.6）。

注意如果对这个问题我们天真地应用了非简并微扰理论，我们会得到三个态能量的一级修正（6.9

式）相等——都为 V0/4——的结果。而这个结果实际上仅适用于中间的那个能态。 

 

图 6.6：例题 6.2 中的简并的消除。 
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此时，“好的”零级近似波函数为如下的线性组合： 

   (6.40) 

其中参数（ , ,α β γ ）组成了矩阵 W 的本征矢量： 

 

对于 1ω = ，我们得到 1, 0α β γ= = = ；对于 1ω κ= ± ， 0, 1/ 2α β γ= = ± = 。（得到这些时,

我已经进行了归一化。）因此“好的”零级近似波函数为：7 

  (6.41) 

 

习题 6.8 假设我们在无限深立方势阱（6.30 式）内的点（ / 4, / 2,3 / 4a a a ）引入一个狄拉克函数

的扰动： 

 

求出基态和第一激发态（三重简并）能量的一级修正。 

*习题 6.9 一个量子系统仅有三个相互线性独立的态。假设哈密顿量的矩阵形式为： 

 

其中，V0 为常数，ε 为一小量（ 1ε � ）。 

(a) 求出无微扰 ( 0)ε = 时哈密顿量的本征态和本征值。 

                                                        
7 如果注意到交换 x和y坐标的交换算苻 xyP 是与

'H 对易的, 我们也许在开始就可以预测到这个结果.. 它的本征值

是+1(对交换下的偶函数)和-1(对交换下的奇函数). 此时 aψ 已是交换为偶, ( )b cψ ψ+ 为偶, ( )b cψ ψ− 为奇. 

这并不是唯一确定的,因为任何偶态的线性组合还是偶的. 但是如果我们也使用算苻 Q, 它把 z 变为a z− , 并注意

到 aψ 是Q本征值为-1的本征函数,而另外两个是本征值为+1的本征函数, 这个不确定就可以解决. 这里 xyP 和Q一

起扮演了 6.2.1 节定理中算苻 A 的角色. 
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(b) 严格求解 H 的本征值。结果展开为ε 的幂级数，展开到ε 的二次项。 

(c) 利用非简并微扰理论的一级和二级修正公式，求出由 H0 的非简并本征态所生成态的近似本征

值。同（a）中的精确结果比较。 

(d) 利用简并微扰理论，找出两个原来简并的本征值的一级修正。同精确结果比较。 

习题 6.10 在本书中，我指出过 n 重简并能量的一级修正就是矩阵 W 的本征值，我把它当作 n=2 情

况的自然推广的结果。通过重复 6.2.1 中的步骤证明之。从 

0 0

1

n

j j
j

ψ α ψ
=

=∑  

开始（6.17 式的推广式），最后得到结论：对应于 6.22 式的式子可以解释为矩阵 W 的本征值方程。 

6.3 氢原子的精细结构 

研究氢原子（4.2 节）时，我们将哈密顿量取为： 

  (6.42) 

（电子的动能加上库伦势能）。但是这并不是全部的内容。我们已经学习过了如何修正核子的运动：

把 m 代换成约化质量（问题 5.1）。氢原子还有一个更为重要的现象，它被称为精细结构，它的形

成有两个完全不同的原因：相对论修正和自旋⎯轨道耦合。和波尔能量（4.70 式）相比，精细结构

是一个很小的扰动——它和波尔能量相除的比例系数
2α 满足： 

  (6.43) 

它就是著名的精细结构常数。类似的现象还有兰姆移位（另加一个α 的比例常数），它和电场的量

子化相关；以及超精细结构（再小一个数量级），它和电子与质子之间的偶极矩磁相互作用相关。

它们之间的大小关系见表 6.1。在这一节，作为不含时微扰理论的应用，我们将分析氢原子的精细

结构。 
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表 6.1：氢原子波尔能量修正量级图。 

 

习题 6.11 

(a) 用精细结构常数和静止能（mc2）表示出波尔能量。 

(b) 从第一性原理出发，计算精细结构常数（即，计算中不利用经验参数 0 , , ,e cε = 等）。注：毫无

疑问，精细结构常数是所有物理学问题中最基本的纯数（无量纲的）。它将电磁学（电子电量）、

相对论（光速）和量子力学（普朗克常数）联系在了一起。如果你可以解答（b）问题，那么，

你将是历史上最十拿九稳获得诺贝尔奖的人。但是我并不建议你现在就花大量时间计算这个问

题；很多聪明的人都尝试过求解，但至今，都失败了。 

6.3.1 相对论修正 

哈密顿量的第一项代表动能： 

  (6.44) 

由经典动量的代替物 ( / )i→ ∇p = 可以得到算符 

  (6.45) 

但是 6.44 式是动能的经典表达式；相对论的表示式为： 

  (6.46) 

其中，第一项为总的相对论能量（没有算入势能，因为此时我们并不关注于它），第二项是静能—

—两项之差为动能。 
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我们需要用（相对论的）动量代替速度来表示 T： 

  (6.47) 

注意到： 

 

所以， 

  (6.48) 

在非相对论极限 p mc� 时，它显然将回到经典的结果（6.44 式）；按小量（p/mc）的级数展开，

我们得到： 

 

  (6.49) 

最低一级的密顿量的相对论修正显然为：8 

  (6.50) 

在一级近似微扰理论中， nE 的修正由 'H 在无微扰态（6.9 式）中的期待值给出： 

  (6.51) 

薛定谔方程（无微扰态的）给出： 

  (6.52) 

因此，9 

                                                        
8 氢原子中电子动能的量级为 10eV, 与其静止能(511,000eV)相比极小, 所以氢原子基本是非相对论的, 我们可以仅

取最低一级的修正. 在 6.49 式中, p 是相对论的动量(6.47 式), 不是经典动量 mv.在 6.50 式中,我们将把相对论动量用

算苻 i− ∇= 替换. 
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 (6.53) 

到目前为止，我们讨论的是一般情况；但是我们更关注的是氢原子，它的势能为

 

 (6.54) 

其中 nE 是无微扰的波尔能级。 

为了完成任务，我们需要在(无微扰态) nlmψ （4.2.1 式）下求1/ r 和
21/ r 的平均值。第一个的

计算比较简单（见习题 6.12）： 

  (6.55) 

其中， a 波尔半径（4.72 式）。第二个的计算比较复杂（见习题 6.33），结果为：10 

  (6.56) 

继而有： 

 

或者，消去 a （利用 4.72）并用 nE 表示所有量（利用 4.70 式）： 

  (6.57) 

显然，相对论修正比 nE 小，比例系数大小约为：
2 5/ 2 10nE mc −= × 。 

                                                                                                                                                                           
9 在这里有些技巧, 利用了

2p 和 ( )E V− 的厄密性. 的确, 对 0l = 的态, 算苻
4p 不是厄密的(见习题 6.15), 微

扰理论对 6.50式的应用存在问题(对 0l = 时). 幸运的是, 此时存在严格解; 它可以用(相对论的)狄拉克方程替代(非
相对论的)薛定鄂方程得到, 结果与我们现在不严格方法所得结果一致(见习题 6.19). 
10 r 任何阶期待值的一般公式由Hans A. Bethe 和Edwin E. Salpeter所著, 单电子和双电子原子的量子力学, Plenum, 
New York (1977), 第 17 页所给出. 
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你可能已经注意到了，我在计算时使用的是非简并微扰理论（6.5 式），尽管氢原子有很高的简

并度。但是微扰是球对称的，因而它和
2L 、 zL 是对易的。并且，对给定的能量 nE 的

2n 个态, 这

些算符的本征值都不相同。波函数 nlmψ 在这个问题里幸好是“好的”量子态（或者说 n,l,m 是好的

量子数），正因为此，非简并微扰理论的使用是可以的（见 6.2.1 节中的解释）。 

*习题 6.12 利用位力定理（习题 4.40）证明 6.55 式。 

习题 6.13 在习题 4.43 中，你在 321ψ 态中计算
sr 的平均值。在 s=0（平庸情况）， 1s = − （6.55 式），

2s = − （6.56）和 3s = − （6.64 式）的情况下检验你的答案。讨论 7s = − 的情况。 

**习题 6.14 找出一维谐振子能级的相对论（最低级的）修正。提示：应用例题 2.5 中的方法。 

***习题 6.15 证明对于处于 0l = 的氢原子态，
2p 为厄米算符，而

4p 不是。提示：这里的态ψ 是

不依赖 ,θ φ的，所以， 

2
2 2

2 ( )d dp r
r dr dr

= −
=

 

（4.13 式）。利用分步积分法证明： 

2 2 2 2 2
0| 4 ( ) | | .dg dff p g r f r g p f g

dr dr
π ∞< >= − − + < >=  

验证对于 00nψ ，边界项为零, 00nψ 在原点附近有如下形式： 

00 3
2

1 exp( / )
( )

n r na
na

ψ
π

−∼  

现在对
4p 做同样处理，证明边界项不会消失。所以： 

4
4 4

00 00 00 004 5/2

8 ( )| | .
( )n m n m

n mp p
a nm

ψ ψ ψ ψ−
< >= + < >

=
 

6.3.2 自旋—轨道耦合 

假设电子绕核子做轨道运动；从电子的角度来看，质子在绕着它运动（图 6.7）。在电子静止坐

标系，这个做轨道运动的带正电粒子产生一个磁场 B，从而有一个力矩作用于有自旋的电子，使自
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旋磁距（μ）趋向于磁场的方向。哈密顿量（4.157 式）为： 

  (6.58) 

首先，我们需要找出质子的磁场（B）以及电子自旋磁矩（μ）。 

质子磁场。如果我们将质子（从电子的角度看）看成一个连续的电流环（6.7 图），它的磁场可

以利用比奥-萨法尔定律得出： 

 

其中等效电流为 /I e T= ， e为质子电量，T 为轨道运动的周期。另一方面，(核子静止坐标系下)

电子的轨道角动量为
22 /L rmv mr Tπ= = 。并且，B 和 L 指向同一方向（在图 6.7 中为向上），所

以： 

  (6.59) 

(我利用了 来消去 0μ ，而用 0ε 代替。) 

图 6.7：从电子看质子运动。 

电子磁偶极矩。旋转电荷的磁偶极矩是和它的(自旋)角动量有关的；它们的比例系数称为回转

磁比率（在 4.4.2 节中我们已经提到过了）。现在我们利用经典的电动力学推导它。首先考虑有一个

带电量为 q、电荷弥散在半径为 r 的圆环内的带电体，绕轴旋转，周期为 T（图 6.8）。磁偶极矩被

定义为电流（q/T）和面积（
2rπ ）的乘积： 
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如果圆环带电体质量为 m，其角动量为转动惯量（
2mr ）与角速度（ 2 / Tπ ）的乘积： 

  

对于这种圆环带电体，回转磁比率显然为 / / 2S q mμ = 。注意到它是和 r（及 T）无关的。如果我

有更复杂的体系：例如一个球体（假定它绕某个自身轴旋转），我都可以通过把它分割为小圆环，

再将每个小环的贡献叠加起来得到μ,S 的取值。只要质量和电荷的分布规律相同（荷质比是均匀

的），回转磁比率对于任何圆环都将是相同的，因此对于整个物体来说也是相同的。另外，μ,S 的

方向也是相同的（或者当电荷为负值时：相反），我们可以得到： 

 

然而，以上计算是完全经典的算法；事实证明，电子的磁矩为经典结果的两倍： 

  (6.60) 

  图 6.8：带电圆环绕轴旋转。 

“多出来的”系数 2, 狄拉克的相对论电子理论中给出了解释。11 

                                                        
11 我们已经注意到了把电子看作一个自转球的危险(见习题 4.25), 对经典模型所给出的错误结果也就不奇怪了. 与
经典结果的偏差称为 g-因子: μ=g(q/2m)S. 在狄拉克的理论中, 电子的 g-因子正好正好是 2. 但是在量子电动力学中, 
对其有微小的改正: 2 ( / ) ... 2.002...eg α π= + + = . 这个所谓的电子反常磁矩的计算和测量(在非常高的精度

一致)是 20 世纪物理学的辉煌成就之一. 
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综上所述，我们得到 

 

但是计算中还存在一个严重的漏洞：我是在电子静止系讨论的，但是它并不是一个惯性系——它在

绕核子旋转时存在加速度。如果进行适当的动力学修正，称为托马斯近动。12我们就可以解决这个

问题，此时，它将引入一个 1/2 的因子：13 

  (6.61) 

这就是自旋—轨道相互作用项；除掉这两个修正（修正后的电子回转磁比率和托马斯近动——恰好

相互抵消），我们就会回到经典理论的结果。在物理上，它是在电子瞬时静止系中，质子磁场施予

自旋电子磁偶极矩的力矩所引起的。 

回到量子力学。由于自旋—轨道耦合的存在，哈密顿量不再与 L、S 对易，因此自旋和轨道角

动量都不再分别是守恒量（见习题 6.16）。然而， 'soH 却和 L2，S2，以及总角动量 

  (6.62) 

对易， 因此，这些量为守恒量（3.71 式）。也就是说， zL ， zS 的本征态不是微扰理论中可使用的

“好的”态，而 L2，S2，J2 和 zJ 的本征态却是。现在 

 

因此 

  (6.63) 

                                                        
12 一个想象它的方法是认为电子是连续的从一个惯性系过渡到另一个；托马斯近动计入了所有这些洛仑兹变换的累

计效应。当然，我们呆在实验室系，回避这个问题， 在实验室系核子是静止的。这样核子的场是纯电场，这样你

可能疑问为什么它可以对电子磁矩施加力矩。事实是，运动的磁偶极矩将产生一个电偶极矩，所以在实验室系自旋

－轨道耦合是由核子的电场同运动电子的电偶极矩作用产生的。因为这种分析需要更高深的电动力学，采取电子近

动的方法更好一些，此时物理机制更明显。 
13 更精确说， 托马斯近动是从 g－因子中减去了 1。参见 R.R. Haar 和 L.J. Curtis, Am. J. Phys., 55,1044(1987). 
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所以L Si 的本征值为 

 

对电子 s=1/2。同时，1/r3的平均值（见习题 6.35（c））为 

  (6.64) 

我们可以得出结论： 

 

或者，以 nE 表示：14 

  (6.65) 

物理机制完全不同的相对论修正和自旋—轨道耦合竟然是同一个数量级（
2 2/nE mc ），这真令

人惊奇。把它们合并在一起，我们得到完整的精细结构公式（见习题 6.17）： 

  (6.66) 

                                                        
14 0l = 情况再次成为问题， 此时分母为零。另一方面，分子此时也为零，因为现在 j s= ，所以 6.65 式的值是

不确定的. 从物理上来讲当 0l = 时不应当有任何自旋-轨道耦合. 一种解决这种不定性的方法是引入所谓的Darwin
项(例如, 见 G. K. Woodgate, 基本原子结构, 第二版, Oxford(1983), 第 63 页). 幸运的时, 尽管相对论修正(6.57 式)
和自旋-轨道耦合(6.65 式)在 0l = 时都有问题, 它们的和(6.66 式)却是对所有 l 都是正确的(见习题 6.19). 
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图 6.9：考虑了精细结构的氢原子能级图（未按比例大小给出）。 

将此式同波尔公式结合，我们得到考虑了精细结构的氢原子能级： 

  (6.67) 

精细结构消除简并度 l（即对于给定的一个 n 值，不同的 l 值不再具有相同的能量），但是它仍

保留了对 j 的简并度（见图 6.9）。轨道角动量和自旋角动量的 z 分量（ lm 和 sm ）的本征值不再是

“好的”量子数——定态为这些量取不同值时对应态的线性组合；“好的”量子数是 , , ,n l s j 和 jm 。

15 

问题 6.16 计算下面的对易子：(a) [ , ]⋅L S L ，（b）[ , ]⋅L S S ，（c）[ , ]⋅L S J ，（d） 2[ , ]L⋅L S ，（e）

2[ , ]S⋅L S ，（f） 2[ , ]J⋅L S 。提示：L 和 S 满足角动量的基本对易关系（4.99 和 4.134 式），但是

                                                        
15 把 jjm (对给定的 l 和 s )写作 l slm sm 的线性组合,我们需要利用适当的 Clebsch-Gordan 系数(4.185 式). 
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它们相互对易。 

*问题 6.17 从相对论修正(6.57 式)和自选轨道耦合修正(6.65)推导出的精细结构公式（6.66 式）。提

示：注意到 1/ 2j = ± ；分别处理正号和负号的情况，你将会发现不管是哪种情况，最终结果都相

同。 

**问题 6.18 氢原子光谱可见光区域最重要的特性就是红色巴末尔线，它来自于能级 n=3 到 n=2 的

跃迁。首先，根据波尔理论计算出该谱线的波长和频率。精细结构的存在将使这条线分裂为几条相

距很近的线；问题是：这些分裂出来的线的数量和分布情况是什么？提示：首先确定出 n=2 能级分

裂为几条，并找出每条子线的
1
fsE ，单位为 eV。第二步对 n=3 重复上步骤。画出能级图并表示出

所有可能的从 n=3 到 n=2 的跃迁。释放出的能量（以光子形式）为 3 2( )E E E− + Δ ，第一项是所有

可能的跃迁都有的部分， EΔ 部分（由精细结构导致的）对于不同的跃迁方式大小是不同的。找出

每个跃迁的 EΔ （单位为 eV）。最后转化为光子频率，并确定出相邻谱线的间距（单位为 Hz）——

它不是各条线和无扰动时的能级线的频率间距（它显然也是观察不到的），而是每条线和它相邻的

线的频率间距。你最终答案的形式应该是：“红色巴末尔线分裂为（？？？）条。按照频率逐渐增

加的顺序，跃迁分别为（1）从 j=（？？？）到 j=（？？？），（2）从 j=（？？？）到 j=（？？？），……”

线（1）和线（2）的频率差值为（？？？）Hz，线（2）和线（3）的频率差值为（？？？）Hz，…… 

问题 6.19 氢原子准确的精细结构公式（直接由狄拉克方程求出而没有利用微扰理论）为：16 

 

展开至
4α 项（注意到有 1α � ），并证明你重新得到了 6.67 式。 

 

6.4 塞曼效应 

                                                        
16 Bethe 和 Salpeter (脚标 10), 第 208 页. 
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当一个原子被置于均匀外磁场 extB 中时，能级将发生改变。这个现象被称为塞曼效应。对于一个单

电子，微扰为： 

   (6.68) 

其中， 

  (6.69) 

是和电子自旋相关的磁偶极矩，  

  (6.70) 

是和轨道运动相关的偶极矩。17所以有： 

  (6.71) 

塞曼效应的特性关键取决于外磁场和内磁场（即 6.59 式，来自于自旋—轨道耦合）的相对强

度。如果 ext intB B� ,则精细结构占上风，
'
zH 可以被看作是是微扰；如果 ext intB B� ，则塞曼效应

占上风，精细结构就可以被当作是微扰来处理。当处于这两者之间时，外磁场和内磁场不分伯仲，

我们就必须应用简并微扰理论来完整的讨论该情况，我们也有必要“手工”将哈密顿量的相关部分

对角化。在接下来的一章中，我们将以氢原子为例，分别简单的介绍这三个部分。 

问题 6.20 利用 6.59 式估算氢原子的内磁场大小，并定量给出“强”和“弱”的塞曼场的大小。 

6.4.1 弱场塞曼效应 

如果 ext intB B� ，精细结构将是主要的（6.67 式）；“好的”量子数是 , ,n l j和 jm （ lm 和 sm 就

不是好的量子数，因为自旋-轨道耦合的存在，L 和 S 都不再是守恒量。）18在一级微扰理论下，塞

曼效应对能量的修正为： 

                                                        
17 轨道运动的回转磁比率是经典值(q/2m)⎯仅对自旋才有额外的因子”2”. 
18 在这个问题中, 我们有一个堆放在一个微扰(精细结构)顶的微扰(塞曼分裂). “好”量子数是对主要微扰适当的那些

⎯现在为精细结构. 次要的微扰(塞曼分裂)消除了对 zJ 残余的简并, zJ 相当于 6.2.1 节定理中算苻 A 的角色. 技术

上 zJ 并不与
'
zH 对易, 但是 6.73 式时间平均的意义上它们对易. 
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  (6.72) 

 

 

 

 

 

 

 

图 6.10：由于自旋轨道耦合的存在，L 和 S 都不再是守恒量；它们绕固定的总角动量矢量 J 进动。 

 

 

此时， 2+ = +L S J S 。可惜的是，我们并不能立刻知道 S 的期待值。但是我们可以用下面的方法

得到它：总的角动量 J = L + S为定值（图 6.10）；L 和 S 迅速绕该固定的矢量做进动。特别地，S

的（时间）平均值恰好是它沿 J 的投影： 

  (6.73) 

但是L = J - S ，所以
2 2 2 2L J S= + − J Si ，因此： 

  (6.74) 

进而可以得到： 

  (6.75) 
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在方括号中的项被称为朗德 g 系数， Jg 。 

我们也可以选择 z 轴沿 extB 方向；则有： 

  (6.76) 

其中， 

  (6.77) 

被称为波尔磁子。总能量就是精细结构部分（6.67 式）和塞曼效应部分（6.76 式）之和。例如，基

态（n=0，l=0，j=1/2，则 Jg =2）分裂为两个能级： 

  (6.78) 

正号对应于 1/ 2jm = ，负号对应于 1/ 2jm = − .图 6.11 画出了这些能量（作为 extB 的函数）。 

*习题 6.21 考虑（共八个）n=2 的态，| 2 jljm >。找出位于弱场塞曼分裂下的各个态的能量，并画

出类似于图 6.11 的图来表示当 extB 增大时能量的演变过程。清晰地画出每条线，并表示出它们的

斜率。 

6.4.2 强场塞曼效应 

如果 ext intB B� ，则塞曼效应是主要的，19设 extB 沿 z 轴方向，“好的”量子数是 n，l，ml，

和 ms（j 和 mj就不是好的量子数，因为外力矩的存在，总角动量不再是守恒量，而 zL 和 zS 却是。）

塞曼哈密顿量为： 

 

 

 

 

                                                        
19 在这个区域塞曼效应称为 Paschen-Back 效应. 
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图 6.11 氢原子基态的弱场塞曼分裂；上面的一条线（ 1/ 2jm = ）斜率为 1；下面的一条线

（ 1/ 2jm = − ）斜率为 1− 。 

无微扰时的能量为： 

  (6.79) 

如果我们完全忽略精细结构的话，这就是我们想要的答案了。但是我们还可以做的更好。 

在一级微扰理论下，这些能级的精细结构修正为： 

  (6.80) 

相对论效应的贡献还和以前一样（6.57 式）；对于自旋—轨道项（6.61 式）我们需要： 

  (6.81) 

（注意到对于 zS 和 zL 本征态， 0x y x yS S L L= = = = ）。综合以上各项（习题 6.24），我们

得到： 

  (6.82) 

（方括号内的项在 0l = 时是不确定的；在这种情况它的正确值是 1——见习题 6.24。）总能量是塞

曼效应部分（6.79 式）和精细结构部分贡献（6.82 式）之和。 
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习题 6.22 从 6.80 式开始，利用 6.57、6.61、6.64 和 6.81 式导出 6.82 式。 

**习题 6.23 考虑（共八个）n=2 的能级， | 2 l slm m >。找出位于强场塞曼分裂下的各个态的能量。

将每个答案都表示成三项和的形式：波尔能级，精细结构（
2α 的倍数）和塞曼效应部分（正比于

0 extμ B ）。如果忽略精细结构，将有多少个不同的能级存在，它们的简并度又是多少？ 

习题 6.24 如果 0l = ，则 j s= ， j sm m= ，对于强场和弱场“好的”量子态是一样的都为 ( )snm 。

确定
1
ZE （由 6.72 式）和精细结构能量（6.67 式），并且写出 0l = 时塞曼效应的一般结果——即，

不考虑场的强弱。证明：当我们把方括号中的不确定项定为 1 时，强场公式（6.82 式）同样会得到

这个结果。 

6.4.3 中间情况的塞曼效应 

当内外场大小相当时，
'
zH 和

'
fsH 大小难分上下，我们必须同等地将两者作为波尔哈密顿量（6.42

式）的扰动： 

  (6.83) 

我在这里将主要讨论 n=2 的情况，并把由 ,l j 和 jm 确定的态作为简并微扰理论的基。20用克莱布希

—高登系数（习题 4.51 或表 4.8）将 | jjm >表示成为 | |l slm sm> >的线性组合，得到： 

 

在这组基中，
'
fsH 的非零矩阵元都是对角元，并由 6.66 式给出；

'
ZH 有四个非对角元素，完整的矩

                                                        
20 如果你喜欢当然可以用 , ,l sl m m 态⎯用它们计算矩阵元

'
zH 比较容易, 但是计算

'
fsH 就不容易了; W 矩阵就

更难了, 但是它的本征值用哪种方法都是一样的(本征值不依赖于基的选择). 
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阵 -W （见习题 6.25）为： 

 

其中， 

 

前四个本征值已经由对角元素给出；我们只需再找出那两个 2 2× 矩阵块的本征值。第一矩阵块的

本征值方程为： 

 

解这个二次方程可以得出本征值： 

  (6.84) 

上式中的 β 换号后可以得到第二个矩阵块的本征值。表 6.2 列出了这八个能量，图 6.12 画出了这八

个能量的图像。在零场极限（即 β =0）下，它们将退化为精细结构情况的值；对于弱场（ β γ� ），

将再次得到习题 6.21 中的结果；对于强场β γ� ，将再次得到习题 6.23 中的结果（注意到在场强

很大时，五个不同的能级存在交叉，我们在习题 6.23 中已经预期到了）。 
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图 6.12：弱场、中间场、强场下，氢原子 n=2 能态的塞曼分裂。 

 

 

表 6.2：存在精细结构和塞曼分裂的氢原子 n=2 能级。 

习题 6.25 计算出
'
zH 和

'
fsH 的矩阵元素，并构造出本节中提到的 W 矩阵（n=2）。 

_____________________________________________________________________________________ 

***习题 6.26 在弱场、中间场、强场下，分别分析氢原子 n=3 时的塞曼效应。并写出类似于表 6.2
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的能量表，并画出将其作为外场函数时的图（类似于图 6.12），并验证中间场情况的两个极限即为

弱场、强场的情况。 

 

6.5 超精细分裂 

质子本身就具有一个磁偶极子，但由于处在分母位置的质量（6.60 式）较大，该磁偶极子比电子的

小很多： 

 ,     ,  
2

p
p p e e

p e

g e e
m m

= = −S Sμ μ  (6.85) 

（质子是一个复合结构，它由三个夸克组成，它的回转磁比率比电子的要复杂——因此，和电子的

大小为 2 的朗德 g 系数相比，它的 g 系数( pg )为 5.59。）由经典电动力学可知，一个偶极子μ形成

一个磁场：21 

  (6.86) 

所以位于质子磁偶极矩形成的磁场中的电子的哈密顿量为（6.58 式）： 

 
2 2

0 0' 3
hf 3

3( )(( )
( ).

8 3
p e p ep p

p e
p e p e

r rg e g e
H

m m r m m
μ μ

δ
π

⎡ ⎤⋅ ⋅ − ⋅⎣ ⎦= + ⋅
S S S S

S S r
� �

 (6.87) 

按照微扰理论，能量的一级修正（6.9 式）就是微扰哈密顿量的平均值： 

 

2
01

hf 3

2
20

3( )(( )
8

       (0) .
3

p p e p e

p e

p
p e

p e

g e r r
E

m m r

g e
m m

μ
π

μ
ψ

⋅ ⋅ − ⋅
=

+ ⋅

S S S S

S S

� �

 (6.88) 

对基态（或者对于 0l = 其它态），波函数是球对称的，第一项的平均值为零（见习题 6.27）。同时，

从 4.80 式中，我们可以得出
2 3

100 (0) 1/( )aψ π= , 所以对于基态有： 

                                                        
21 如果你对 6.86 式中的δ 函数不熟悉, 你可以把偶极矩看作一个自转球来推导它, 然后令半径趋于零, 电荷密度趋

于无限大(保持μ为常数). 见 D. J. Griffiths, Am. J. Phys., 50, 698(1982). 
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2

01
hf 3 .

3
p

p e
p e

g e
E

m m a
μ
π

= ⋅S S  (6.89) 

它称为自旋—自旋耦合，因为它和两个自旋的点积有关（对比于自旋—轨道耦合，它和 ⋅S L相关）。 

在自旋—自旋耦合存在时，单个的自旋角动量不再是守恒量；“好的”量子态为总自旋 

  (6.90) 

的本征矢, 和以往一样，我们对上式进行平方，得到： 

  (6.91) 

但是电子和质子都具有 1/2 的自旋，所以 在三重态（自旋“平行”），总自旋为

1，因此 ；在自旋单态，总自旋为 0，因此 所以， 

 
4

1
hf 2 4

4 1/ 4,   
3 3 / 4,     

p

p e

g
E

m m c a
+⎧

= ⎨
−⎩

= 三重态

单态
 (6.92) 

自旋—自旋耦合打破了基态的自旋简并，抬高了三重态的能级，降低了单态的能级（见图 6.13）。

能量间隔显然为， 

 
4

1 6
hf 2 4

4
5.88 10

3
p

p e

g
E eV

m m c a
−= = ×

=
 (6.93) 

 

图 6.13：基态氢原子的超精细分裂。 

伴随三重态跃迁到基态所释放出的光子的频率为， 

  (6.94) 

对应的波长为 / 21c cmυ = ，它属于微波段。这个著名的 21 厘米长谱线是宇宙中最普遍的射线之
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一。 

习题 6.27 令 a、b 为两个常向量。证明 

  (6.95) 

（积分区域为通常的：0 ,0 2 .θ π φ π< < < < ）。利用该结果证明，对 0l = 态有： 

 

提示：  

习题 6.28 对氢原子的公式做适当修正，确定以下粒子基态的超精细分裂：（a）μ子氢（(muonic 

hydrogen：电子被μ子——和电子具有相同电荷和 g 系数，但质量为其 207 倍——代替所形成的原

子)，（b）正电子素（positronium：质子被正电子——和电子具有相同的质量和 g 系数，但电荷量

相反——代替所形成的原子），（c）反 μ 子素（muonium：质子被反 μ 子——和 μ 子具有相同质量

和 g 系数，但电荷量相反——代替所形成的原子）。提示：在计算奇异原子的“波尔半径”时，不

要忘了应用约化质量（习题 5.1）。你得到的答案（
44.85 10 eV−× ）会和实验值（

48.41 10 eV−× ）

差距很大；这个大的差异是由正负电子对湮没（ e e γ γ+ −+ → + ）导致的，它贡献了 (3 / 4) EΔ 的

能量，不过在一般的氢原子、μ子氢和反 μ子素中不会发生。 

第六章补充习题 

习题 6.29 估算因核子有限大小所引起的氢原子基态能量的修正值。将质子视为电荷分布均匀的半

径为 b 的球壳，因此球壳内电子的势能为常数：
2

0/ (4 )e bπε− ；这虽然不太现实，但却是最简单

的模型，而且够给出正确的数量级。将结果展开为小参数（ /b a ）的幂级数，其中 a 为波尔半径，

并仅保留第一项，最终你将得到： 

( / ) .nE A b a
E
Δ

=  

你的任务是确定常数 A 和指数 n 的值。最后，将
1510b m−≈ （质子半径的粗略估计值）代入，得
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出实际的数值。与精细结构和超精细结构相比，它的大小如何呢？ 

习题 6.30 考虑三维各向同性谐振子(习题 4..38)。设微扰为 

2'H x yzλ= （λ为常数。） 

讨论下面两种情况的（一级）微扰效应： 

（a）基态。 

（b）第一激发态（三重简并）。提示：利用习题 2.12 和 3.33 的结果。 

***习题 6.31 范德瓦尔斯相互作用，考虑两相距为 R 的原子。因为它们都是电中性的，你可能会

认为它们之间没有力作用，但如果它们是可极化的，它们之间将会有一个弱的相互吸引。为了建立

这个系统的物理模型，我们将每个原子都看作一个电子（质量为 m，电荷为-e），通过一根弹簧（弹

性系数为常数 k）和核（电荷为+e）连接在一起，如图 6.14 所示. 我们假设核子很重，基本不动。

无微扰系统的哈密顿量为： 

 0 2 2 2 2
1 1 2 2

1 1 1 1
2 2 2 2

H p kx p kx
m m

= + + +  (6.96) 

 

图 6.14 两个相邻的极化原子.  

原子间的库伦相互作用为： 

 
2 2 2 2

0 1 2 1 2

1' ( ).
4

e e e eH
R R x R x R x xπε

= − − +
+ − + −

 (6.97) 

（a） 解释 6.97 式。假设| 1x |和| 2x |都远小于 R，证明： 
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2

1 2
3

0

' .
2
e x xH

Rπε
≅ −  (6.98) 

（b） 证明总的哈密顿量（6.96 式加上 6.98 式）可分为两个谐振子哈密顿量： 

 
2 2

2 2 2 2
3 3

0 0

1 1 1 1[ ( ) ] [ ( ) ]
2 2 2 2 2 2

e eH p k x p k x
m R m Rπε πε+ + − −= + − + + +  (6.99) 

       其中变量变换为 

   

 1 2
1 ( ),
2

x x x± = ±    它导致 1 2
1 ( ),
2

p p p± = ±  (6.100) 

（c） 该哈密顿量的基态能量显然为， 

 
1 ( ),
2

E ω ω+ −= +=   其中
2 3

0( / 4 )k e R
m
πεω± =

∓
 (6.101) 

       如果没有库伦相互作用的话， 0 0E ω= = ，其中 0 /k mω = 。假设
2

3
0

( )
4

ek
Rπε

� ，证明： 

 
2

2
0 2 3 6

0 0

1( ) .
8 4

eV E E
m Rω πε

Δ ≡ − ≅ −
=

 (6.102) 

结论：原子间有一个吸引势能，它和原子间距的六次方成反比。这就是两中性原子间的范

德瓦尔斯相互作用。 

（d） 现在利用二级微扰理论做同样的计算。提示：无微扰态的形式是 1 1 2 2( ) ( )n nx xψ ψ ，其中

( )n xψ 是质量为 m，弹性系数为 k 的单粒子振子的波函数； VΔ 是对于 6.98 式微扰对基态

能量的二级修正（注意到一级修正为零）。 

**习题 6.32 假设对于一个特定的量子系统，哈密顿量 H 是某个参数λ的函数；令 ( )nE λ 和 ( )nψ λ

为 ( )H λ 的本征值和本征函数。赫尔曼-费恩曼定理指出：22 

                                                        
22 Feynman 在 MIT 做他的本科毕业论文时得到了此式(R. P. Feynman, Phys. Rev. 56,340, 1939); Hellman 的工作早四

年在一个无名的俄国杂志发表. 
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  (6.103) 

（假定 nE 非简并，或（如果简并的话） nψ 为简并本征波函数“好的”的线性组合）。 

（a） 证明赫尔曼-费恩曼定理。提示：利用 6.9 式。 

（b） 将该定理应用于一维简谐振子，（i）令λ ω= （这将得出关于 V 平均值的公式），（ii）令λ = =

（这将得到 T ），（iii）令 mλ = （这将得到关于 T 和 V 的一个关系式）。将你的答案

与习题 2.12 及位力定理（习题 3.31）相比较。 

**习题 6.33 赫尔曼-费恩曼定理（习题 6.32）可以用来确定氢原子 1/r 和 1/r3 的期待值。23径向波函

数（4.53 式）的有效哈密顿量为： 

 

能量本征值（表示 l 的函数）24为（4.70 式）： 

 

（a） 令赫尔曼-费恩曼定理中的 eλ = 可以得到 1/ r 。对比 6.55 式验证你的结果。 

（b） 令赫尔曼-费恩曼定理中的 lλ = 可以得到
21/ r 。对比 6.56 式验证你的结果。 

***习题 6.34 证明克喇末关系：25 

  (6.104) 

它将氢原子 nlmψ 态 r 三个不同的幂（ , 1, 2s s s− − ）的期待值联系起来。提示：重新将径向方程（4.53

式）写为： 

                                                        
23 C. Sanchez del Rio, Am. J. Phys. 50, 556(1982); H. S. Valk, Am. J. Phys. 54, 921(1986).  
24 在本题(b)部分我们把 l 处理成一个连续变量; 按 4.67式n 成为 l 的一个函数, 因为必为整数的 maxj 是固定的. 为

了消除混淆, 我没有写出 n 以明显显示对 l 的依赖. 
25 这个也称为(第二个)Pasternack关系. 见H. Beker, Am. J. Phys. 65,1118(1997). 对基于赫尔曼-费恩曼定理(习题 6.32)
上的一个证明,见 S. Balasubramanian, Am. J. Phys. 68,959(2000) 
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并用它以< sr >, < 1sr − > 和< 2sr − >去表示 ( '')sur u dr∫ 。然后利用部分积分将二次导数降阶。证明

1( ') ( / 2)s sur u dr s r −= − < >∫ 和
1( ' ') [2 / ( 1)] ( '' ')s su r u dr s u r u dr+= − +∫ ∫ 。你可从这里开始。 

习题 6.35 

（a）分别将 s=0,s=1,s=2 和 s=3 代入克喇末关系（6.104 式）得到
1r−< > , r< > , 2r< >和

3r< >的

公式。注意你可以无限次进行这个过程，得到任意的正幂次项。 

（b）然而当你向一个方向重复这个过程时，将遇到一个障碍。把 1s = − 代入，证明你能得到的只

有
2r−< >和

3r−< >的关系式。 

（c）但是如果你可以通过其它方法得到
2r−< >，你依然可以利用克喇末关系得到其它负幂次项。

利用 6.56 式（它在习题 6.33 中得到）确定
3r−< >的大小，并利用 6.64 验证你的结果。 

***习题 6.36 当一个原子被置于一个稳恒外电场 extE 中，能级将发生改变——这个现象被称为斯塔

克效应（它是塞曼效应在电学上的对应）。在这里，我们将研究一下氢原子 n=1 和 n=2 能级的

斯塔克效应。令场的方向沿 z 轴，因此电子的势能为： 

ext ext' cos .SH eE z eE r θ= =  

把它看做加在波尔哈密顿量（6.42 式）上的扰动。（自旋和这个问题是没有什么关系的，所以

我们将其忽略，且不考虑精细结构。） 

（a）证明一级修正下，基态能量不受扰动的影响。 

（b）第一激发态是四重简并的： 200 211 210 21 1, , ,ψ ψ ψ ψ − 。利用简并微扰理论确定能量的一级

修正。E2 能级将分裂为几条？ 

（c）问题（b）的“好的”波函数是什么？在这些“好”态中分别给出电偶极矩（ e e= −p r ）

的期待值值。注意到得出的结果将和场的大小没有关系——显然，处在第一激发态的氢
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原子可以具有恒定的电偶极矩。 

提示：这个问题中有很多积分要计算，但是几乎所有的积分都为零。所以在你计算积分

前，要仔细观察每一个积分项：如果φ积分为零，那么无需计算 r 和θ 的积分！部分答

案： 13 31 ext3W W eaE= = − ；其他所有元素都为零。 

***习题 6.37 考虑氢原子 n=3 时的斯塔克效应（习题 6.36）.开始时共有九个简并态， 3lmψ （和以

前一样，我们忽略了自旋。），然后加上一个沿 z 轴的电场。 

     （ a ）构造 9 9× 的矩阵表示出扰动矩阵。部分答案： 300 | | 310 3 6z a< >= − ， 

310 | | 320 3 3z a< >= − , 31 1| | 32 1 (9 / 2)z a< ± ± >= − 。 

     （b）找出本征值和它们的简并度。 

习题 6.38 计算基态（n=1）氘原子的超精细跃迁所释放出的光子的波长，以厘米为单位。氘原子是

“重的”氢原子，它的核中多出来一个中子；质子和中子结合在一起形成了氘核，它的自旋为 1，

磁矩为： 

 

它的 g 系数为 1.71。 

***习题 6.39 在晶体中，某个原子相邻离子的电场将对它的能级形成扰动。作为一个较为粗略的模

型，假设一个氢原子被三对点电荷包围，如图 6.15 所示.（自旋和这个问题是没有什么关系的，

所以我们将其忽略。） 

    （a）假设 1 2 3, ,r d r d r d� � � ，证明： 

 

其中， 
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（b）给出基态能量的最低级修正。 

     （c）分别计算以下几种情况下的第一激发态（n=2）能量一级修正。该四重简并系统将分裂

为几个能级：（i）立方对称， 1 2 3β β β= = ；（ii）四方对称， 1 2 3β β β= ≠ ；（iii）一般

的正交对称（三个都不相同）。 

 

图 6.15：被六个点电荷包围的氢原子（晶格的粗略模型）；习题 6.39。 

***习题 6.40 有时候我们能够直接求解 6.10 式，而不需要将
1
nψ 用无微扰时的波函数（6.11 式）展

开。这里有两个非常好的例子： 

     （a）氢原子基态的斯塔克效应 

         （i）找出位于恒定外电场 extE 中的氢原子基态能量的一级修正（斯塔克效应——见习题

6.36）。提示：尝试如下形式的解： 

（
2 /( ) cos ;r aA Br Cr e θ−+ + ） 

你的任务是找出常数 ,A B和C 是上式满足 6.10 式。 

         （ii）利用 6.14 式确定基态能量的二级修正（在问题 6.36（a）中我们已经知道它的一级

修正为零）。答案：
2 2

ext(3 / 2 )m a eE− = 。 

     （b）如果质子有电偶极矩 p，氢原子中电子的势能将受到如下大小的扰动： 

2
0

cos' .
4
epH

r
θ

πε
= −  
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         （i）求解 6.10 式，得到基态波函数一级修正。 

         （ii）证明原子总的电偶极矩在一级近似下（令人吃惊的）为零。 

         （iii）利用 6.14 式确定基态能量的二级修正。一级修正是多少呢？ 
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第七章                                                                   

变分原理 
 
 
 

7.1 理论                                                                  
 
 假设你想计算一个体系的基态能量 Egs，体系用哈密顿量描述，但是你不能从（定态）薛定

谔方程求解。变分原理将给你 Egs 的一个上限。有时你所需的也仅仅是这个上限，而且通常

如果你巧妙的运用变分原理，这个上限将非常的接近精确值。下面介绍它的原理：选取任意

归一化函数ψ ，我断言  

 

                       gsE H Hψ ψ≤ ≡
                    [7.1]  

 
也就是说，在ψ态（可假定不正确）下，Ｈ的期望值必高估于基态能量。当然，如果ψ恰好

是某一激发态， H 显然大于 Egs；关键点是要对于任意的ψ 都成立。 

    证明：因为 H（未知）的本征函数组成一个完全集，所以我们可以将ψ表示成它们的线

性组合：
1 

 

n n
n

cψ ψ=∑ ，其中 n n nH Eψ ψ= . 

因为ψ 是归一化的，所以 

 

21 m m n n m n m n n
m n m n n

c c c c cψ ψ ψ ψ ψ ψ∗= = = =∑ ∑ ∑∑ ∑
, 

(假定本征函数已是正交归一的： m n mnψ ψ δ= ）。我们有， 

 

2
m m n n m n n m n n n

m n m n n

H c H c c E c E cψ ψ ψ ψ∗= = =∑ ∑ ∑∑ ∑
。 

而由定义可知基态能量是最小的本征值，所以 gs nE E≤ ，因此 

2
gs n gs

n
H E c E≥ =∑

， 

                                                        
1如果哈密顿量允许有散射态，也允许有束缚态的话，那么我们将不仅需要做积分同时也需要求和，但是论

证方法是不变的。 
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这就是我们试图要证明的。 

 

 

例题 7.1  假设我们想求解一维简谐振子的基态能量： 

2 2
2 2

2

1
2 2

dH m x
m dx

ω= − +
。 

当然,我们已经知道这种情况的精确解（式 2.61）：
(1 2)gsE ω=

；但它不失为验证这个方

法的一个很好的例子。我们可以选取高斯函数作为我们的试探波函数， 

                            

2

( ) bxx Ae−Ψ = ，                          [7.2]          

其中 b 为常数，A 由归一化决定： 

             

2
1 4

2 22 21
2

bx bA e dx A A
b
π

π
∞ −

−∞

⎛ ⎞= = ⇒ = ⎜ ⎟
⎝ ⎠∫

               [7.3] 

现在 

                           
H T V= +

  ，                         [7.4] 

其中，在这种情况下， 

               

2 2
2 2 2

2
2 ( )

2 2
bx bxd bT A e e dx

m dx m
∞ − −

−∞
= − =∫

              [7.5] 

2
2

22 2 21
2 8

bx mV m A e x dx
b
ωω

∞ −

−∞
= =∫

, 

 

所以 

                          

2 2

2 8
b mH

m b
ω

= +
                         [7.6] 

    根据式 7.1，对任意 b， H 必大于等于 Egs。为了得到最佳上限，我们求 H 的最小值： 

2 2

2 0
2 8 2

d m mH b
db m b

ω ω
= − = ⇒ =

 

将此式代回 H ，我们得到 

                               
min

1
2

H ω=
                           [7.7] 

在这个例题中我们得到准确的基态能量，因为（明显地）我“恰巧”准确地选取实际基态的

形式（2.59 式）作为试探函数。虽然高斯函数与真正的基态波函数非常不同，但是高斯函

数很容易处理，所以它是很常见的试探函数。 
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例题 7.2  假设我们求解处于δ函数势场的基态能量： 

2 2

2 ( )
2

dH x
m dx

αδ= − −
 

我们依然知道精确解（式 2.129）：
2 2/ 2gsE mα= − 。我们再次用高斯试探函数（7.2 式）。

我们已经进行了归一化并有计算好了 T ；我们所需要的仅仅是： 

22 2 2( )bx bV A e x dxα δ α
π

∞ −

−∞
= − = −∫

 

显然， 

                             

2 2
2

b bH
m

α
π

= −
                      [7.8] 

而且我们知道对所有的 b， H 大于 Egs. 求它的最小值， 

2 2 2

4

20
2 2

d mH b
db m b

α α
ππ

= − = ⇒ =
 

所以 

                               

2

2min

mH α
π

=
                         [7.9] 

这仍然大于 Egs，因为 2π > 。 

 

 

    我曾说过你可以使用任意的（归一化的）试探函数ψ，而这在某种意义上是正确的。但

是对于非连续函数，它就需要一些技巧，这样才能使二次微分赋予切合实际的意义（你需要

这个去计算 T ）。但是有扭折的连续函数只要你小心的处理还是可以的。下一个例子就展

示了如何处理这种问题。
2
 

 

例 7.3  计算一维无限方势阱的基态能量的上限，取三角形函数为试探波函数（图 7.1）:
3 

                    

,           0 2
( ) ( ),   2

0 ,           

A x x a
x A a x a x aψ

≤ ≤⎧
⎪= − ≤ ≤⎨
⎪
⎩ 其 它 地 方

              [7.10] 

其中 A 由归一化决定： 

                                                        
2一些有趣的例子见 W.N.Mei,Int.J.Educ.Sci.Tech.30, 513(1999)。 
3这里的试探函数中没有任何一点在势阱之外（如高斯势一样），因为那里你将得到 V = ∞， 7.1 式将给

不出任何结果。 
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322 22 2

0 2

2 31 [ ( ) ]
12

a a

a

aA x dx a x dx A A
a a

= + − = ⇒ =∫ ∫
         [7.11]  

 

 
图 7.1：无限方势阱的三角试探波函数（7.10 式） 

 

 

图 7.2： 7.1 图中的波函数的微分. 

 

在这种情况下 

,         0 2
,       2

0,       

A x a
d A a x a
dx
ψ

< <⎧
⎪= − < <⎨
⎪
⎩ 其它地方

 

如图 7.2 所示。现在，一个阶跃函数的微分是一个δ函数（见习题 2.24（b））： 

                    

2

2 ( ) 2 ( 2) ( )d A x A x a A x a
dx
ψ δ δ δ= − − + −

            [7.12]  

因此 
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2

[ ( ) 2 ( 2) ( )] ( )
2

AH x x a x a x dx
m

δ δ δ ψ= − − − + −∫
 

            

2 2 2 2

2

12[ (0) 2 ( 2) ( )]
2 2 2

A A aa a
m m ma

ψ ψ ψ= − + = =
             [7.13] 

其基态能量的精确值为
2 2 2/ 2gsE maπ= （2.27 式），所以变分原理有效

2(12 )π> 。 

 

    变分原理非常有力，而且使用起来也非常容易。某个物理化学家想找到某些复杂分子的

基态能量只需写下有大量可调参数的试探波函数，计算 H ，然后调整参数得到最小可能

值。即使ψ 与真正的基态没有一点相似一处，你通常会得到不可思议的 Egs 的精确值。当然，

如果你能够通过某种方式能猜到真实的ψ ，那就更好了。这种办法唯一的困惑就是你不能

确定你离目标有多远，你所有能确定的只是你得到了一个上限。
4
另外，正如它所假设的，

这个办法只适用于基态的处理（但是,请参看习题 7.4）.
5 

 

*习题 7.1 取高斯函数试探函数（7.2 式）求以下两种情况的基态能量的最优上限。（a）线

性势能: ( )V x xα= ；（b）四次方势能:
4( )V x xα= 。 

                                                                                 

 

**习题 7.2 求一维简谐振子的 gsE 的最优上限，取以下形式的试探波函数， 

2 2( ) Ax
x b

ψ =
+ ， 

其中 A 由归一化所决定，b 是可调参数。 

                                                                                  

 

习题 7.3 求处于δ函数势的 gsE 的最优上限： ( ) ( )V x xαδ= − ，取三角形函数为试探函数

（7.10 式，不过现在中心在原点）. 取a 为可调参数。 

                                                                                   

 

习题 7.4 

（a）证明下面关于变分定理的推论：如果 0gsψ ψ = 则 feH E> ，其中 feE 是第一激发

                                                        
4在实践中，这并不是一个限制。有时，有多种方法估算精确度。以这种方法计算出氦的基态可以精确到许

多数位⎯例如,参见 G. W. Drake et al., Phys.Rev.A 65,054501(2002), 或参见 Vladimir I. Korobov，Phys.Rev.A 
66，024501（2002）。 
5关于计算激发态能量的变分原理体系的延伸的例子参见 Linus Pauling 和 Bright Wilson 的

Introduction to Quantum Mechanics, With Applications to Chemistry, McGraw-Hill, New 

York(1935,1985 简装版），26 节。 
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态的能量。 

    因此，如果我们可以找到一个试探函数和严格的基态正交的话，我们就能得到第一激发

态的上限。一般来说，很难保证ψ 与 gsψ 是正交的，因为（假定地）我们并不知道后者。然

而，如果势能 ( )V x 是 x 的偶函数，则基态很可能是偶函数的。因此任意试探奇函数将自动

满足推论的条件。 

（b）求一维简谐振子的第一激发态能量的最优上限，取以下函数为试探函数。 

2

( ) bxx Axeψ −=  

                                                                                

习题 7.5 

（a）用变分定理证明一级非简并微扰论永远高估了（或者说在任何情况下从未低估过）基

态能量。 

（b）由观点（a），你会期望基态的二级修正永远是负的。通过验证式 6.15 证明这种观点的

正确性。 

                                                                                 

 

 

7.2 氦原子基态                                                           

氦原子（图 7.5）由包含两个质子（当然有一些中子，但是我们的目标无关）的核子，和围

绕核子运动的两个电子组成。这个系统的哈密顿量为（忽略精细结构和很小的修正）： 

                 

2 2
2 2
1 2

0 1 2

2 2 1( ) ( )
2 4

eH
m r rπε

= − ∇ +∇ − + −
−r r1 2            [7.14] 

我们的问题是计算基态能量 gsE 。从物理的角度来说，这个能量代表了剥离两个电子所需的

能量。（给定 gsE 后就很容易算出移去一个电子所需的电离能——见习题 7.6）氦的基态能量

已经在实验室被非常精确的测量出来了： 

                          gs 78.975 E eV= − （实验值）               [7.15]  

这就是我们想从理论上得到的值。 
    有意思的是这样一个简单又重要的问题到目前为止没有一个准确的解决办法。6困难来

源于电子-电子的排斥作用， 

                          

2

0

1
4ee
eV
πε

=
−r r1 2                           [7.16]  

  

                                                        
6这里确实存在可解的三体问题，其中包含许多氦的定性特征，但是没有使用库仑势（见习题 7.17）。 
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图 7.3： 氦原子 

如果我们忽略这一项，则 H 可以分解成两个独立氢的哈密顿量（仅仅将核子的电量由 e 换

成 2e）；而精确解正是氢的波函数的乘积： 

                 
1 22( )

0 1 2 100 1 100 2 3

8( , ) ( ) ( ) r r ae
a

ψ ψ ψ
π

− +≡ =r r r r
             [7.17]  

其能量为 18 109 E eV= − （5.31 式）。
7
这与 79eV− 相差甚远，但这是我们的出发点。 

    为了得到 gsE 更好的近似，我们将应用变分原理，用 0ψ 作为试探波函数。这是非常方

便的选择，因为它是哈密顿量中一大部分的本征函数： 

                           0 1 0(8 )eeH E Vψ ψ= +
                       [7.18] 

所以 

                           18 eeH E V= +
                           [7.19]  

其中
8
 

                   

4( )1 22
2 3 3

1 23
0

8( )( )
4

r r a

ee
e eV d d

aπε π

− +

=
−∫ r r

r r1 2                 [7.20] 

我将先对 2r 积分；这时取 1r 是固定的，我们选取 2r 的坐标系，使其极轴与 1r 重合（图 7.4）。

由余弦定理得 

                       
2 2

1 2 1 2 22 cosr r r r θ− = + −r r1 2                    [7.21]  

因此 

      

2 24 4
3 2

2 2 2 2 2 2 22 2
1 2 1 2 2

sin
2 cos

r a r ae eI d r r dr d d
r r r r

θ θ φ
θ

− −

≡ =
− + −

∫ ∫r r1 2
        [7.22]  

                                                        
7这里 a是寻常波尔半径且

213.6 /  eVnE n= − 是第 n级波尔能量； 对于原子序数为 Z的原子，

2
n nE Z E→ 及 /a a Z→ （习题 4.16）。对应 7.17 式相关的自旋组态将是反对称的（单态）。 

8如果你喜欢可以将式 7.20 理解为一阶微扰理论，即
'

eeH V= 。但是我却认为这样是对微扰论的误用，因

为这里微扰势和非微扰势可以相比拟。因此我更偏向于把它作为一个变分计算， 在这里我们期望一个 gsE
的一个上限。 
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对 2φ 的积分很普通（2π），对 2θ 的积分为 

2 2
1 2 1 2 22

22 20
1 21 2 1 2 2 0

2 cossin
2 cos

r r r r
d

r rr r r r

π
π θθ θ

θ

+ −
=

+ −
∫

 

 

图 7.4 对 r2积分的坐标取向（式 7.20） 

 

2 2 2 2
1 2 1 2 1 2 1 2

1 2

1 ( 2 2 )r r r r r r r r
r r

= + + − + −
 

            

1 2 1
1 2 1 2

2 2 11 2

2 ,            1 [( ) ]
2 ,            

r r r
r r r r

r r rr r
<⎧

= + − − = ⎨ >⎩

如果

如果
               [7.23] 

这样 

1
2 2

1

4 42
2 2 2 2 20

1

14 ( )
r r a r a

r
I e r dr e r dr

r
π

∞− −= +∫ ∫
 

                      

1

3
41

1

2[1 (1 ) ]
8

r ara e
r a

π −= − +
                        [7.24] 

    我们得到 eeV 应等于 

1 1

2
4 41

1 1 1 1 13
0

28( )( ) [1 (1 ) ] sin
4

r a r are e e r dr d d
a a

θ θ φ
πε π

− −− +∫
 

 

角积分是容易的（为 4π），对 1r 的积分为 
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2 2
4 8

0

2 5[ ]
128

r a r ar are r e dr
a

∞ − −⎛ ⎞
− + =⎜ ⎟
⎝ ⎠

∫
 

最后得： 

                     

2

1
0

5 5 34
4 4 2ee

eV E eV
a πε
⎛ ⎞

= = − =⎜ ⎟
⎝ ⎠                 [7.25] 

所以 

                       
109 34 75H eV eV eV= − + = −

                 [7.26]  

这结果还不错（记得实验值是-79eV）。但是我们还能做的更好。 

    我们需要想到一个比 0ψ (它将两个电子处理成它们之间没有任何相互作用）更真实的试

探函数，而不是完全忽视另一个电子的影响。我们设想：平均来说，每个电子表现为一个负

电的电子云，这将部分地屏蔽核子，所以另一个电子实际上感受到的有效核子的电量（Z）

在某种程度上要比 2 小。这启发我们用以下形式的试探函数： 

                           
( ) ( )1 2

3

1 1 2 3, Z r r aZ e
a

ψ
π

− +≡r r
                    [7.27] 

我们将 Z 视为变参数，改变它可使 H 取最小值。（请注意在变分法中我们从未涉及到哈密顿

量本身——氦的哈密顿量还是保持式 7.14 的形式。但是把优化试探波函数认为是一种趋近

哈密顿量的方法不失为一种好想法。 

    这个波函数是“非微扰”哈密顿量的本征态（忽略电子的排斥作用），仅是在库仑部分

用 Z 而不是 2。在这种思想的指导下我们把 H 重新写成以下形式： 

( )
2 2

2 2
1 2

0 1 22 4
e Z ZH

m r rπε
⎛ ⎞

= − ∇ +∇ − +⎜ ⎟
⎝ ⎠  

                         

( ) ( )2

0 1 2 1 2

2 2 1
4

Z Ze
r rπε

⎛ ⎞− −
+ + +⎜ ⎟⎜ ⎟−⎝ ⎠r r

           [7.28] 

很明显，H 期望值是： 

        

( )
2

2
1

0

12 2 2
4 ee

eH Z E Z V
rπε

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠                      [7.29] 

其中 1/ r 是（单粒子）氢基态ψ100（但是核子电量为 Z）中 1/r 的期望值。根据 6.55 式， 

                               

1 Z
r a

=
                             [7.30] 

Vee的期望值除了不是 Z＝2，其他和原来完全一样（式 7.25），现在 Z 是任意数，所以我们

将 a 乘以 2/Z： 

                   

2

1
0

5 5
8 4 4ee
Z e ZV E
a πε
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠                        [7.31] 
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将所以的都和在一起，我们得到： 

     
( ) ( ) ( )2 2

1 12 4 2 5 4 2 27 4H Z Z Z Z E Z Z E⎡ ⎤ ⎡ ⎤= − − − = − +⎣ ⎦ ⎣ ⎦        [7.32] 

    根据变分原理这个值对于任何 Z 值都大于 Egs，当 H 取值最小时得到最低的上限： 

( ) 14 27 4 0d H Z E
dZ

= − + =⎡ ⎤⎣ ⎦
 

由此我们得到： 

                                

27 1.69
16

Z = =
                        [7.33] 

这看起来是合理的；它告诉我们其中一个电子部分的屏蔽了核子，使核子的有效电量从 2

降低至 1.69。以这个值作为 Z 的值，我们得到  

                      

6

1
1 3 77.5
2 2

H E eV⎛ ⎞= = −⎜ ⎟
⎝ ⎠                       [7.34] 

    利用包含更多的的可调参数的更复杂的试探波函数，氦的基态可以计算的更精确。
9 
但

是我们已和正确值仅相差 2%，而且坦白地说，我对此已经不太感兴趣。
10
 

                                                                                  

 

习题 7.6 取氦的基态能量为 Egs=-79.0eV，计算电离能（仅移走一个电子所需的能量）。提示：

先计算只有一个电子绕核子运动的氦离子，He+的基态能量，然后两个能量相减。 
                                                                                    
 

*习题 7.7 将本节的方法应用到
-H 和 Li+离子（与氦类似, 它们都含有两个电子，仅核电荷分

别是 Z=1 和 Z=3）分别求出有效（部分屏蔽）核电荷和并由此决定的 Egs的最优上限。注：

在 H-的情况中，你会发现 13.6H eV> − （），这说明这里根本没有任何束缚态。因为从能

量上看，这利于一个电子脱离核子的束缚，留下中性的氢原子。这完全不吃惊，因为电子在

这种情况中受核子的吸引要比在氦中小的多，而且电子的排斥作用趋向于瓦解原子。但是，

这个结果是不正确的。用更精准的试探波函数（见习题 7.18）结果求得为 gs 13.6E eV< − ，

也就是说束缚态确实存在。但是它仅刚刚能束缚，而且没有激发束缚态，11 所以 H-没有分

立的光谱（所有的跃迁自始至终都是连续的）。结果是尽管它在太阳表面大量存在，但是在

实验室里很难研究它。12 
                                                                                 
 

                                                        
9经典研究参见 E. A. Hylleraas, Z. Phys. 65, 209(1930)和 C. L. Pekeris, Phys. Rev. 115, 1216(1959)。更多近期工

作参见脚注 4。 
10取与基态正交的试探波函数，氦的第一激发态基本可以同样的方法求得。 
11 Robert N. Hill, J. math. Phys. 18,2316(1977) 
12更进一步的讨论参见Hans A. Bethe和Edwin E. Salpeter的著作Quantum Mechanics of One and Two-Electron 
Atoms, Plenum, New York (1977),  34 节 
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7.3 氢分子离子                                                           

变分原理地另一个经典应用是处理氢分子离子，
+
2H ，它由两个质子和在它们的库仑场中运

动的一个电子组成（图 7.5）。我首先假设两个质子是固定的，相距为 R，在计算中会顺带算

出 R 的实际值。哈密顿量为： 

                    

2 2
2

0 1 2

1 1
2 4

eH
m r rπε

⎛ ⎞
= − ∇ − +⎜ ⎟

⎝ ⎠                      [7.35]  
其中 r1 和 r2 是电子分别距两个质子的距离。如前所示，我们的方法是先猜测一个合理的试

探波函数，应用变分原理求基态能量的上限。（事实上，我们主要的兴趣是看看这个系统是

否有束缚，也就是说看看它的能量是不是要比中性的氢原子加上一个自由质子的能量和还要

低。如果我们的试探函数预示确实存在束缚态，则更好的试探函数只能预示出这个束缚更

强。） 

    为了建立试探波函数，设想该离子的组成是一个氢原子处于它的基态（4.80 式）： 

                      

( )0 3

1 r ae
a

ψ
π

−=r
                             [7.36] 

而从无穷远处引入第二个质子，将它固定在与第一个质子相距为Ｒ处。如果Ｒ明显的大于波

尔半径，则电子的波函数可能变化很小。但是我们想同等地处理两个质子，因为电子和这两

个质子相互作用是相同的。这提示我们考虑以下试探函数的形式：  

                       
( ) ( )0 1 0 2A r rψ ψ ψ= +⎡ ⎤⎣ ⎦                        [7.37] 

（量子化学家称此为原子轨道函数线性组合法（LCAO），因为我们将分子的波函数表达为

两个原子轨道的线性组合。） 

图 7.5 氢分子离子，
+
2H 。 

 
    我们第一个任务是归一化试探函数： 

2 223 3
0 11 ( )d A r dψ ψ⎡= ⎢⎣∫ ∫r = r

 

                        
( ) ( )

2 3 3
0 2 0 1 0 2( ) 2r d r r dψ ψ ψ ⎤+ + ⎥⎦∫ ∫r r

          [7.38] 

前两个积分是 1（因为 0ψ 自身是归一化的）；而第三个较难处理。 
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令 

            
( ) ( ) ( )1 2 3

0 1 0 2 3

1 r r aI r r e d
a

ψ ψ
π

− +≡ = ∫ r
                    [7.39] 

选取坐标系使质子 1 在坐标原点，质子 2 在 z轴 R 点处（图 7.6），我们有： 

             1r r=
和

2 2
2 2 cosr r R rR θ= + −

                         [7.40] 

因此 

            

2 2 2 cos 2
3

1 sinr a r R rR aI e e r drd d
a

θ θ θ φ
π

− − + −= ∫
                [7.41] 

 

图 7.6 计算 I 所选取坐标系（式 3.9） 

 

 

φ的积分是平凡的（2π）。为对θ积分，令 

2 2 2 cosy r R rR θ≡ + − ，则
( )2 2 2 sind y ydy rR dθ θ= =

 

那么 

           

2 2 2 cos

0

1sin
r Rr R rR a y a

r R
e d e ydy

rR
π θ θ θ

+− + − −

−
=∫ ∫

 

                              

( ) ( ) ( )r R ar R aa e r R a e r R a
rR

− −− +⎡ ⎤= − + + − − +⎣ ⎦
 

现在 r 的积分就变得直截了当了： 

( ) ( )2
2 0 0

2 RR a r a R aI e r R a e rdr e R r a rdr
a R

∞− − −⎡= − + + + − +⎣ ∫ ∫
( ) 2R a r a

R
e r R a e rdr

∞ − ⎤+ − + ⎥⎦∫
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计算上述积分（经过某些代数化简）我们得到，  

                    

211
3

R a R RI e
a a

−
⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦                        [7.42] 
I 称为交叠积分,它衡量的是 ψ0（r1）与 ψ0（r2）交叠的程度（注意当 0R → 时，它趋于 1，

而且当 R →∞它趋于 0）。根据Ｉ，归一化因子（式 7.38）为： 

                           

2 1
2(1 )

A
I

=
+                               [7.43] 

    然后我们必须计算在试探态ψ中 H 的期望值。注意到： 

( ) ( )
2 2

2
0 1 1 0 1

0 1

1
2 4

e r E r
m r

ψ ψ
πε

⎛ ⎞
− ∇ − =⎜ ⎟
⎝ ⎠  

（其中 1 13.6E eV= −
，是氢原子基态能量）由 r2代替 r1 结果一样，我们有 

( ) ( )
2 2

2
0 1 0 2

0 1 2

1 1( ) [ ]
2 4

eH A r r
m r r

ψ ψ ψ
πε

⎛ ⎞
= − ∇ − + +⎜ ⎟

⎝ ⎠

( ) ( )
2

1 0 1 0 2
0 2 1

1 1( )[ ]
4

eE A r r
r r

ψ ψ ψ
πε

= − +
 

由此得到 

 

2
2

1 0 1 0 1 0 1 0 2
0 2 1

1 12 ( )[ ( ) ( ) ( ) ( )
4

eH E A r r r r
r r

ψ ψ ψ ψ
πε

= − +
            [7.44] 

余下的两个值由你们自己计算，一个称为直接积分， 

                         
0 1 0 1

2

1( ) ( )D a r r
r

ψ ψ≡
                      [7.45]  

另一个称为交换积分， 

                       
0 1 0 2

1

1( ) ( )X a r r
r

ψ ψ≡
                      [7.46] 

结果（见习题 7.8）是 

                       

2(1 ) R aa aD e
R R

−= − +
                         [7.47] 

和 

                          
(1 ) R aRX e

a
−= +

                           [7.48] 

    将所有的都代入，而（4.70 式和 4.72 式）
2

1 0( 4 )(1 2 )E e aπε= −
，我们得到： 
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1

( )[1 2 ]
(1 )
D XH E

I
+

= +
+                         [7.49] 

根据变分原理，基态能量比
H

小。当然，这仅仅是电子的能量-这里应还有有关质子与质

子相排斥的势能： 

                       

2

1
0

1 2
4pp

e aV E
R Rπε

= = −
                        [7.50] 

令 x R a≡ ，以-E1 为单位表示能量，因此系统的总能量，小于 

              

( )( ) ( )
( )( )

2 2

2

1 2 3 12( ) 1
1 1 1 3

x x

x

x e x e
F x

x x x e

− −

−

⎧ ⎫− + +⎪ ⎪= − + ⎨ ⎬
+ + +⎪ ⎪⎩ ⎭             [7.51] 

这个函数作图于图 7.7。明显地，束缚确实存在，因为这存在一个区域，在这个区域里图像

低于-1，表明能量小于一个中性原子加上一个自由质子能量（-13.6eV）的和。这是一个共

价键，其中一个电子被两个质子平等的共享。质子间的平衡距离大概为 2.4 个玻尔半径，即

1.3Å（实验值是 1.06Å）。 

 

图 7.7 函数 F（x）（7.51 式）的图像，表明束缚态的存在（x 为质子间距，单位为玻尔半径） 

 

计算的束缚能量是 1.8eV，而实验值是 2.8eV（变分原理一如既往的高估了基态能量，因此

低估了束缚的强度-但是不要介意：关键点是看看束缚是否存在，一个更好的变分函数只能

使得势阱更深。 

                                                                                 

 

*习题 7.8 求 D 和 X（式 7.45 和 7.46）。与式 7.47 和 7.48 对比你的结果。 
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**习题 7.9 假设我们在我们的试探波函数（式 7.37）中使用负号： 

                  
( ) ( )0 1 0 2A r rψ ψ ψ= −⎡ ⎤⎣ ⎦                              [7.52]  

在这种情况下，无需做任何新的积分，（类比式 7.51）求 F（x）并作图。证明这种情况时没

有束缚态。
13
（因为变分原理仅仅给出上限，这并不能证明这种情况不能产生束缚。但是它

看起来没有希望。）注：事实上，任何以下形式的函数： 

                  
( ) ( )0 1 0 2

iA r e rφψ ψ ψ⎡ ⎤= −⎣ ⎦                             [7.53] 
都有想要的性质，也就是电子相对于任一个质子地位相等。但是因为哈密顿量在交换算符 P：

1 2r r↔
下是不变的，所以它的本征函数同时可以作为 P 的本征函数。正号（式 7.37）给出

本征值+1，而负号（式 7.52）的本征值是-1。考虑更一般的情况（式 7.53），得不到新结果，

但是如果你感兴趣，欢迎你试试。 

                                                                                    

 

***习题 7.10 在平衡点处，由 F（x）的二阶导数可估算氢分子离子中两个质子振动的固有

频率（ω）（见 2.3 节）。如果这个振子的基态能量 ( 2)ω 超过系统的束缚能，那么它将分

离。证明实际上振动能量足够小，所以这种情况不会发生，并估算束缚振动能级有多少。注

意，你可能得不到最小值的位置，解析上在此点缺少二阶导数。用电脑算出数值。 

                                                                                   

 

第七章补充习题                                                          

 

习题 7.11 

（a）取以下试探波函数的形式： 

( )
cos( ),   ( 2 2)

{
0,           

A x a a x a
x

π
ψ

− < <
=

其它地方  

求一维简谐振子的基态能量。 a 的“最优”值是多少？对比 min
H

与准确能量。注意：这

个试探函数在 2a± 处有一个“拐点”（微分不连续），你需要像我在例题 7.3 中所做的那样

考虑到这一点吗？ 

（b）在区间（-a，a）中取 ( ) sin( )x B x aψ π= ，求解第一激发态的上限。与准确值做对比。 

                                                                                 

 

**习题 7.12 

（a）推广习题 7.2，对任意 n，取如下试探波函数。
14 

                                                        
13束缚出现在当电子“喜欢”在质子中间的情况下，吸引它们靠近。但是奇的线性组合（式 7.52）在中心有一

个节点，所以这种组态使得两个质子分离也就不奇怪了。 
14 W. N. Mei, Int. J. Educ. Sci. Tech. 27, 285 (1996) 
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( )2 2
( ) n

Ax
x b

ψ =
+

 

部分答案：b的最优值为： 

1 2
2 (4 1)(4 3)

2(2 1)
n n nb

m nω
⎡ ⎤− −

= ⎢ ⎥+⎣ ⎦  

（b）求简谐振子第一激发态最小上限，取试探波函数： 

( )2 2
( ) n

Bxx
x b

ψ =
+

 

部分答案：b的最优值为： 

1 2
2 (4 5)(4 3)

2(2 1)
n n nb

m nω
⎡ ⎤− −

= ⎢ ⎥+⎣ ⎦  

（c） 注意到当 n →∞时上限值趋于准确能量。为什么会这样？提示：对 n=2，n=3 和 n=4

的试探波函数分别作图，并将它们与真实波函数（式 2.59 和 2.62）做对比。由等式 

lim 1
n

z

n

ze
n→∞

⎛ ⎞= +⎜ ⎟
⎝ ⎠  

开始分析。 

                                                                                

 

习题 7.13 使用高斯试探波函数求氢基态的最低上限值， 

( ) brAeψ −=r
 

其中 A 由归一化决定，b是可调参数。答案：-11.5eV 

                                                                                 

 

**习题 7.14 如果光子的质量非零
( 0)mγ ≠ ，则库仑能可由汤川势（Yukawa potential）所

取代， 

                             

( )
2

04

re eV
r

μ

πε

−

= −r
                       [7.54] 

其中
m cγμ =

。用你自己选用的试探波函数，估算这种势下“氢”原子的束缚能。假设

1aμ ，给出你的结果，精确至（μa）2 级。 

                                                                                   

 

习题 7.15 假设给你一个量子系统，它的哈密顿量 H0 仅有两个本征态，ψa（能量为 Ea）和 

ψb（能量为 Eb）。它们是正交归一的并且非简并（假设 Ea是两个能量中较小的那个）。现在

我们引入一个微扰
'H ，具有下列矩阵元素。 
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' ' ' '0;a a b b a b b aH H H H hψ ψ ψ ψ ψ ψ ψ ψ= = = =

          [7.55] 

 其中 h 是某一指定常量。 

（a）求微扰哈密顿量的严格本征值。 

（b）用二次微扰理论估算微扰系统的能量。 

（c）用变分原理估算微扰系统的基态能量，取以下试探波函数 

                    
(cos ) (sin )a bψ φ ψ φ ψ= +

                          [7.56] 

其中φ为可调参数。注意：这种线性组合的方式是保证ψ是归一化的很方便的方式。 

（d）对比你的（a）、（b）和（c）的答案。为什么在这种情况下，变分原理得到的结果这么

准确？ 

                                                                                    

 

习题 7.16 作为习题 7.15 发展方法的一个明显的例子，考虑在均匀磁场
ˆ

zB k=B
中的一个

静止电子，其哈密顿量可写为（4.158 式）： 

                             
0

z
z

eBH S
m

=
                            [7.57] 

本征旋量为 aχ 和 bχ ， 4.161 式给出相应的能量为 aE 和 bE 。现在我们引入沿 x 方向的均匀

场作为微扰，微扰具有以下形式： 

                             

' x
x

eBH S
m

=
                            [7.58] 

（a）求
'H 的矩阵元，并证明它们有和 7.55 式一样的结构。h 是什么？ 

（b）利用习题 7.15（b）的结果，用二级微扰论求新的基态能量。 

（c）利用习题 7.15（c）的结果，用变分原理求基态能量的上限。 

                                                                                 

 

***习题 7.17 尽管氦本身的 Schrödinger 方程无法精确求解，但是存在着可以精确求解的“类

氦”体系。一个简单的例子15就是“橡皮带氦”，其中的库仑力被胡克定律力所取代： 

    

2
22 2 2 2 2 2

1 2 1 2 1 2
1( ) ( )

2 2 4
H m r r m

m
λω ω= − ∇ + ∇ + + − −r r

        [7.59] 

（a）将可变量 r1，r2 做如下代换 

                  
( ) ( )1 2 1 2

1 1,
2 2

≡ + ≡u r r v r - r
                      [7.60] 

 则哈密顿量变换为二个独立的三维简谐振子： 

                                                        
15
更多精巧的模型参见 R. Crandall, R. Whitnell, and R. Bettega, Am. J. Phys. 52, 438 (1984) 
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( )

2 2
2 2 2 2 2 21 1 1

2 2 2 2u vH m u m v
m m

ω λ ω
⎡ ⎤ ⎡ ⎤

= − ∇ + + − ∇ + −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦             [7.61] 

（b）这个系统精确的基态能量是多少？ 
（c）如果我们不知道精确解，我们倾向于将 7.2 节的方法应用到哈密顿量的原始形式（式

7.59）。请做（但是不考虑屏蔽）。你的结果和精确解符合的如何？答案：
( )3 1 4H ω λ= −

 

                                                                                 
 
***习题 7.18 在习题 7.7 中我们发现含屏蔽的试探波函数（7.27 式）在氦上应用的很好，

但是不适合证明负氢离子存在束缚态。Chandrasekhar
16
使用如下形式的试探波函数  

             
( ) ( ) ( ) ( )1, 2 1 1 2 2 2 1 1 2( ) A r r r rψ ψ ψ ψ ψ≡ +⎡ ⎤⎣ ⎦r r

                 [7.62] 

其中 

             
( ) 1

3
1

1 3
Z r aZr e

a
ψ

π
−≡

 和
( ) 2

3
2

2 3
Z r aZr e

a
ψ

π
−≡

              [7.63] 

为了更有效， 考虑到一个电子相对离核子更近一些，而另一个则稍远一些，他引入了两个

不同的屏蔽因子。（因为电子是全同粒子，所以空间波函数在变换下必须是对称的。而与现

在计算无关的自旋态则明显的是反对称的。）证明通过巧妙地选择可调参数 Z1 和 Z2，你可

以得到小于-13.6eV 的 H 。答案： 

8 7 6 2 5 2 3 4 6 81
6 6

1 1 1 11 12
2 2 8 8 2

EH x x x y x y x y xy y
x y

⎛ ⎞= − + + − − + −⎜ ⎟+ ⎝ ⎠  

其中 1 2 1 2, 2x Z Z y Z Z≡ + ≡
。Chandrasekhar 取 Z1=1.039（因为这个值大于 1，用它来解

有效核电荷有点问题，但是不用介意，它仍然是一个可接受的试探波函数）及 Z2=0.283。 

                                                                                 

 

习题 7.19 利用核聚变产生能量的关键问题是让两个粒子（例如氘核）靠的足够近使得核吸

引力（短程力）克服库仑排斥力。“推土机”方法就是将粒子加热至极高的温度，让无规碰

撞把它们拉在一起。一个更新奇的建议就是 μ催化，即我们建立一个“氢分子离子”，仅需要

把氘核取代质子，而一个 μ子取代那个电子。预测在这种结构中氘核间的平衡间距，并解释

为什么 μ子在此方面上优于电子。17 

                                                                                 

***习题 7.20 量子点。考虑一个粒子束缚在二维十字型区域内运动，如图 7.8 所示。十字

区的“臂”延伸至无穷远。在十字区内部势能为零，而在外部阴影区内势能为无穷大。令人

惊奇的是这种势能存在正的能量束缚态。
18
 

（a）证明能传播至无穷远的最小能量为： 

                                                        
16 S. Chandrasekhar, Astrophys. J. 100, 176 (1944) 
17μ催化聚变的经典著作是 J. D. Jackson, Phys. Rev. 106, 330 (1957)；更多近期流行评论参见 J. Rafelski and S. 
Jones, Scientific American, November 1987, page 84。 
18这个模型来源于 R. L. Schult et.al., Phys. Rev. B 39, 5476 (1989)。在量子遂穿存在时，经典束缚态可变成非

束缚的；反过来，一个经典非束缚态则可为量子束缚的。 
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2 2

28thresholdE
ma
π

=
 

任何能量解低于这个值都是束缚态。提示：沿着一个臂（例如 x a ）用分离变量法解

Schrödinger 方程。如果波函数可以传播至无穷远，那么依赖 x 的部分必须以 exp（ikxx）的

形式出现，其中
0xk >
。 

 
图 7.8： 习题 7.20 中的十字交叉区域 
 
（b）现在用变分原理证明基态能量小于 Ethreshold。应以下试探波函数（由 Krishna Rajagopal
提议）： 

( )

( )
( )
( )

21 ,   

1 ,   
,

1 ,   

0,                 

y a

x a

xy a e x a y a

x a e x a y a
x y A

y a e x a y a

α

α

α
ψ

−

−

−

⎧ − ≤ ≤
⎪
⎪ − ≤ >⎪= ⎨
⎪ − > ≤
⎪
⎪⎩

且

且

且

其它地方  
归一化求 A并计算 H 的期望值。答案： 

2 2

2

3 2 3
6 11

H
ma

α α
α

⎛ ⎞+ +
= ⎜ ⎟+⎝ ⎠  

现在根据α求最小值，并证明最小值小于 Ethreshold。提示：充分利用问题的对称性——你只

需对 1/8 的开区域积分就可以了，因为其他七个区域和它完全相同。注意尽管试探波函数是

连续的，但是它的导数却不连续——在“角线部分”x=0，y=0， x a= ± 和 y a= ± 处，你需

要应用例题 7.3 的技术。 
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第八章                                                      

WKB 近似 

 

WKB（Wenzel，Kramers, Brillouin）1方法是得到一维定态 Schrödinger 方程的近似解的一种

技术（它的基本思想同样可应用于许多其他形式的微分方程和三维 Schrödinger 方程的径向

部分）。此法对计算束缚态能量和势垒穿透率都是非常有用的。 

    它的基本思想如下：假设能量为 E 的粒子穿过势能 V(x)的区域，其中 V(x)为常量。当

E>V 时，则波函数的形式为 

( ) ikxx Aeψ ±=
，其中

( )2k m E V≡ − =
 

正号表示粒子向右运动，而负号表示它向左运动（当然，通解是两项的线性组合）。波函数

为振荡函数，具有固定的波长（λ=2π/k）和不变的振幅（A）。现在设想 V(x)不是一个常量，

但是变化相比 λ非常缓慢，因此包含许多全波长的区域中的势能可以认为基本上是不变的。

这样，除了波长和振幅随 x 缓慢的变化外，可以合理地认为 ψ 实际上仍然保持正弦形式。

这就是隐藏在 WKB 近似后面的核心思想。它将依赖 x 的问题有效地分为两种不同层次：快

速振荡和由振幅和波长逐渐变化的调制。 

    同理，当 E<V（其中 V 为常量）时，ψ的指数形式为： 

( ) xx Aeκψ =
其中

( )2m V Eκ ≡ − =
 

如果 V(x)不是常量，但是相比 1/κ 变化很缓慢，除了 A 和 κ 随 x 缓慢的变化外，则解可以

认为基本上仍然保持指数形式。 

    现在仍然有一处整个方法不适用的地方，这就是经典转折点的邻域，此处 E≈V。因为

此处的 λ（或者 1/κ）趋于无穷大，从而，相比之下 V(x)就很难说是“缓慢的”变化了。我

                                                        
1在荷兰此为 KWB，在法国此为 BWK，在英国此为 JWKB（J 为 Jeffreys） 



们将会看到，对于转折点的恰当地处理将是 WKB 近似最难的一个部分，尽管最终的结果形

式简洁并易于应用。 

 

8.1 经典区域                                                                   

定态 Schrödinger 方程 

( )
2 2

22
d V x E

m dx
ψ ψ ψ− + =

=
 

可以改写为下列形式： 

                              

2 2

2 2

d p
dx
ψ ψ= −

=                          [8.1] 

其中 

                         
( ) ( )2p x m E V x≡ −⎡ ⎤⎣ ⎦                      [8.2] 

这是具有总能量 E 和势能 V(x)的粒子的动量的经典表示式。此时， 我先假设
( )E V x>

，

因此 p(x)为实数；我们称这为 “经典”区域，由显而易见的理由⎯经典上粒子被束缚在这

个区域（见图 8.1）。一般的来说，ψ 是复函数， 我们可以用振幅 A(x)和相位 ( )xφ 来表示 ψ，

其中 A(x)和 ( )xφ 都是实数： 

                            ( ) ( ) ( )i xx A x e φψ =
                        [8.3] 

用撇号表示对 x 的导数，我们得到： 

( )' ' id A iA e
dx

φψ φ= +
 

和 

                 
( )

2 2'' ' ' '' '
2 2 id A iA iA A e

dx
φψ φ φ φ⎡ ⎤= + + −⎢ ⎥⎣ ⎦                 [8.4] 

 

 



 

图 8.1 经典上，粒子束缚在区域
( )E V x≥

 

代入 8.1 式得： 

                
( )

22'' ' ' '' '
22 pA iA iA A Aφ φ φ+ + − = −
=                     [8.5] 

此式等价于两个实数方程，一个为实部的等式，另一个为虚部的等式： 

           
( )

22'' '
2

pA A Aφ− = −
= ，或者

( )
22'' '
2

pA A φ
⎡ ⎤

= −⎢ ⎥
⎣ ⎦=               [8.6] 

和 

                 
' ' ''2 0A Aφ φ+ = ，或者

( )'2 ' 0A φ =
                     [8.7] 

   8.6 和 8.7 式与原先的 Schrödinger 方程完全等价。第二个方程很容易解出： 

                    
2 ' 2A Cφ =

，或者
'

CA
φ

=
                         [8.8] 

式中 C 为（实）常数。一般来说第一个方程很难求解⎯所以需要近似：我们假定振幅 A 的变

化非常缓慢，因此
''A 项可以忽略。（更准确地说，我们假定

''A A与 
( )2'φ

和
2 2p = 这两

项相比都非常小。）在此情况下，我们可以去掉 8.6 式的左边部分，我们只剩下 

( )
22'
2

pφ =
= ，或者

d p
dx
φ
= ±

=  



这样： 

                          
( ) ( )1x p x dxφ = ± ∫=                         [8.9] 

（我把它表示为不定积分，从现在起任何常数都可以吸收进 C 中，所以 C 可能变为复数。）

由此得出 

                        

( )
( )

( )i p x dxCx e
p x

ψ
± ∫≅ =

                      [8.10] 

（近似的）通解可表示成正负号不同的两个部分的线性组合。 

    注意到 

                            

( ) ( )

2
2 C

x
p x

ψ ≅
                          [8.11] 

这说明在 x 点处找到粒子的几率与它在此点处的（经典）动量（因此它的速度）成反比。这

就完全符合你的预期——粒子在运动快的区域停留时间短，因此在此处捕获它的几率也小。

事实上，WKB 近似有时是从这个“半经典”直觉开始推导，而不是在微分方程中忽略
''A

项。后一种探讨在数学上非常清晰，而前面在物理上更有教益。 

 

例题 8.1 垂直势阱。假设我们有一个无限深方势阱，底部崎岖不平（图 8.2）： 

( ) , 0
,

x a
V x

< <⎧
= ⎨

∞⎩

某些特殊的函数

其它地方
 



 

图 8.2：崎岖底部的无限方势阱 

 

在势阱内部（始终假定 E>V（x）），我们有： 

( )
( )

( ) ( )1 i x i xx C e C e
p x

φ φψ −
+ −

⎡ ⎤≅ +⎣ ⎦
 

或写为更方便的形式： 

                

( )
( )

( ) ( )1 2
1 sin cosx C x C x

p x
ψ φ φ≅ +⎡ ⎤⎣ ⎦

            [8.13] 

其中（由前述的积分常数自由性，对积分加上一个下限） 

                         
( ) ( )' '

0

1 x
x p x dxφ = ∫=                         [8.14] 

现在 ψ（x)在 x=0 处必为零，所以 C2=0（因为 ( ) 0xφ = ）。同样在 x a= 处 ψ（x)也为零，

所以 

                     
( )a nφ π=

     
( )1, 2,3,...n =

                  [8.15] 

结论： 

                          
( )

0

a
p x dx nπ=∫ =

                          [8.16] 

这个量子化条件决定了允许的（近似的）能量。 

    例如，如果势阱的底部是平坦的（V（x）=0），则 ( ) 2p x m E=
（一个常数），由



8.16 式知 pa nπ= =，即 

2 2 2

22n
nE

ma
π

=
=

 

这正是无限深方势阱的能级的表达式（2.27 式）。在这种情况下，WKB 近似得出准确解（真

实的波函数的振幅为常数，所以不考虑
''A 并没有任何影响） 

                                                                                

*习题 8.1 利用 WKB 近似求解“阶梯”型无限深方势阱，势阱底部前半段高出后半段 V0

（图 6.3）： 

( )
0 ,            0 2

0,           2
,        

V x a
V x a x a

< <⎧
⎪= < <⎨
⎪∞⎩ 其它地方

 

用 V0 和
( )20 22nE n maπ≡ =

（无阶梯的无限深方势阱的第 n 个允许的能级）表达你的结果。

假设
0
1 0E V>

，但是不能假设 0nE V�
。将你的结果与例题 6.1 中由一级微扰理论得出的结

果作比较。注意：如果当 V0 非常小（微扰论适用）或者当 n 非常大（WKB⎯半经典⎯区域）

时，它们的结论一致。 

                                                                                

 

**习题 8.2 另一种有教益的推导出 WKB 公式（式 8.10）的方法是基于按 =作幂级数展开。

由自由粒子波函数，
( )expA ipxψ = ± =

的启发，我们写出 

( ) ( )if xx eψ = =

， 

其中 f(x)为某个复数函数。（注意这里未失一般性——因为任意非零函数都可以写成这种形

式。） 

（a）将此式代入薛定鄂方程（8.1 式的形式），求得 

( )2'' ' 2 0i f f p− + ==
 



（b）将 f（x）按 =作幂级数展开： 

( ) ( ) ( ) ( )2
0 1 2f x f x f x f x= + + + ⋅⋅⋅= =

， 

然后比较=同幂次项的系数得： 

( )2' 2
0f p=

，
'' ' '

0 0 12if f f=
，

( )2'' ' ' '
1 0 2 12if f f f= +

，等等 

（c）解出 0 ( )f x 和 1( )f x ，并证明近似到 =一次项你可以重新得到式 8.10。 

注意：负数的对数定义为
( ) ( )ln lnz z inπ− = +

，其中 n为奇数。如果整个方程对你来说很

陌生，试着两边同时指数化，然后你就知道它如何得出的。 

                                                                                

 

8.2 隧道效应                                                          

目前为止，我已经假定 E>V，因此 p(x)为实数。但是我们可以很容易地写出非经典区域（E<V）

相应的结果——它与之前的式子（式 8.10）相同，只是现在 p(x)为虚数：2 

                       

( )
( )

( )1 p x dxCx e
p x

ψ
± ∫≅ =

                       [8.17] 

    例如，考虑粒子被一个方势垒散射问题，势垒顶部崎岖不平（图 8.3）。在势垒左边（x<0）， 

                        ( ) ikx ikxx Ae Beψ −= +
                          [8.18] 

其中 A 为入射振幅，B 为反射振幅， 2k mE≡ =（见 2.5 节）。在势垒右边（x>a）， 

                           ( ) ikxx Feψ =
                              [8.19] 

F 为透射振幅，透射几率为 

                             

2

2

F
T

A
=

                                [8.20] 

在遂穿区
( )0 x a≤ ≤

，WKB 近似给出  

                                                        
2在这种情况下，波函数是实数， 与 8.6 和 8.7 式类似式的导出没有必要必须从 8.5 式开始，尽管它们仍然

可以用。如果你感到困惑，研究一下习题 8.2 中的导出方法。 



          

( )
( )

( )

( )
( )' ' ' '

0 0

1 1x x
p x dx p x dxC Dx e e

p x p x
ψ

−∫ ∫≅ += =

                [8.21] 

 

图 8.3 崎岖顶部方势垒的散射 

 

图 8.4 一个又高又宽的势垒散射波函数的数值结构 

    如果势垒非常高并且/或者非常宽（也就是说，如果遂穿几率很小），那么指数增加部分

的系数（C）必须很小（事实上，如果势垒无限宽它将为零），波函数看起来像3图 8.4。入射

波和散射波的振幅比主要由非经典区域总的指数衰减所决定： 

( )' '
0

1 a
p x d xF

e
A

− ∫=∼
 

因此  

                       
2T e γ−≅ ，其中

( )
0

1 a
p x dxγ ≡ ∫=                 [8.22] 

                                                        
3这个启发式的讨论可以做的更严密一些——见习题 8.10 



                                                                                

例题 8.2 α 衰变的伽莫夫（Gamow）理论。
4 1928 年，George Gamow（还有 Condon 和

Gurney 分别独立的）使用 8.22 式第一次成功地解释了 α衰变（α粒子⎯由两个质子和两个

中子组成⎯由放射性原子核自发放射产生）。
5
因为α粒子带正电（2e），所以它将会被剩下

的核子电荷（Ze）所排斥，直到它跑到足够远而逃脱了核子的束缚力。但是它首先要克服一

个已知势垒，以铀为例，势垒大于发射 α 粒子能量的两倍。Gamow 把势垒近似为宽度为 r1

（即原子核半径）的有限方势阱（表示核子的吸引力）尾部再加上库伦排斥力部分（图 8.5），

并认为逃逸机理是量子遂穿效应（顺便说一下，这是量子力学第一次应用至核物理领域）。 

    如果 E为发射的 α粒子的能量，则外部的转折点（r2）由下式确定： 

                          

2

0 2

1 2
4

Ze E
rπε

=
                             [8.23] 

8.22 式中的指数 γ显然为
6 

2 2

1 1

2
2

0

1 1 2 22 1
4

r r

r r

rZe mEm E dr dr
r r

γ
πε

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
∫ ∫= =

 

                                                        
4一个更完整的讨论和另外的表述形式，参见 Barry R. Holstein, Am. J. Phys. 64, 1061 (1996) 
5一个有趣简短的历史参见 Eugen Merzbacher，“The Early History of Quantum Tunneling," Physics Today, 
August 2002, p. 44。 
6在这个情况下，势能在势垒的左边界处并不为零（此外，这实际上是一个三维问题），但是 8.22 式中的基

本思想才是我们所需要的。 



 

图 5: 一个α粒子处于放射核中的 Gamow 模型势. 

这个积分可作变量变换得出（令
2

2 sinr r u≡
），结果为 

               

( )1 1
2 1 2 1

2

2 sin
2

rmE r r r r
r

πγ −
⎡ ⎤⎛ ⎞

= − − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=
             [8.24] 

一般有， 1 2r r�
，我们可用小角度近似

( )sinε ε≅
简化上式： 

              
2 1 2 1 2 1

2 2
2

mE Zr rr K K Zr
E

πγ ⎡ ⎤≅ − = −⎢ ⎥⎣ ⎦=                [8.25] 

其中 

                    

2
1 2

1
0

2 1.980 eV
4

e mK Mπ
πε

⎛ ⎞
≡ =⎜ ⎟
⎝ ⎠ =

               [8.26]  

                    

1 22
1 2

2
0

4 1.485fm
4

e mK
πε

−⎛ ⎞
≡ =⎜ ⎟
⎝ ⎠ =                  [8.27] 

[一飞米（fm）等于 10-15米，是通常原子核的尺度。] 

    如果我们设想α粒子在以平均速度 v 在原子核内运动，与势垒壁碰撞的平均时间为

12r v
，则碰撞频率为 12v r

。每次碰撞的逃逸几率为
2e γ−
，因此单位时间内发射几率为

( ) 2
12v r e γ−

，因此母核的寿命大概为 



                               

212r e
v

γτ =
                           [8.28] 

遗憾地，我们不知道 v，但是这并不要紧，因为当我们从一个放射性原子核到另一个原子核，

指数因子在很大的范围内（25 个数量级）变化，而相比较下对 v 的变化就不敏感了。特别

地，如果将实验测定的寿命的对数值对1 E 作图，得到的结果是一条非常漂亮的直线（图

8.6），
7
正如你从 8.25 和 8.26 式所预期的那样。 

 

图 8.6：铀和钍的寿命对数/1 E 图像（其中 E 是发射的α粒子的能量） 

                                                                                

*习题 8.3 利用式 8.22 计算粒子的近似透射几率，粒子能量为 E，势垒高为 V0，宽为 2a。

将你的结果与准确解（习题 2.33）作对比，由 WKB 理论得出的结果在 1T � 时将会简化至

准确解。 

                                                                                

**习题 8.4 利用 8.25 和 8.28 式计算 U238 和 Po212的寿命。提示：核物质的密度相对为常量

                                                        
7引自 David Park, Introduction to the Quantum Theory, 第三版，McGraw-Hill（1992）；此改编自 I. Perlman and 
J. O. Rasmussen," Alpha Radioactivity," Encyclopedia of physics, Vol. 42, Springer (1957)。这个材料的使用经过

McGraw-Hill 公司的同意。 



（即所有的原子核都一样），所以
( )3

1r 经验上与 A（质子数加中子数）成比例。 

                         ( ) 1 3
1 1.07fmr A≅

                             [8.29] 

利用 Einstein 质能公式（
2E mc= ），可以得到发射α粒子的能量为： 

                     
2 2 2

p dE m c m c m cα= − −
                         [8.30] 

其中 mp是母核的质量，md是子核的质量，mα是 α粒子（也就是说，He4 原子核）的质量。

为了计算出子核是什么，注意到 α 粒子包含两个质子和两个中子，所以 Z 减少 2 而 A 减少

4。查找相应的核质量。对于估算 v，使用公式 ( ) 21 2E m vα=
；这忽视了原子核内的势能

（负值），一定低估了 v 值，但是这是我们在这个层次能做到的最好的。顺便说一下，实验

中两者的寿命分别为
96 10 yrs× 和 0.5μs。 

8.3 连接公式                                                           

到目前为止我假定了势阱（或者势垒）的壁为垂直的，所以“外部”解很简单，边界条件很

普通。不过，即使边界不那么陡峭，我们的主要结论（8.16 和 8.22 式）仍然是合理的（的

确，在 Gamow 理论中就是这种情况）。然而，更仔细地对波函数在转折点（E=V）处进行

研究将会更加有趣， “经典”区和“非经典”区在此处相接， WKB 近似不再适用。在这

一节我将讨论束缚态问题（图 8.1），你们自己处理散射问题（习题 8.10）。8 

                                                        
8注意：下面的讨论非常的有技巧，在第一次阅读时你可以跳过此部分。 



 

图 8.7： 右转折点的放大图 

    简单起见，我们移动坐标轴，使右转折点处在 x=0（图 8.7）。由 WKB 近似，我们有： 

         

( )
( )

( ) ( )

( )
( )

0 0' ' ' '

' '
0

1 

1 , 0

1 , 0

x x

x

i ip x dx p x dx

p x dx

Be Ce x
p x

x
De x

p x

ψ

−

−

⎧ ⎡ ⎤∫ ∫+ <⎪ ⎢ ⎥
⎣ ⎦⎪

≅ ⎨
∫⎪ >⎪

⎩

= =

=

            [8.31] 

（假定，当 0x > 时， V(x)总是大于 E，在这个区域，我们可以去掉正的指数，因为它随

x →∞趋于无限大。）我们的任务就是在边界处把两个解连接起来。但是这里有一个严重困

难：在 WKB 近似中，ψ 在转折点（此处
( ) 0p x →

）趋于无限大。当然，如所预期那样，

实际的波函数不会趋于无限大，只是 WKB 近似方法在转折点附近不适用。更准确的说是转

折点的边界条件决定了允许能量。我们所需要做的就是要用一个“修补”波函数把两个区域

的 WKB 的解连接在一起。 

    因为我们只需原点邻域的修补波函数 pψ ，我们将此处的势能近似为线性势。 

                      ( ) ( )' 0V x E V x≅ +
                             [8.32] 

然后对这个线性 V 解 Schrödinger 方程： 



( )
22

'
2 0

2
p

p p

d
E V x E

m dx
ψ

ψ ψ⎡ ⎤− + + =⎣ ⎦
=

 

或者 

                             

2
3

2
p

p

d
x

dx
ψ

α ψ=
                          [8.33] 

其中 

                            
( )

1 3
'

2

2 0mVα ⎡ ⎤≡ ⎢ ⎥⎣ ⎦=                         [8.34] 

定义变量变换     

                                z xα≡                               [8.35] 

可把α 吸收其中。 

这样 

                               

2

2
p

p

d
z

dz
ψ

ψ=
                          [8.36] 

这是艾里方程，其解称为艾里函数。9因为艾里方程是一个二阶微分方程，所以有两个线性

独立的艾里函数，Ai(z)和 Bi(z)。 

表 8.1：艾里函数的一些性质。 

                                                        
9
经典地来说，线性势意味着恒力，因此有常数加速度——这可能是最简单的非常规动力学，并且是初等力

学的起始点。而相同的势在量子力学中却产生了超越函数，并仅在理论外围产生影响。 
 



 

图 8.8： 艾里函数图 

 

    它们与 1/3 阶 Bessel 方程相关。它们的一些性质在表 8.1 中列出并在图 8.8 中画出。显

然，修补波函数应是 Ai(z)和 Bi(z)的线性组合： 

                      ( ) ( ) ( )p x aAi x bBi xψ α α= +
                     [8.37] 

其中 a 和b 是适当的常数。 

    现在 pψ 是原点附近的（近似）波函数；我们的任务就是将它与两侧相交区域的 WKB



解相匹配（见图 8.9）。因为相交区离转折点处足够的近，所以可以合理地认为线性势能足够

精确（因此 pψ 也是对真实波函数很好的近似）。而且离转折点足够远处 WKB 近似解是可靠

的。10在相交区 8.32 式成立，因此（以 8.3 4 式中的记号）： 

               
( ) ( )( )' 3 22 0p x m E E V x xα≅ − − = −=

               [8.38] 

     

 

图 8.9：修补区和两个重叠区 

特别是，在右侧第二相交区： 

( ) ( )3 2' ' 3 2 ' '

0 0

2
3

x x
p x dx x dx xα α≅ =∫ ∫= =

 

因此 WKB 波函数（8.31 式）可写为： 

                       
( ) ( )3 22

3
3 4 1 4

xDx e
x

α
ψ

α

−
≅

=                       [8.39] 

同时，利用艾里函数大 z 时的渐进形式11（由表 8.1），第二相交区的修补波函数（8.37 式）

成为： 

                                                        
10这是一个非常敏感的双重约束，有可能调制出病态势以至不存在相交区。不过，在实际中这种情况很少

发生。参见习题 8.8. 
11乍一看，在这个区域用大 z 近似似乎很荒谬，这个区域应与 z=0 与转折点很相近（因此线性近似势能是有

效的）。但是注意到这里的变量是 xα ，如果你研究的仔细（见习题 8.8）你会发现(通常)这里确实有一个 xα
很大的区域，但是同时却可以合理地把 V(x)近似为线性。 



             
( )

( )
( )

( )
( )3 2 3 22 2

3 3
1 4 1 42

x x

p
a bx e e

x x

α α
ψ

π α π α

−
≅ +

          [8.40] 

比较这两个解，我们得到： 

                         

4a Dπ
α

=
= ，及 0b =                         [8.41] 

    现在回过头来，对第一相交区重复以上步骤。此时, ( )p x 仍由 8.38 式给出，但是现在 x

为负，所以： 

                        
( ) ( )

0 3 2' ' 2
3x

p x dx xα≅ −∫ =
                     [8.42] 

WKB 波函数（8.31 式）为： 

               

( )
( )

( ) ( )3 2 3 22 2
3 3

1 43 4

1 i x i x
x Be Ce

x

α α
ψ

α

− − −⎡ ⎤
≅ +⎢ ⎥

− ⎣ ⎦=
         [8.43] 

同时，利用艾里函数负的大 z 时的渐进形式（表 8.1），修补波函数（8.37 式，其中 0b = ）

为： 

              
( )

( )
( )3 2

1 4
2sin
3 4p

ax x
x

πψ α
π α

⎡ ⎤≅ − +⎢ ⎥⎣ ⎦−
 

           ( )
( ) ( )3 2 3 22 2

4 43 3
1 4

1
2

i x i xi ia e e e e
ix

α απ π

π α

− − −−⎡ ⎤
= −⎢ ⎥

− ⎣ ⎦               [8.44] 

    对比在第一相交区的 WKB 波函数和修补波函数，我们发现： 

4

2
ia Be

i
π

π α
=

=   ,  

4

2
ia Ce

i
π

π α
−−

=
=  

将 8.41 式中的a 代入得到： 

                      
4iB ie Dπ= −   ,  

4iC ie Dπ−=                   [8.45] 

这就是所谓的连接公式，它们连接转折点两边的 WKB 解。我们现在可以摆脱修补波函数了，

引入它的唯一的目的是连接转折点两边的 WKB 解。以归一化常数 D 表示所有的常数，并将

转折点从原点移动至任意点 2x ，则 WKB 波函数变为：  



          

( )
( )

( )

( )
( )

2

2

' '
2

' '
2

2 1sin ,
4

1exp ,

x

x

x

x

D p x dx x x
p x

x
D p x dx x x
p x

π

ψ

⎧ ⎡ ⎤+ <⎪ ⎢ ⎥⎣ ⎦⎪
≅ ⎨

⎡ ⎤⎪ − >⎢ ⎥⎪ ⎣ ⎦
⎩

∫

∫

=

=
             [8.46] 

                                                                                

例题 8.3 单垂直壁的势阱。设想一个势阱，一边(在 x=0）为垂直井壁而另一边是斜坡（图

8.10）。在这种情况下
( )0 0ψ =

，由式 8.46 得： 

( ) ( )2

0

1 , 1, 2,3,...
4

x
p x dx n nπ π+ = =∫=  

即 

                         
( )2

0

1
4

x
p x dx n π⎛ ⎞= −⎜ ⎟

⎝ ⎠∫ =
                      [8.47] 

 

图 8.10：单垂直壁的势阱  

例如，考虑半谐振子 

                        

( )
2 21 , 0

2
0,

m x x
V x

ω⎧ >⎪= ⎨
⎪⎩ 其它地方                      [8.48] 



在这种情况 

( ) ( ) 2 2 2 2
22 1 2p x m E m x m x xω ω⎡ ⎤= − = −⎣ ⎦  

其中 

2
1 2Ex

mω
=

 

是转折点。所以 

( )2 2 2 2 2
2 20 0 4 2

x x Ep x dx m x x dx m xπ πω ω
ω

= − = =∫ ∫
 

而量子化条件（8.47 式）给出： 

                    

1 3 7 112 , , ,...
2 2 2 2nE n ω ω⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= =

              [8.49] 

在这个特别的例子中，WKB 近似实际给出了准确的允许能量（恰好是全谐振子的奇数能级

——见习题 2.42）。 

                                                                                

例题 8.4 无垂直壁势阱。8.46 式连接了转折点处两个 WKB 波函数，此处的势能是向上倾斜

的（图 8.11（a）），同理，当在转折点向下倾斜时，式子变成(见习题 8.9)： 

           

( )
( )

( )

( )
( )

1

1

'
' '

1

'
' '

1

1exp ,

2 1sin ,
4

x

x

x

x

D p x dx x x
p x

x
D p x dx x x

p x

ψ
π

⎧ ⎡ ⎤− <⎪ ⎢ ⎥⎣ ⎦⎪
≅ ⎨

⎡ ⎤⎪ + >⎢ ⎥⎪ ⎣ ⎦⎩

∫

∫

=

=
             [8.50] 

特别的，如果我们讨论势阱(图 8.11(c))，“内部”区域
( )1 2x x x< <

的波函数可写成： 

( )
( )

( )2
2 sinDx x
p x

ψ θ≅

，其中
( ) ( )2 ' '

2
1

4
x

x
x p x dx πθ ≡ +∫=  

(8.46 式)。或者 

( )
( )

( )
'

1
2 sinDx x
p x

ψ θ−
≅

，其中
( ) ( )

1

' '
1

1
4

x

x
x p x dx πθ ≡ − −∫=  



(8.50 式)。显然，两个正弦函数的变量只能相差π 的整数倍:12 2 1 nθ θ π= + ，由此得： 

                  
( )2

1

1 , 1, 2,3,...
2

x

x
p x dx n nπ⎛ ⎞= − =⎜ ⎟

⎝ ⎠∫ =
               [8.51] 

 

图 8.11 在转折点处的向上和向下倾斜 

    这个量子化条件决定了”典型的”有两个倾斜边的势阱的允许能量。注意到它与两边垂

直的势阱（8.16 式）和一边垂直的势阱(8.47 式)的不同仅在于从 n 减去数的不同（0，1/4，

或 1/2）。由于 WKB 近似在半经典(大 n 时)领域最为适用，所以这种区别仅是表观的而不是

实质的。在很多情况下，这个结果非常有用，因为它可以使我们在不求解 Schrödinger 方程

的情况下，简单地求一个积分就可计算(估算)出允许能量。而不用考虑波函数本身。 

                                                                                

**习题 8.5 应用量子力学分析一个球(质量 m)在底板上弹性反弹的经典问题。
13
 

(a)，如何把势能表示为离地面高度 x 的函数?（对于负的 x ，势能为无穷的——球不可能到

达那里.） 

(b)对这个势解 Schrödinger 方程，以合适的艾里函数表达你的结果（注意：对于大ｚ，Bi(z)

趋于无限大，所以必须舍弃）。不必归一化 ( )xψ 。 

(c)取
29.80g m s= ， 0.100m kg= ，求前四个允许能量，单位焦耳，保留三位有效数字。

                                                        
12不是 2π——产生的负号可以吸收在归一化因子 D 和

'D 中。 
13更多关于量子弹球参见 J. Gea-Banacloche, Am. J. Phys. 67, 776 (1999)和 N. Wheeler, "Classical/quantum 
dynamics in a uniform gravitational field," Reed College 未发表报告(2002)。这或许看起来是个哗众取宠的人

造问题，但是在实验室中已经用中子进行了实验。(V. V. Nesvizhevsky et al., Nature 415, 297 (2002)) 



提示：参考Milton Abramowitz和 Irene A. Stegun所著, 数学函数手册，Dover，New York(1970),

第 478 页；记法定义在第 450 页 

(d)一个电子在这个重力场中的基态能量是多少，以 eV 为单位。这个电子离地面的平均高度

为多少？提示：用位力定理求
x

。 

                                                                                

*习题 8.6 用 WKB 近似分析反弹球（习题 8.5）。 

(a)用ｍ，g 和 =表示允许能量 En。 

(b)将习题 8.5(c)给出的值代入，然后比较前四个 WKB 近似得出的结果与精确结果. 

(c)量子数ｎ值大概需要多大才可以使球在某个平均高度，例如高出地面 1 米。 

                                                                                

*习题 8.7 利用 WKB 近似求谐振子的允许能量。 

                                                                                  

习题 8.8 考虑质量为ｍ的粒子处于谐振子第ｎ级定态。（角频率 ω） 

(a)求转折点 2x 。 

(b)在转折点上方多远处(d)线性势能(8.32 式，但转折点在 x2)的误差达到 1%？也就是说如

果 

( ) ( )
( )

2 lin 2

2

0.01
V x d V x d

V x
+ − +

=
， 

那么 d 是多少？ 

(c)只要 5z ≥ ，Ai(z)的渐进形式的准确率为 1%。对于(b)中的 d，求 n 的最小值，使得 5dα ≥ 。

（对于任何大于此值的 n，就存在一个重叠区，在此重叠区中线性势能的可准确到 1%, 而

且艾里函数的大 z 形式准确到 1%） 

                                                                                



**习题 8.9 推导向下倾斜转折点处的连接方程并证明 8.50 式。 

                                                                                

***习题 8.10 使用合适的连接方程分析斜壁势垒（图 8.12）的散射问题。提示：把 WKB 波

函数写成以下形式开始： 

    

( )

( )
( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

1 1' ' ' '

' ' ' '

1 1

' '

2

1

1 1

1 2

2

1 , ( )

1 ,

1 ,

x x

x x

x x

x x

x

x

i ip x dx p x dx

p x dx p x dx

i p x dx

Ae Be x x
p x

x Ce De x x x
p x

Fe x x
p x

ψ

−

−

⎧ ⎡ ⎤∫ ∫⎪ + <⎢ ⎥⎪ ⎣ ⎦
⎪
⎪ ⎡ ⎤⎪ ∫ ∫≅ + < <⎨ ⎢ ⎥

⎣ ⎦⎪
⎪

⎡ ⎤⎪ ∫ >⎢ ⎥⎪
⎣ ⎦⎪⎩

= =

= =

=

          [8.52] 

不要假设 C=0。计算遂穿几率，

22T F A=
，并证明你的结果对宽高势垒将约化为 8.22

式。 

 

图 8.12： 有倾斜壁的势垒 

                                                                                

 

第八章补充习题                                                                   

**习题 8.11 利用 WKB 近似求解一般幂级数势能的允许能量： 

( )V x x να=
 



其中ν 是正数。对 2ν = 验证你的结果. 答案：14
  

                  

( )

2
21 3

21 2
12 1

nE n
m

ν
ν

π να
α

ν

⎛ ⎞
⎜ ⎟+⎝ ⎠⎡ ⎤⎛ ⎞Γ +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥= −

⎛ ⎞⎢ ⎥Γ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

            [8.53] 

                                                                                

**习题 8.12 利用 WKB 近似求解在习题 2.51 中势能的束缚态能量。与准确解比较。答案：

( ) ( ) 2 29 8 1 2 a m⎡ ⎤− −⎣ ⎦ =  

                                                                                

习题 8.13 对于球对称势，我们可以将 WKB 近似应用在径向部分（4.37 式）。在 0l = 的情

况中将 8.47 式用以下形式表示是合理的15： 

                        
( ) ( )0

0
1 4

r
p r dr n π= −∫ =

                      [8.54] 

其中 r0 是转折点（实际上, 我们认为 r=0 处为无限深井壁）。应用这个公式估算对数势下粒

子的允许能量的表达式。 

( ) ( )0 lnV r V r a=
 

（其中 V0 和 a 为常数）。仅讨论 0l = 的情况。证明能级的间距与质量无关。部分结果： 

1 0
3 4ln
1 4n n

nE E V
n+

⎛ ⎞+
− = ⎜ ⎟−⎝ ⎠  

                                                                                

**习题 8.14 利用以下形式的 WKB 近似  

                          
( ) ( )2

1

1 2
r

r
p r dr n π= −∫ =

                    [8.55] 

估算氢的束缚态能量。不要忘记在等效势能中的离心力部分（4.38 式）。下列积分或许有用：   

                                                        
14 WKB 的结果总是在半经典领域（大 n）的情况下是较准确的。特别地， 8.53 式对基态（n=1）并不是很

准确。参见 W. N. Mei, Am. J. Phys. 66, 541 (1998)。 
15将 WKB 准经典近似应用至径向方程引出了很多精巧复杂的问题，在这里我将不详细阐述。关于这个问题

的经典论文参见 R. Langer, Phys. Rev. 51, 669 (1937)。 



                        
( )( ) ( )21

2
b

a
x a b x dx b a

x
π

− − = −∫
                 [8.56]。 

注意当 n l� 和 1 2n� 时，你回到波尔能级。答案： 

                      
( ) ( )

2
13.6eV

1 2 1
nlE

n l l

−
≅
⎡ ⎤− + +⎣ ⎦                    [8.57] 

                                                                                

***习题 8.15 考虑对称双势阱，如图 8.13 所示。我们对
( )0E V<

的束缚态感兴趣。 

(a)写出以下区域的 WKB 波函数（i） 2x x>
,（ii） 1 2x x x< <

和（iii） 10 x x< <
。利用在

x1 和 x2 处的适当连接方程(对 x2 处的我们已知, 8.46 式，你们需要写出 x1 处的)，证明  

( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )

2

2

1 1' ' ' '

' '

' '

1 1

1exp , i

2 1sin , ii
4

2cos sin , iii
x x

x x

x

x

x

x

p x dx p x dx

D p x dx
p x

Dx p x dx
p x

D e e
p x

πψ

θ θ
−

⎧
⎡ ⎤⎪ −⎢ ⎥⎪ ⎣ ⎦

⎪
⎪⎪ ⎡ ⎤≅ +⎨ ⎢ ⎥⎣ ⎦⎪
⎪

⎡ ⎤∫ ∫⎪ +⎢ ⎥⎪ ⎣ ⎦⎪⎩

∫

∫

= =

=

=

 

 

图 8.13：对称双势阱；习题 8.15 

其中 

                             
( )2

1

1 x

x
p x dxθ ≡ ∫=                         [8.58] 

(b) 因为 V(x)是对称的，所以我们只需考虑偶（+）和奇（-）波函数。对前者有
( )' 0 0ψ =

，



对后者有
( )0 0ψ =

。证明它们导致下列量子化条件： 

                               tan 2eφθ = ±                           [8.59]  

其中 

                             
( )1

1

' '1 x

x
p x dxφ

−
≡ ∫=                       [8.60] 

8.59 式决定了（近似的）允许能量（注意 E 进入 x1 和 x2 ，所以 θ和 φ都是 E 的函数）。 

(c) 我们对高 并且/或者 宽的中心势垒特别感兴趣，在此势垒中φ很大，所以eφ 十分巨大。

8.59 式则告诉我们 θ 必须非常接近半整数倍 π。所以将 θ 记为
( )1 2nθ π ε= + +

，其中

1ε � ，证明量子化条件成为： 

                            

1 1
2 2

n e φθ π −⎛ ⎞≅ +⎜ ⎟
⎝ ⎠

∓
                     [8.61] 

(d) 假设各个势阱呈抛物线状：
16 

                      

( )
( )

( )

22

22

1 , 0
2
1 , 0
2

m x a x
V x

m x a x

ω

ω

⎧ + <⎪⎪= ⎨
⎪ − >
⎪⎩                [8.62] 

画出此势能的简图，求出 θ（8.58 式），证明： 

                         

1
2 2nE n e φωω

π
± −⎛ ⎞≅ +⎜ ⎟

⎝ ⎠
== ∓

                    [8.63] 

注：如果中心势垒是不能穿透的
( )φ →∞

，则我们只简单的得到两个分离的简谐振子，而

能级
( )1 2nE n ω= + =

将是双重简并的，因为粒子不是在左势阱就是在右势阱。当势垒变

为有限的（两个势阱将产生"交流"),简并分裂。偶数态
( )nψ +

拥有较低的能量而奇数态
( )nψ −

拥有较高的能量。 

(e) 假设粒子从右边的势阱开始，或者更精确的说初始态为 

                                                        

16尽管 V(x)在各个势阱中并不是严格的抛物线，但是由 2.3 节所讨论过的（定义
( )''

0V x mω ≡
，其中

x0 是最小值的位置），这对 θ的计算和因此得到的结果都将会是近似正确的。 



( ) ( )1,0
2 n nx ψ ψ+ −Ψ = +

 

粒子将束缚在右边的势阱，假设位相取“自然”值。证明它将在左右势阱来回振荡,并且平

率为： 

                                

22 eφπτ
ω

=
                            [8.64] 

(f) 对(d)中所描述的特殊的势能，计算φ。证明对
( )0V E�

,
2m aφ ω∼ =。 

                                                                                

习题 8.16 斯塔克效应中的遂穿 原则上，当你把一个原子置于外电场中，原子内的电子可遂

穿出去，从而使原子电离。问题：这个是否可能在通常的斯塔克效应实验会发生？我们可以

用以下一个粗略的一维模型估计其可能性。设想粒子处在一个非常深的有限势阱（见 2.6 节） 

(a) 从势阱底部算起，基态能量是多少？假设
2 2

0V ma� =
。提示：这正是无限方势阱（宽

度 2a）的基态能量。 

(b) 现在引进一个微扰
'H xα= − （对一个在

ˆ
extE i= −E

的电场中的电子我们有 exteEα =
）。

假设它是相对较弱的
( )2 2a maα � =

。画出全势能的简图，注意现在粒子可以在 x 的正方

向遂穿出去。 

(c) 计算遂穿因子 γ（8.22 式），并估算粒子逃逸所需的时间（8.28 式）。答案：

3
08 3mVγ α= =

，
( )2 28ma e γτ π= =

 

(d) 代入一些合理的数据：V0=20eV（通常的外层电子的结合能），
1010a m−= （通常的原

子半径），
67 10extE V m= ×

（强实验室场），e 和 m 分别是电子的电量和质量。计算 τ 并

将它与宇宙的年龄相比较。 

                                                                                

习题 8.17 由于量子遂穿效应，在室温下的一罐啤酒大概需要多长时间能自发地倾倒？提示：



将它当成一个质量为 m，半径为 R，高为 h 的均匀圆柱体。当罐倾斜时，设 x 表示它中心高

出平衡位置（h/2）的高度。势能为 mgx，当 x 到达临界值
( )22

0 2 2x R h h= + −
时，它

将倾倒。对 E=0 计算遂穿几率（ 8.22 式）。利用式 8.28 和热能来估算其速度

( ) ( )( )21 2 1 2 Bmv k T=
。代入合理的数值，并把你的答案以年为单位给出.

17
 

                                                                                

                                                        
17 R. E. Crandall, Scientific American, February 1997, p. 74. 
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第九章 

含时微扰论 

 
到目前为止，我们处理的所有实际问题可归结为量子定态（quantum statics）,即势能函数不显含时

间： )(),( rVtrV KK = ，这样含时的薛定鄂方程  

H i
t

∂Ψ
Ψ =

∂
= ， 

可通过分离变量求解： 
/, ( ) iEtt eψ −Ψ =r r =（ ）                                 这里ψ r（ ）

其中 ( )ψ r 满足定态薛定鄂方程： 

.H Eψ ψ= .                                

因为定态解含有指数因子
=/iEte−
，当我们构造相关物理量

2Ψ 时，指数因子
=/iEte−
就抵消，所有的几

率和期待值是不随时间变化的常数。通过这些定态的线性迭加我们可以得到一般的含时波函数，但即

使是这样的波函数，能量的可能值及其出现的几率也是常数。 

   如果我们允许在两个不同能级之间的跃迁（通常也称为量子跃迁），我们必须引入含时势（量子动

力学）。量子动力学仅有少数问题可严格求解。然而，如果哈密顿量的含时部分与不含时部分相比很

小时，那么我们就可把含时部分当作微扰。这一章的目的是介绍含时微扰理论，并且研究它的最重要

应用：原子的发射或吸收辐射。 

 

9.1 两能级体系 
作为开始，我们假设体系（非微扰）只有两个态， aψ 和 bψ 。它们是非微扰哈密顿量

0H 的两个本征

态： 

            
0H aψ ＝ aE aψ           

0H bψ ＝ bE bψ                               [9.1] 

它们是正交归一的 

                          abba δψψ =                                           [9.2] 

任何态都可以表示为这两个态的线性迭加：特别地 

                        bbaa cc ψψ +Ψ ）＝（0                                     [9.3] 

态 aψ 和 bψ 可以是空间波函数，也可以是旋量，也可以是其它更稀奇的东西⎯这无关紧要；这里我们

关心的是体系随时间的变化，所以当我写 ( )tΨ 时，我指的是体系在时刻 t 时的状态。没有微扰作用时，

每一个分量按其特征指数因子演化： 

                    
/ /( ) a biE t iE t

a a b bt c e c eψ ψ− −Ψ = += =
                                 [9.4] 

我们说
2

ac 是粒子处于 aψ 态的几率——其真正含义是，测量能量得到 aE 的几率。当然，Ψ的归一

性要求 

                         122 =+ ba cc                                            [9.5] 

 

9.1.1 微扰体系 

假设我们现在加上一个含时微扰， )(' tH 。因为 aψ 和 bψ 构成了完全集，波函数 ( )tΨ 仍然可以表示

为它们的线性迭加。所不同的是 ac 和 bc 现在是 t 的函数: 

                     
/ /( ) ( ) ( )a biE t iE t

a a b bt c t e c t eψ ψ− −Ψ = += =
                           [9.6] 

(我可以把指数因子吸收到 )(tca )和 )(tcb ，并且一些人也喜欢这样做，但我认为把没有微扰时的含时

部分明显写出会更好。）整个问题是确定作为时间的函数的 ac 和 bc 。例如，如果粒子初始时处在态

  ( (0) 1, (0) 0)a a bc cψ = = ，一段时间 1t 之后我们发现 1)(,0)( 11 == tctc ba ，我们说系统经历了从 aψ



 - 2 -

到 bψ 的转变。 

   我们可以从 ( )tΨ 满足含时薛定鄂方程来解 )(tca 和 )(tcb  

                 
t

iH
∂
Ψ∂

=Ψ =          这里 )('0 tHHH +=          [9.7] 

由 9.6 和 9.7 式，我们得到 

   

/ / / /0 0 ' '

/ / / /

[ ] [ ] [ ] [ ]

.

a b a b

a b a b

iE t iE t iE t iE t
a a b b a a b b

iE t iE t iE t iE ta b
a a b b a a b b

c H e c H e c H e c H e

iE iEi c e c c e c e c e

ψ ψ ψ ψ

ψ ψ ψ

− − − −

− − − −

+ + +

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + − + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= = = =

= = = =� �=
= =

 

由 9.1 式知，左边前两项和右边后两项相消，因此我们有： 
/ / / /' '[ ] [ ]a b a biE t iE t iE t iE t

a a b b a a b bc H e c H e i c e c eψ ψ ψ ψ− − − −⎡ ⎤+ = +⎣ ⎦
= = = =� �=            [9.8] 

为了分离出
.

ac� ，我们使用标准技巧：与 aψ 作内积，并利用 aψ 和 bψ 的正交归一性（9.2 式）可得： 

== /'/' tiE
bab

tiE
aaa

ba eHceHc −− + ψψψψ ＝
=�= /tiE

a
aeci −

      

为了简化，我们定义 

                        jiij HH ψψ '' ≡                                          [9.9] 

注意
'H 是厄米算符，满足

∗= )( ''
jiij HH 。两边同时乘

== /)/( tiEaei −− ，我们得到 

                   
( ) /' ' b ai E E t

a a aa b ab
ic c H c H e− −⎡ ⎤= − +⎣ ⎦

=�
=

                             [9.10] 

类似有，与 bψ 作内积挑选出
.

bc�  

== /'/' tiE
bbb

tiE
aba

ba eHceHc −− + ψψψψ ＝
=�= /tiE

b
beci −

 

因此 

( ) /' ' b ai E E t
b b bb a ba

ic c H c H e −⎡ ⎤= − +⎣ ⎦
=�

=
                              [9.11] 

方程 9.10 和 9.11 决定了 )(tca 和 )(tcb ；对于两能级体系，它们和含时薛定鄂方程完全等价。如

果
‘H 的对角矩阵元为零（对于一般性情况参考习题 9.4） 

                          0'' == bbaa HH                                        [9.12] 

方程可以简化为 

 

[9.13] 

 

式中 

                    
=

ab EE −
＝0ω                                [9.14] 

（我将假定 ab EE ≥ ，因此 00 ≥ω 。） 

∗习题 9.1  一个氢原子放置在含时电场 ˆ( )E t k=E 中,计算微扰 eEzH ='
在基态（n=1）与（四重简

并的）第一激发态（n=2）之间的四个矩阵元 ijH '
.并且证明对于所有的五个态 iiH '

＝0.注：如果考虑

到对 z 的奇数性，仅需做一个积分；受这种形式的微扰，从基态只能跃迁到（n=2）态中的一个态，

因此体系的波函数为两态构成⎯假定向更高的激发态跃迁可以忽略。 

∗习题 9.2  在不含时微扰情况下解方程 9.13，假定 1)0( =ac ， 0)0( =bc .验证 122 =+ ba cc .

评注：很明显，体系在“ aψ 纯态”和“一些 bψ 态”间振荡，这与不含时微扰体系不发生跃迁的一般

观点矛盾吗？不会的，但理由相当微妙：在这种情况下， aψ 和 bψ 不是，也从不是哈密顿的本征态⎯

对能量的测量永远不会得到 aE 和 bE 。在含时微扰论为了检验体系，我们通常加微扰一段时间后再去

b
ti

aba ceHic 0' ω−−=
=

�       a
ti

bab ceHic 0' ω

=
� −=  
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除微扰。在开始前和结束后， aψ 和 bψ 是严格哈密顿量的本征态，仅在这种背景下，说体系经历了从

一个态到另一个态才是有意义的。对于当前的问题，可假设微扰从 t=0 开始，在时刻 t 中止⎯这样并

不影响计算，但它能更合理的理解结果。 

 

∗∗ 习题 9.3   假设微扰具有 δ 函数（含时）形式 

                           )(tUH δ＝‘  

假设 0== bbaa UU ，让 α== ∗
baab UU . 如果 1)( =−∞ac 和 0)( =−∞bc ，求 )(tca 和 )(tcb ，验证 

122 =+ ba cc ，跃迁（ a bP t→ →∞当 时）发生的几率是多少？提示：可以把 δ 函数当作一序列矩

形的极限来处理。答案： )/(sin 2 =α=→baP . 

 

 

      9.1.2 含时微扰论 
 

到目前为止，每一步都是严格的：我们没有假设微扰
'H 的大小. 但是如果

'H 很小，我们可以用下述

叠代近似法求解方程 9.13。假设粒子初始时处在能量低态 

                        1)0( =ac           0)0( =bc                              [9.15] 

如果没有微扰，那么它们将永远处在这种状态：有微扰时 

零级： 

                       1)(0 =tca
）（

          0)()0( =tcb                             [9.16] 

（我用圆括号里的上标近似的阶） 

为了计算一级近似，我们在方程 9.13 的右边代入零阶近似值： 

一级: 

                  1)(0 )1(
)1(

=⇒= tc
dt

dc
a

a  

         
'

0

'')1('
)1(

'
00 )()( dtetHitceHi

dt
dc tit

bab
ti

ba
b ωω ∫−=⇒−=

==
                   [9.17] 

现在我们在方程 9.13 右边代入这些一级近似式，可得到二阶近似： 

    二级： 

'
0 0

'
' ''

0 0

(2)
' ' ' '

0

(2) ' ' ' '' ''
2 0 0

( ) ( )

1( ) 1 ( ) ( )

ti t i ta
ab ba

t ti t i t
a ab ba

dc i iH e H t e dt
dt

c t H t e H t e dt dt

ω ω

ω ω

−

−

= − − ⇒

⎡ ⎤ ′= − ⎢ ⎥⎣ ⎦

∫

∫ ∫
= =

=

                 [9.18]         

不过 bc 不改变（ ）（tctc bb
)1()2( )( = ）.(注意 )()2( tca 包括零阶项；积分部分是二阶修正) 

原则上讲，我们可以无限地重复上述做法，把 n 级近似值代入到方程 9.13 的右边，获得(n+1)

级近似值。零阶修正不含
‘H 因子，一阶修正含一个

‘H 因子，二阶修正含两个
‘H 因子，依次类推

1
.

一阶近似存在的误差是明显的，因为 1
2)1(2)1( ≠+ ba cc （严格解的系数必须满足方程 9.5. 但是，在

近似到
'H 的一级，

2)1(2)1(
ba cc + 等于 1，这是在一级近似中我们所能期望的.更高级近似时也同样. 

∗∗ 习题 9.4  假定我们没有假设 0'' == bbaa HH  

（a） 在一级微扰理论中，对 1)0( =ac ， 0)0( =bc 情况，求 )(tca 和 )(tcb . 近似到
‘H 的一级，验

证 1
2)1(2)1( ＝ba cc + . 

                                                        
1 ac 仅含偶级近似项， bc 仅含奇数级项; 但是如果微扰含有对角项，或者体系的初始态为两个态的迭加，将不会出

现这种特别情况。 
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（b） 有一个更好的方法处理这个问题。令 

                 a

dttHi

a ced
t

aa∫≡ 0
''' )(

=         b

dttHi

b ced
t

bb∫≡ 0
''' )(

=                        [9.19] 

证明 

              b
ti

ab
i

a deHeid 0' ωφ −−=
=

�       a
ti

ba
i

b deHeid 0' ωφ−−=
=

�                   [9.20] 

其中    

                     
'''

0

'' )]()([ dttHtHit bb

t

aa −≡ ∫=）（φ                              [9.21] 

关于 ad 和 bd 的方程与方程 9.13 在结构上是一样的（除了
'H 吸收了一个附加因子

φie ）. 

（c）在一级微扰理论中用（b）中的方法求 )(tca 和 )(tcb ，然后和（a）方法做比较，评论一下差异。 

 

*习题 9.5  对一般情况 aca =)0( ， bcb =)0( ，求解方程 9.13 到二级近似。  

 

 

**习题 9.6  对不含时微扰（习题 9.2）计算 )(tca 和 )(tcb 到二级近似。并与严格结果作比较。 

 

 

9.13 正弦微扰 
假定微扰对时间的依赖关系具有正弦形式： 

                             ( , ) ( ) cos( )H t V tω′ =r r                                [9.22] 

则有 

                               )cos( tVH ab ω=′                                   [9.23] 

其中                             

baab VV ψψ≡                                  [9.24] 

(同前一样，我将假设矩阵的对角元为零，因为在实际中大多是这种情况。)到一级近似（从现在开始，

我们专注于一级近似，所以略去右上角的标记）我们有（9.17 式） 

            0 0 0( ) ( )

0 0
( ) cos( )

2
t ti t i t i tab

b ab
iVic t V t e dt e e dtω ω ω ω ωω ′ ′ ′+ −′ ′ ⎡ ⎤ ′≅ − = − +⎣ ⎦∫ ∫= =

 

                 
0 0( ) ( )

0 0

1 1 .
2

i t i t
abV e eω ω ω ω

ω ω ω ω

+ −⎡ ⎤− −
= − +⎢ ⎥+ −⎣ ⎦=

                                 [9.25] 

这就是答案，但是有点繁琐。如果我们仅考虑驱动频率 ( )ω 和跃迁频率 0( )ω 非常接近的情况，问

题将会极大简化，此时方括号中第二项起主要作用：具体上，我们假设： 

                               ωωωω −>> 00＋                                  [9.26] 

这并不是一个很大的限制，因为其它频率的微扰导致的跃迁几率非常之小可以忽略
2
。舍弃第一项，

我们得到： 

                 
0

0 0

( ) / 2
( ) / 2 ( ) / 2

0

( )
2 ( )

i t
i t i tba

b
V ec t e e

ω ω
ω ω ω ω

ω ω

−
− − −⎡ ⎤≅ − −⎣ ⎦−=

 

                      
2/)(

0

0 0
]2/)sin[( tiba e

tV
i ωω

ωω
ωω −

−
−

−=
=

                           [9.27] 

跃迁几率 ⎯ 一个粒子初始时处在 aψ 态，经时间 t 后，发现它处在态 bψ 几率是 

                                                            

                                                        
2在下节我们将把这个理论应用到光，其频率

15 110 sω −∼ ，因此，除了（第二项）在 0ω 附近，两项中的分母都非常

大。 



 - 5 -

      

 
    

图 9.1 在正弦微扰下作为时间函数的跃迁几率(9.28 式)。 

 

2
0

0
2

2

2
2

)(
]2/)[(sin

)()(
ωω
ωω

−
−

≅=→

tV
tctP ab

bba =
                     [9.28] 

这个结果最显著的特点是，作为时间的函数，跃迁几率以正弦形式振荡（图 9.1）。达到最大值
2

0
22 )(/ ωω −=abV 后⎯其值必须小于 1，否则微扰是小量的假设就会失效⎯它又回到到零！在时间

ωωπ −= 0/2ntn ，其中 n=1,2,3,…，粒子必将回到能量较低的态 aψ 。如果你想使激发跃迁的机会

最大化，那么就不应该让微扰保持较长的时间；经过时间 ωωπ −0/ 后你最好中止微扰，以期能使体

系能够跃迁到能量较高的态 bψ 。习题 9.7 表明这种“跃进”不是微扰理论人为的结果⎯在严格解中

也存在，经管跃进频率有些改变。 

   如前所述，当驱动频率非常接近固有频率 0ω 时跃迁几率将变的非常大。如图 9.2 所示，它绘出了

baP → 其作为频率ω的函数。峰值为
2)2/( =tVab ，宽度为 t/4π ；显然，随着时间的增加，峰值逐渐

变大，宽度逐渐变窄。（表面上看峰值的增加没有极限。然而，当几率接近 1 时微扰的假设失效，因

此只有当时间 t 相对较小时结果才是可信的。在习题9.7中你将会看到严格解的结果永远不会大于1。） 

 
图 9.2 作为驱动频率函数的跃迁几率(9.28 式)。 

 

∗∗ 习题 9.7  方程 9.25 的第一项来自 )cos( tω 中的 2/tie ω
部分，第二项来自 2/tie ω−

。舍弃第一项

形式上等价于把 H ′写成
tieVH ω−=′ )2/( ，也就是： 

                    
tiba

ba e
V

H ω−=′
2

              
tiab

ab e
V

H ω

2
=′                     [9.29] 

(后者来自于哈密顿矩阵是厄米矩阵⎯或者，如果你愿意的话，可以把公式中的有关 ( )ac t 的与方程

9.25 类似的支配项挑选出来) Rabi 注意到，如果在开始计算时就采用所谓的旋转波近似(rotating 
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wave approximation)，那么方程 9.13 不需要微扰理论就能够严格求解，且不需要假设场的强度。 

(a) 用旋转波近似（方程 9.29）解方程 9.13。初始条件为： 1)0( =ac 0)0( =bc ，用 Rabi 共振频率 

                     
22

0 )/()(
2
1 =abr V+−≡ ωωω                                [9.30] 

表示 )(tca 和 )(tcb  

(b) 确定跃迁几率 )(tP ba→ ，证明它不会大于 1。验证 1)( 22 =+ tctc ba ）（ 。 

(c) 当微扰很小时，验证 )(tP ba→ 回到微扰理论的结果（方程 9.28），并从对V 加上的限制，解释微

扰很小的含义。 

(d) 在多长的时间体系首次回到它的初始状态？ 

 

 

 

9.2 辐射的发射和吸收 
 

9.2.1 电磁波 

 
电磁波（我喜欢叫做“光”，虽然它可以是红外的，紫外的，微波，X－ray，等等，其差别仅在频率

不同）由横向振荡的电场和磁场（彼此相互垂直）组成（图 9.3）。一个原子，当处在光波中时，主

要与光波中的电场相互作用。如果波长很长时（与原子大小相比），我们可以忽略场的空间变化
3 ）（3

；

即原子是处于一个做正弦振荡的电场之中 

                             0
ˆcos( )E t kω=E                                      [9.31] 

(此时，我假设光是单色的，极化方向沿 z 方向)。微扰哈密顿为
4
 

                           )cos(0 tzqEH ω＝－′                                    [9.32] 

其中q 是电子电荷
5
。明显有

6
 

                      0 cos( )baH E tω′ = −R       其中 b aq zψ ψ≡R               [9.33] 

通常，ψ 是 z 的偶函数或奇函数；这两种情况下
2ψz 都为奇函数，其对空间积分为零（例如，参见

习题 9.1）。这符合我们 H ′的对角矩阵元为零的通常假设。这样光与物质的相互作用就由我们在 9.1.3

节所研究的振荡微扰类型所描述，其中： 

                                 0baV E= −R                                     [9.34] 

 

9.2.2 吸收，受激发射和自发发射 

 

如果原子初始态为低能态 aψ ，受单色光照射，跃迁到高能态 bψ 的几率由方程 9.28 给出，考虑到 9.34

式，这个几率可以写为 

                                                        

3 :对于可见光λ～5000A
D
， 而原子直径大约在 1A

D
，因此这种近似是合理的；但是对于 X光却不太合理，习题 9.21

研究了场的空间变化效应。 
4一个电荷 q 在静电场E 中的能量是 q d⋅∫ E r－ 。也许你不赞成对显含时间的场用静电公式。我明显假设了振荡周

期比电荷（在原子中）运动的时间要长的多. 
5
像通常一样，我们假设原子核很重并且固定不动；我们所关心的是电子的波函数. 

6字母R 应该让你想起电偶极矩（在电动力学中习惯用字母 P，在这里我们用R 避免与动量混淆）。实际上R 是偶极

矩算符qr 的 z 分量的非对角矩阵元，由于它与电子偶极矩有关，由方程 9.33 决定的辐射称为偶极矩辐射；它是占支

配地位的辐射类型，至少在可见光区如此。对其的总结和术语，参考习题 9.21。 
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图 9.3 电磁波 

 

 

                      

2 2
0 0

2
0

sin [( ) / 2]( ) .
( )a b

E tP t ω ω
ω ω→

⎛ ⎞ −
⎜ ⎟ −⎝ ⎠=

＝
R

                        [9.35] 

在这个过程中，原子从电磁场中吸收能量 0b aE E ω− = = 。我们称它吸收一个光子（图 9.4（a））.（如

前所述，光子这个词其实属于量子电动力学[电磁场的量子理论]，经管现在我们把场自身处理为经典

的，但是这个称呼是方便的。） 

当然，若初始态为高能态（ 1)0(,0)0( == ba cc ），我们也能同样推导出跃迁几率。如果你愿意，

可以自行推导，结果完全一样；除了此时我们计算的是
2)(tcP aab =→ ，向低能态的跃迁几率： 

                

2 2
0 0

2
0

sin [( ) / 2]( ) .
( )b a

E tP t ω ω
ω ω→

⎛ ⎞ −
⎜ ⎟ −⎝ ⎠=

＝
R

                         

[9.36] 

(这样的计算表明⎯我们只需交换 ba ↔ ，用 0ω− 替代 0ω 。当得到方程 9.25 后，只保留第一项，其

分母是 ωω ＋－ 0 ，其余所需做的同前一样。) 但此时如果你们停下来思考一下，这绝对是一个令人

吃惊的结果：如果这个粒子是处在高能态，你用光照射它，它可以向低能态跃迁，并且跃迁几率同由

低能态向高能态的跃迁几率完全相同。这个过程由爱因斯坦首先预言，称为受激发射。 

   在受激发射情况下，电磁场从原子获得了能量 0ω= ；我们说一个光子的进入而导致两个光子出来

—导致跃迁发生的原来的一个加上跃迁自身产生的一个（图 9.4（b））。这就有了光放大的可能性，

因为如果我有一瓶原子，所有的原子都处在高能态，这时用一个光子激发它，就会发生连锁反应，初

始的一个产生 2 个，2 个产生 4 个，依次类推。我们将会得到巨大数目的光子，它们的频率相同并且

实际上它们是同时产生的。当然，这就是激光（受激发射所产生的光放大）产生的原理。注意到，（对

激光产生），使大多数原子处于高能态是必须的（所谓的粒子数反转），因为吸收（这将减少一个光子）

和受激发射（这将产生一个光子子）相伴的；如果你从两态的一个均匀混合状态开始，那么你将不会

得到任何光放大。 

除了吸收和受激发射外，还有第三种与物质相互作用的机制；它叫作自发发射。处于高能态的原

子会向低能态自动跃迁，并放射一个光子，这种过程无需应用电磁场去激发跃迁（图 9.4（c））。这

种机制能够解释处在高能态原子的衰变。 乍看起来，为什么会发生自发发射不是很清楚。如果一个

原子处在定态（即使是激发态），在没有外部微扰时，它将永远处在此态。如果所有的外部微扰确实

不存在，那么它也应该的确如此。然而，在量子电动力学中，即使处在基态,场也是非零的⎯就像谐

振子处在基态时仍有非零的能量（ 2/ω= ）一样。你可以关闭所有的灯源，并把屋子冷却到绝对零度，

但是仍然有电磁辐射存在，正是这个 “零点”辐射催生了自发发射。所以，并没有真正意义上的自

发发射；所有的都是受激发射。唯一能区别的仅是，这个激发场是你放在那儿的，还是上帝放在那儿

的。在这个意义上，这种理解和经典辐射过程完全相悖，经典辐射过程中，没有这样的受激发射，而

都是自发发射。 
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图 9.4 光与原子作用的三种方式: (a)吸收,(b)受激发射,(c) 自发发射。 

 

量子电动力学超出了本书的范围
7
，但是爱因斯坦提出一个优美的理论

8
，把三个过程（吸收，

受激发射，自发发射）联系起来。爱因斯坦并没有阐明自发发射的机制（基态电磁场产生的微扰），

但他的结果仍然使我们能够计算自发发射速率并由其计算激发态的寿命
9
。然而，在考虑这些问题之

前，我们需要考虑一个原子与从各个方向入射的非单色，非极化，非相干电磁波的作用⎯这样的情况

常会遇到，例如，处在热辐射场中的原子。 

 

 

9.2.3 非相干微扰 
 

电磁波的能量密度是
10
   

20
0 ,

2
u Eε
=                                      [9.37] 

其中 0E 是电场的振幅（如前）。因此跃迁几率（9.36 式）与场的能量密度成正比（这很自然）： 

                     

2
2 0

2 2
0 0

sin [( ) / 2]2( ) .
( )b a

tuP t ω ω
ε ω ω→

−
−=

＝ R                          [9.38] 

但这只对单一频率ω的单色光成立；在许多应用上，体系是处在一个具有完整频谱的电磁波场中；在

这种情况下 ωωρ du )(→ ，这里 ωωρ d)( 是频率在 ωd 范围时的能量密度，最终的跃迁几率具有积

分形式
11
： 

                 
2

2 0
2 20

0 0

sin [( ) / 2]2( )
( )b a

tP t dω ωρ ω ω
ε ω ω

∞

→

⎧ ⎫−
⎨ ⎬−⎩ ⎭

∫=
＝ （ ）R                  [9.39] 

上式大括号中关于 0ω 的项，其图像是一个尖峰（图 9.2），而 ( )ρ ω 通常分布较宽，所以我们可

以用 0( )ρ ω 替代 ( )ρ ω ，并把它提到积分号外： 

2
2 0

02 20
0 0

sin [( ) / 2]2( )
( )b a

tP t dω ωρ ω ω
ε ω ω

∞

→

⎧ ⎫−
⎨ ⎬−⎩ ⎭

∫=
＝ （ ）R                  [9.40] 

                                                        
7一个容易理解的处理可参见 Rodney Loudon 所著,光的量子理论，第二板（Clarendon Press,oxford.1983）。 
8
爱因斯坦的论文发表于 1917 年， 远在薛定鄂方程之前。量子电动力学凭借 1900 年出现的普朗克黑体辐射公式（5.113
式）进入人们讨论。 
9另外一个用量子电动力学中“seat-of-pants”的有趣推导参见习题 9.9。 
10 D.Griffiths，电动力学导论，第三版（Prentice Hall , Upper Saddle river , NJ ,1999）,9.2.3 节。一般来讲，单位体

积内的电磁场能量是 

                              
2 2

0 0( / 2) (1/ 2 ) .u E Bε μ= +               

对于电磁波，电场和磁场的贡献相等，因此 

                              2 2 2
0 0 0 cos ( ).u E E tε ε ω= =  

一个周期上的平均值是 2
00 2/ E）（ε ，因为

2cos 或者
2sin 的平均值是 1/2。 

11
方程 9.39 假设了不同频率的微扰是彼此独立的， 因此总跃迁几率应是各个跃迁几率之和。如果不同的分量是相干

的（相位相关），这时我们应该对振幅 ( ( ))bc t 求和，而不是几率 ))(( 2tc b
，这时将有交叉项出现。应用中我们将总

是考虑非相干微扰。 
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作变量变换： 2/)( 0 tx ωω −≡ ，并把积分上下限扩展为 ±∞≡x （这并不影响积分值，因为在扩展

区的积分基本为零），由定积分公式 

                                
2

2

sin x
x

π
∞

∞
=∫－                                     [9.41] 

我们得到 

                            

2

02
0

( ) ( ) .b aP t t
π

ρ ω
ε→ ≅
=
R

                               [9.42] 

这时跃迁几率和时间 t 成正比。当把非相干系列频率作用到体系上时，单色光微扰时的奇异“跃进”

现象特征消失了。尤其是跃迁速率（ /R dP dt≡ ）现在是常量： 

                           
2

02
0

( ) ( ).b aR t π ρ ω
ε→ =
=
R                               [9.43] 

到现在为止，我们假设微扰波只从 y 方向入射，且电场方向沿 z 方向。但是我们对入射光来自

所有方向，这样电场方向也沿所有方向的情况更感兴趣；设不同方向的入射光对场的能量（ ）（ωρ ）

的贡献相同。我们需要做的是用
2n̂⋅R 的平均值来替代

2R ，这里： 

                           b aq ψ ψ≡ rR                                  [9.44] 

（是方程 9.33 的推广），平均值是对所有的极化和入射方向求平均。 

上述平均值可由下法求出：选择球坐标系使 z轴沿波的传播方向（因此极化在 xy 平面），矢量

（固定的）R位于 yz 平面内（图 9.5）：
12
 

jin ˆsinˆcosˆ φφ +=         ˆˆsin cosj kθ θ= +R RR                 [9.45] 

则有 

                             ˆ sin sin ,n θ φ⋅ =R R  

以及 

                  
22 2 2

avr

1ˆ sin sin sin
4

n d dθ φ θ θ φ
π

⋅ = ∫R R  

                           

2
2 23 2

0 0

1sin sin .
4 3

d d
π π

θ θ φ φ
π

= =∫ ∫
R

R                  [9.46] 

  结论：在从所有方向入射的非相干，非极化光的作用下，从b 态到a 态受激发射的跃迁速率是： 

                                                              

2
02

0

( )
3b aR t π ρ ω
ε→ =
=

（ ）,R                          [9.47] 

这里R是电偶极矩在两个态之间的矩阵元（9.44 式）， 0( )ρ ω 是 =/0 ）＝（ ab EE −ω 处单位频率间隔

内场的能态密度
13
。 

                                                        
12
一般来说R 将是复数，但这里我它作为实数处理。因为 

        2 2 2 2ˆ ˆ ˆ ˆ ˆR e( ) Im ( ) R e( ) Im ( )n n i n n n⋅ ⋅ + ⋅ = ⋅ + ⋅＝R R R R R  

我们可以分别计算实部和虚部，然后把两者相加。9.47 式中的绝对值符号有双重含义，表示矢量大小和复数的模： 

                       
22 2 2 .x y z+ +＝ R R RR  

13
这是费米黄金规则在含时微扰理论时的特殊情况，这个规则指出跃迁速率与微扰势的矩阵元平方成正比，与跃迁频

率下的微扰强度成正比。 
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图 9.5 对
2n̂⋅R 做平均时的轴。 

 

9.3  自发发射 
 

9.3.1  爱因斯坦发射与吸收系数 
 

设有一个装有原子的容器，处在低能态 aΨ 的粒子数为 aN ；处在高能态 bψ 的粒子数为 bN .设 A是自

发发射速率
14
，所以由于自发发射，单位时间内离开高能态的粒子数是 bN A 15

。我们已经知道（9.47

式），受激发射的跃迁速率与电磁场能量密度成正： )( 0ωρbaB ；由于受激发射，单位时间内离开高能

态的粒子数是 0( )b baN B ρ ω 。吸收速率同样地与 ）（ 0ωρ 正比，称它为 )( 0ωρabB ；所以单位时间内

由低能态跃迁到高能态的粒子数为 0( )a abN B ρ ω 。这样我们有关系： 

                  0 0( ) ( ).b
b b ba a ab

dN N A N B N B
dt

ρ ω ρ ω= − − +                         [9.48] 

假设这些原子与周围的场处于热平衡，所以每一能级上的粒子数都是常数。在这种情况下

/ 0bdN dt = ，由此得出： 

                          0( ) .
( / )a b ab ba

A
N N B B

ρ ω =
−

                             [9.49] 

另一方面，由统计力学
16
我们知道当处于温度为T 的热平衡时，能量为 E 粒子的数目与波尔兹曼

因子， )/exp( TkE B− ，成正比，所以 

 0

/
/

/ ,
a B

B

b B

E k t
k ta

E k t
b

N e e
N e

ω
−

−= = =
                               [9.50] 

这样有 

                    
00 /( ) .

Bk t
ab ba

A
e B Bωρ ω =

−=                               [9.51] 

但是普朗克黑体辐射公式（5.113 式）告诉我们热辐射的能量密度为： 

                            
3

/2 3( ) .
1Bk tc e ω

ωρ ω
π

=
−=

=
                               [9.52] 

                                                        
14 ）（14

通常我喜欢用 R表示跃迁速率，在这本书中没有遵照每个人都遵循的 Einstein 标注：der Alte. 
15假设 aN 和 bN 都非常大，因此我们可以忽略统计上的波动而把它们当作时间的连续函数. 
16可参考由 Charles Kittel and Herbert Kroemer 编写的《热物理学》，第二版（Freeman, New York,1980）第三章 
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比较两个表达式，我们得到 

                                   baab BB =                                      [9.53] 

和 

                          

3
0
2 3 .baA B
c

ω
π

=
=

                                  [9.54] 

9.53 式证实了我们已经知道的关系：受激发射的跃迁速率和吸收是相等的。但是在 1917 年这却是个

令人震惊的结果，爱因斯坦为了得到普朗克公式被迫 “发明”受激发射。然而，当前我们要注意的

是方程 9.54，因为它告诉我们根据已经知道的受激发射速率（ )( 0ωρbaB ）可以得到自发发射速率（ A）

—这是我们所期望的。有 9.47 式我们得出 

                                 
2

2
0

,
3baB π
ε

=
=
R                                [9.55] 

从而自发发射速率为：  
23

0
3

0

.
3

A
c

ω
πε

=
=
R

                                  [9.56] 

                                                                     

习题 9.8  作为向下的跃迁机制，自发发射和热激发发射（对于黑体辐射来讲受激发射就是辐射源）

存在竞争。证明在室温时（ 300KT = ）当频率在
12105× Hz 以下时，热激发占主导地位，而当频率

在
12105× Hz 以上时，自发发射占主导地位。对于可见光，哪一种发射机制占主导地位？ 

 

习题 9.9  如果知道了电磁场的基态能量密度 ）（ωρ0 ，你无需借助爱因斯坦 A和 B 系数就可以得出

自发发射速率（9.56 式），因为此时就是简单的受激发射（9.47 式）。真正要推导需用到量子电动力

学；但是如果你能相信基态是由每个模上有一个光子组成的，那么推导将非常简单： 

（a） 在 5.111 式中令 kdN ＝ω ，推导出 ）（ωρ0 （也许这个公式在高频失效，否则总的“真空

能”将是无限大的…但是这是另一天的故事。） 

（b） 用你的结果和 9.47 式求自发发射速率，并和 9.56 式比较。 

 

 

9.3.2 激发态寿命 

 
方程 9.56 是我们的基本结果；它给出了自发发射时的跃迁速率。假设现在你对激发态注入大量粒子。

由于自发发射，激发态上的粒子数量将随时间增加而减少；具体来讲，在时间间隔 dt 内，减少的粒

子数为： 

                           ,b bdN AN dt= −                                    [9.57] 

(假定没有途径补充粒子)
17
。求解 )(tNb ，我们得到 

                          ( ) (0) ;At
b bN t N e−=                                  [9.58] 

明显，处在激发态的粒子数目将指数减少，时间常数为 

                              1 .
A

τ =                                         [9.59] 

我们称它为态的寿命⎯技术上讲，它是 )(tNb 减少到初始值的 368.0/1 ≈e 时所需要的时间。 

我一直假设体系只有两个态，但这只是为了标记简单⎯方程 9.56 给出了从 bψ 到 aψ 的跃迁，

而没有考虑其它的可以跃迁的态（参见习题 9.15）。通常，一个激发原子可有许多衰变模（即： bψ 可

以衰变到许多不同的低能态， 1aψ ， 2aψ ， 3aψ ……）。在这种情况下，跃迁速率相加，最终的寿命是 

                                                        
17这种情况不会和我们在前面章节已经考虑的热平衡情况混淆。这里假设原子已经偏离了平衡，处在一个连续的回到

平衡态的过程中。 
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1 2 3

1 .
A A A

τ =
+ + +…

                               [9.60] 

 

例题 9.1  假设弹簧的一端固定一个电荷 q，电荷沿 x 轴方向振荡。设初始态为 n （2.61 式），通过

自发发射衰变到 n′ 态。由方程 9.44 我们有 

                                 q n x n i′ �＝R  

在习题 3.33 中，我们计算过 x 的矩阵元： 

                   )(
2 1,1, −′−′ +′=′ nnnn nn
m

nxn δδ
ω
=

 

其中ω是振子的固有频率。（我不再需要用这个字母来表示受激辐射的频率了）因为我们这里讨论的

是发射，因此 n′应该比n 低；对我们的目的，有  

                                , 1 .
2 n n
nq i
m

δ
ω ′ −=
= �R�                                [9.61] 

很明显，只有
' 1n n= − 时才能发生跃迁，发射光子的频率为 

           0
( 1/ 2) ( 1/ 2) ( ) .n nE E n n n nω ωω ω ω′ ′− + − + ′= = − =

= =
= =

＝                 [9.62] 

一点也不奇怪，体系以经典振子的频率辐射。跃迁速率（9.56 式）是 

                               
2 2

3
0

.
6
nqA

mc
ω

πε
=                                      [6.63] 

第 n 阶定态的寿命是 

                                

3
0
2 2

6 .n
mc

nq
πετ

ω
=                                    [9.64] 

同时，每一个辐射的光子携带能量 ω= ，因此辐射源功率是 ω=A ： 

                           
2 2

3
0

,
6

qP n
mc
ω ω

πε
= =                                      

或者，因为处在第 n 阶态的振子能量是 ω=)2/1( += nE ，所以有 

                          
2 2

3
0

1( ).
6 2

qP E
mc
ω ω

πε
= − =                                 [9.65] 

这就是一个具有（初始）能量 E 的量子振子的平均辐射功率。 

作为比较，让我们把具有相同能量的经典振子的平均辐射功率写出。根据经典电动力学，带电

量为 q 的粒子在加速运动时辐射功率由拉莫尔（Larmor）公式
18
给出： 

                           
2 2

3
0

.
6
q aP

cπε
=                                      [9.66] 

对于振幅为 0x 的谐振子， )cos()( 0 txtx ω= ，加速度为
2

0 cos( )a x tω ω= − 。一个周期上的平均值为 

                                

2 2 4
0

3
0

.
12
q xP

c
ω

πε
=                        

但是振子的能量为
2
0

22/1 xmE ω）＝（ ，因此
22

0 /2 ωmEx = ，所以有 

                                
2 4

3
0

.
6

qP E
mc
ω

πε
=                                   [9.67] 

这就是能量为 E 的经典振子的平均辐射功率。在经典极限下（ 0→= ）经典公式和量子公式一致
19
；

                                                        
18例如：参见 Griffiths(脚标 10)，11.2.1 节 
19事实上，如果我们用非基态能量表示 P,这两个表达式是一致的 
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不过，量子公式（9.65 式）防止了基态辐射：如果 ω=）＝（ 2/1E ，振子不辐射。 

 

 

习题 9.10   激发态的半寿命（ 1/ 2t ）是在很大样本中半数原子跃迁到低能态所需要的时间。求 1/ 2t 与

寿命τ 之间的关系。 

 

∗∗∗ 习题 9.11 计算氢原子 2n = 时，四个态的寿命（以秒为单位）。提示：你需要计算以下形式的矩

阵元， 200100 ψψ x ， 211100 ψψ y ，等。记住： φθ cossinrx = , φθ sinsinry = , θcosrz = 。

这些积分大多数为零，因此在计算之前推敲一下。答案：
91060.1 －× 秒除了 200ψ 态， 200ψ 态的寿命

是无限的。 

 

 

9.3.3 选择定则 
 

计算自发发射速率归结为计算矩阵元 

                                    b aψ ψr  

如果你已经做了习题 9.11（没做的话，赶快作一下），你会发现：这些量常常为零，知道什么情况下

它们为零是很有帮助的，那样我们不必浪费太多的时间来计算那些不必要的积分。假设我们对像氢这

样的体系感兴趣，其哈密顿量是球对称的。在这种情况下我们可以用量子数 , ,n l m来标记态，矩阵元

是 

                                  .n l m nlm′ ′ ′ r  

巧妙运用角动量对易关系和角动量算符的厄米性会对这些量产生一些很强的限制。 

 

有关m 和m′的选择定则：首先考虑我们已经在第四章得出的 zL 和 x , y , z 的对易关系（4.122

式）： 

                   [ , ] ,zL x i y= =     [ , ] ,zL y i x= − =      [ , ] 0.zL z =                   [9.68] 

由第三个对易关系可以得到 

       nlmzLmln z ],[0 ′′′＝ ＝ nlmzLzLmln zz −′′′  

                      ＝ nlmmzzmmln )]()[( == −′′′′ ＝ nlmzmlnmm ′′′−′ =)(  

结论： 

                  要么 ,m m′ =       要么 0.n l m z nlm′ ′ ′ =                         [9.69] 

因此除非 mm =′ ，否则 z 的矩阵元总是等零。 

同样的，从 zL 与 x 的对易关系中我们得到 

 nlmxLmln z ],[′′′ = nlmxLxLmln zz −′′′  

= nlmxmlnmm ′′′−′ =)( = .i n l m y nlm′ ′ ′=   

结论： 

                      nlmxmlnmm ′′′−′ )( ＝ .i n l m y nlm′ ′ ′                      [9.70] 

因此你无需计算 y 的矩阵元，它们可以从相对应的 x 矩阵元得到。 

最后， zL 和 y的对易关系是 

nlmyLmln z ],[′′′ ＝ nlmyLyLmln zz −′′′  

        ＝ nlmymlnmm ′′′−′ =)( ＝ .i n l m x nlm′ ′ ′− =           

结论： 
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                    nlmymlnmm ′′′−′ )( ＝ .i n l m x nlm′ ′ ′−                       [9.71] 

特别地，联立 9.70 和 9.71 

         nlmxmlnmm ′′′−′ 2)( ＝ nlmymlnmmi ′′′−′ ）（ ＝ ,n l m x nlm′ ′ ′  

因此有： 

      要么 1)( 2 =−′ mm     要么 nlmxmln ′′′ ＝ 0=′′′ nlmymln                   [9.72] 

从方程 9.69 和方程 9.72 中我们得到关于m 的跃迁选择定则： 

                                                            

 

[9.73] 

                                              

 

这个结果很容易理解，如果你记得光子的自旋为 1，因此它的m 值是1,  0,  1− 20
，角动量（z 分量）

守恒要求原子失去的等于光子获得的角动量。 

 

 

有关 l  和 l ′的选择定则：在习题 9.12 中你需要推导如下对易关系 

                          
2 2 2 2 2,[ , ] 2 ( ).L L L L⎡ ⎤ = +⎣ ⎦r r r=                             [9.74] 

同前一样，我们把上式放在 mln ′′′ 和 nlm 之间来推导选择定则： 

                   
2 2[ ,[ , ]]n l m L L nlm′ ′ ′ r ＝

2 2 22 n l m L L nlm′ ′ ′ +r r=  

      ＝ )]1()1([2 4 +′′++ llll= n l m nlm′ ′ ′ r ＝
2 2 2 2[ [ , ] [ , ] ]n l m L L L L nlm′ ′ ′ −r r  

                    ＝ )]1()1([2 ++′′ llll －= 2[ , ]n l m L nlm′ ′ ′ r  

                    ＝ )]1()1([2 ++′′ llll －= 2 2 ]n l m L L nlm′ ′ ′ −r r  

                    ＝
24 )]1()1([ ++′′ llll －= .n l m nlm′ ′ ′ r                          [9.75] 

结论： 

要么 )]1()1([2 +′′++ llll ＝
2)]1()1([ ++′′ llll －    要么 0＝nlmrmln K′′′             [9.76] 

但是 

            [ ( 1) ( 1)] ( 1)( )l l l l l l l l′ ′ ′ ′+ + = + + −－  

           1)()1()]1()1([2 22 －llllllll −′+++′=+′′++  

方程 9.76 中第一个条件可写为如下形式： 

                       
2 2[ 1 1][( ) 1] 0.l l l l′ ′+ + − − − =（ ）                              [9.77] 

第一个因子不可能为零（除非 0==′ ll —这个漏洞在习题 9.13 将补上），所以方程成立的条件为

1±=′ ll ，因此我们得到 l 的选择定则： 

 

[9.78] 

 

 

这个结果也很容易理解：光子自旋为 1，因此角动量的叠加规律只允许 1,  ,  1l l l l l l′ ′ ′= + = = − （虽

然 ll =′ 满足角动量守恒，但对于电偶极辐射， ll =′ 情况不会发生）。 

 

 

很显然，并不是所有向低能态跃迁的自发发射都能发生；有一些是被选择定则所禁戒的。图 9.6

                                                        
20当极轴沿传播方向时，中间值不会发生，如果你只对线性独立光子态的数量感兴趣，那么答案是 2，而不是 3。然而，

这种情况下光子不必沿 z轴方向，所有 3 个值都是可能的。 

除非 1,0mΔ = ± 否则没有跃迁发生。 

除非 1±=Δl ，否则不发生跃迁。
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给出了氢原子前四个玻尔能级间的允许跃迁。注意 2S 态（ 200ψ ）是稳固态，它不可能衰变，因为没

有更低的 1=l 态。它称为亚稳态，它的寿命比, 例如2P 态（（ 121210211 －，， ψψψ ））要长的多。当

然，亚稳态最终也会由于碰撞，禁戒跃迁（习题 9。21），或多光子发射而衰变。 

 

 
 

 

图 9.6 氢原子前四个波尔能级允许的衰变。 

 

∗习题 9.12  证明方程 9.74 的对易关系.提示：首先证明 

                          
2[ , ] 2 ( ).y XL z i xL yL i z= − −= =  

利用这个式子和 ( ) 0⋅ = ⋅ × =r L r r p 证明 

                          
2 2 2 2 2[ ,[ , ]] 2 ( ).L L z zL L z= +=  

从 z 到r 的推广很简单。 

 

习题 9.13  弥补方程 9.78 的“漏洞”，证明如果 0==′ ll ，则 0n l m nlm′ ′ ′ =r 。 

 

习题 9.14  氢原子处在 3n = , 0=l , 0m = 态的电子通过一系列跃迁（电偶极矩）向基态衰变。 

（a）衰变的路径有那些？按照下列方法具体写出每条路径： 

                  300 100 .nlm n l m′ ′ ′→ → → →"  

（b）如果你有许多处在 300 态的原子，通过每条路径衰变的百分比是多少？ 

（c） 300 态的寿命是多少？提示：一旦开始第一次跃迁，它将不在处在 300 态，因此在计算寿命

时仅需考虑每个跃迁路径的第一步。当有多个衰变路径时，把跃迁速率相加。 

 

 

第九章补充习题 
∗∗ 习题 9.15 从推广方程 9.1 和 9.2 开始，给出多能级体系的含时微扰理论： 

                      0 ,n n nH Eψ ψ=      .n m nmψ ψ δ=                            [9.79] 

在时间 0=t 时我们开始加上微扰 )(tH ′ ，因此总的哈密顿是 

                              0 ( ).H H H t′= +                                     [9.80] 

(a) 推广方程 9.6 为 

                           
/( ) ( ) ,niE t

n nt c t eψ −Ψ =∑ =
                               [9.81] 

并证明 
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( ) / ,m ni E E t

m n mn
n

ic c H e −′= − ∑ =�
=

                             [9.82] 

其中 

                             .mn m nH Hψ ψ′ ′≡                                   [9.83] 

(b) 如果体系开始时处在 Nψ 态，证明（在一级微扰理论中） 

                           
0

( ) 1 ( ) .
t

N NN
ic t H t dt′ ′ ′≅ − ∫=                               [9.84] 

及 

           
( ) /

0
( ) ,m N

t i E E t
m mN

ic t H e dt′−′ ′≅ − ∫ =

=
   Nm ≠                    [9.85] 

(c) 例如，假设 H ′是一个常量（在 0=t 时加上，经过一段时间 t 后在去掉），作为时间 t 的函数，求

出从 N 态到M 态的跃迁几率（ NM ≠ ）。答案： 

                           

2
2

2

sin [( ) / 2 ]4 .
( )

N M
MN

N M

E E tH
E E

−′
−

=
                          [9.86] 

(d) 现在假设 H ′是 t 的正弦函数： )cos( tVH ω=′ 。做通常的假设，证明只能向 ω=±= NM EE 的

能级跃迁，跃迁几率是 

                        

2
2

2

sin [( ) / 2 ] .
( )

N M
N M MN

N M

E E tP V
E E

ω
ω→

− ±
=

− ±
= =
=

                  [9.87] 

(e) 假设一个多能级体系处在非相干电磁辐射中。参考 9.2.3 节，证明受激发射跃迁几率由与两能级

体系的受激发射几率一样的公式给出（9.47 式）。 

 

习题 9.16 对习题 9.15 中的（c）和（d）例子，计算一级近似下的 )(tcm 。验证归一化条件： 

                                
2( ) 1,m

m
c t =∑                                     [9.88] 

并且讨论一下偏差。假设你想计算仍然处在初始态 Nψ 的几率, 用
2)(tcN 或者

21 ( )m
m N

c t
≠

− ∑ 那个更

好一些？ 

 

习题 9.17 一个粒子开始时处在无限深方势阱的第 N 阶态。现在势阱的底部暂时上升（可能是水漏

在里面，然后再排干），因此里面是含时的均匀势： )(0 tV ， 0)()0( 00 == TVV  

(a) 用方程 9.82 严格求解 )(tcm ，并证明波函数的位相发生了改变， 但是没有跃迁发生。用 )(0 tV ，

表示出位相的变化 )(Tφ 。 

(b) 用一阶微扰理论重做，并比较结果。 

注：这与无限方势阱没关系，当势能增加一个常量（对 x 而言，不是对 t ），我们会得到同样的结果。

与习题 1.8 比较一下。 

 

∗习题 9.18 质量为m 的一个粒子在（一维）无限深方势阱中，开始时处在基态。在时间 0=t 时把

一块“砖”丢到阱中，因此势变成 

                      

0 ,       0 / 2
( ) 0,         / 2

,                 

V x a
V x a x a

≤ ≤⎧
⎪= ≤ ≤⎨
⎪∞⎩

如果 ，

如果 ，

其它地方，

 

其中 10 EV << 。经过时间T 后，砖被移走，测量粒子的能量。求得到 2E 的几率（在一级微扰理论中）。 

 

习题 9.19 我们已经遇到了受激发射，（受激）吸收和自发发射。为什么没有自发吸收？ 
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∗∗∗ 习题 9.20 磁共振。一个静止在稳恒磁场 kB ˆ
0 中的自旋 1/2 粒子，其回转磁比率为 γ ，以拉莫

频 率 00 Bγω = 进 动 （ 例 题 4.3 ）。 现 在 我 们 施 加 一 个 很 小 的 横 向 的 射 频 （ rf ） 场 ，

rf
ˆ ˆ[cos( ) sin( ) ]B t i t jω ω− ，因此总场是 

                       l
0

ˆ ˆ[cos( ) sin( ) ] .rfB t i t j B kω ω= − +B                           [9.89] 

(a) 构造这个体系的（ 22× ）哈密顿矩阵（4.158 式） 

(b) 如果 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(
)(

)(
tb
ta

tχ 是 t 时刻的自旋态，证明 

            0( );
2

i tia e b aω ω= Ω +�     0( ),
2

i tib e a bω ω−= Ω −�                           [9.90] 

式中 rfBγΩ ≡ 和 rf 场的强度有关 

(c) 根据它们的初始值 0a 和 0b ，求 )(ta 和 )(tb 的一般解。答案： 

           
2/

0000 )2/sin(])([)2/cos()( tietbaitata ωωωω
ω

ω
⎭
⎬
⎫

⎩
⎨
⎧ ′Ω+−

′
+′=  

           
2/

0000 )2/sin(])([)2/cos()( tietabitbtb ωωωω
ω

ω −

⎭
⎬
⎫

⎩
⎨
⎧ ′Ω+−

′
+′=  

式中 

                   
2 2

0( ) .ω ω ω′ ≡ − +Ω                                     [9.91] 

(d) 如果粒子开始时自旋向上，（即 0,1 00 == ba ），作为时间的函数, 求向自旋向下态的跃迁几率，。

答案： { } )2/(sin])/[()( 222
0

2 ttP ωωω ′Ω+−Ω= 。 

(e) 作为驱动频率ω的函数，画出共振曲线（ Ω,0ω 固定） 

                        
2

2 2
0

( ) .
( )

P ω
ω ω

Ω
=

− +Ω
                                   [9.92] 

注意在 0ωω = 时函数有最大值，求“半峰全宽” ωΔ 。 

(f) 因为 00 Bγω = ，我们可以用在实验上观察到的共振来得到粒子的磁偶极矩。在核磁共振（nmr）

实验可以测量质子的 g 因子，用 10.000 高斯的静场和振幅为 0.01 高斯的 rf 场。共振频率是多

少？（质子的磁矩可参考 6.5 节）。求出共振曲线的宽度。（答案用 Hz 表示） 

 

∗∗∗ 习题 9.21 在方程 9.31 中假设了原子很小（和光波波长相比）以至于场的空间变化可以忽略。

真正的电场是 

                              0( , ) cos( ).t tω= ⋅ −E r E k r                            [9.93] 

如果原子位于原点，则在相关体积中 1⋅ <<k r （ 2 /π λ=k ，因此 / 1r λ⋅ <<k r ∼ ）这就是我们为

何能舍弃该项的原因。假设我们保留一阶修正 

                          [ ]0( , ) cos( ) ( )sin( ) .t t tω ω= + ⋅E r E k r                      [9.94] 

第一项给出了我们在前文中考虑的允许（电偶极矩）跃迁；而第二项导致了所谓的禁戒（磁偶极和电

四极矩）跃迁（高阶 ⋅k r 甚至会产生更多的禁戒跃迁，这种跃迁与高阶多极矩相联系）
21
 

(a) 求禁戒跃迁的自发发射速率（不要被极化和传播方向的平均所烦扰，尽管这对完成计算是必须

的）。答案： 

                        
2 5 2

5
0

ˆ( )( ) .b a
qP a n b

c
ω

πε→ = ⋅ ⋅r k r
=

                         [9.95] 

(b)证明对于一维谐振子从 n 到 2−n 是禁戒跃迁，跃迁速率（适当地对 n̂ 和 k̂ 求平均）是 

                                                        
21 对于一个系统的处理方法（包括磁场）参见 David Park, 量子力学导论，3th ed . (McGraw-Hill, New York,1992), 第
11 章。 
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2 3

2 5
0

( 1) .
15
q n nR

m c
ω
πε

−
=
=

                               [9.96] 

(注意：这里ω是光子的频率而不是谐振子的频率)，求出“禁戒”跃迁速率与“允许”跃迁速率的比

值，并评论术语“禁戒”和“允许”。 

(c) 证明氢原子中 2 1S S→ 的跃迁，即使是禁戒跃迁也是不可能的。（由此得出，所有的高阶多极矩

跃迁也是不可能的；事实上占支配地位的衰变是两光子发射，寿命大约是 10/1 秒。
22
） 

 

∗∗∗ 习题 9.22 证明氢从 ln, 到 ln ′′, 跃迁的自发发射速率（9.56 式）是 

                        
2 3 2

3
0

1 ,           1
2 1

3 ,          1
2 1

l l l
e I l

lc l l
l

ω
πε

+⎧ ′ = +⎪⎪ +×⎨
⎪ ′ = −
⎪ −⎩

=

如果 ，

如果 ，

                      [9.97] 

式中 

                           
3

0
( ) ( ) .nl n lI r R r R r dr

∞

′ ′≡ ∫                                [9.98] 

（开始时原子具有确定的值m ，可以到任意的态m′，只要满足选择定则： 1,,1 −+=′ mmmm 。注

意答案不依赖于m ）。提示：首先对 1+=′ ll 情况计算在 nlm 和 mln ′′′ 之间的所有非零矩阵元，由

这些可计算 

           
2 2 2

, 1, 1 , 1, , 1, 1 .n l m nlm n l m nlm n l m nlm′ ′ ′+ + + + + + −r r r  

然后对 1−=′ ll 做同样的计算。

                                                        
22 参见 Masataka Mizushima,原子频谱和原子结构的量子力学，Benjamin,New York (1970), 5.6 节。 
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第十章 

绝热近似 

 
10.1 绝热定理 

 

10.1.1 绝热过程 
 

设想一个没有摩擦和空气阻力的理想单摆在竖直平面上来回振荡。如果你握住它的支撑体并且急剧

移动它，摆将混乱的摇动。但是如果你轻轻稳稳地移动支撑体（图 10.1），摆将在同一个平面（或

者平行平面）平滑的连续移动，并且振幅不变。这种外部条件缓慢变化的过程定义为绝热过程。注

意到，这里涉及到两个特征时间： iT ，“内部“时间，代表系统自身地运动（在此时情况下 iT 是摆

的振荡周期）；和 eT ， “外部”时间，表示系统参数明显变化所需的时间（例如：如果把摆安放在

振动的平台上，那么 eT 将是平台的振动周期）。绝热过程要求 e iT T>> 。
1
 

    分析一个绝热过程的基本方法是先把外部参数视为常量求解问题，仅在计算的最后时才允许它

们随时间缓慢地变化。例如：固定长度为 L的摆的经典周期是 gL /2π ；如果现在长度逐渐变化，

周期大体可写成 gtL /2 ）（π 。一个更微妙复杂的例子是我们讨论过的氢分子离子（7.3 节）。我

们先假设核固定不动，相距为 R ，然后求电子的运动。一旦我们得到作为 R 的函数的体系基态能量，

我们就可以确定平衡位置并根据图的曲率得到原子核的振动频率（习题 7.10）。在分子物理里学里

这种方法（首先固定原子核的位置，计算电子波函数，然后用这些去获得原子核的位置和运动（相

对缓慢的）信息）称为玻恩－奥本海默近似。 

在量子力学中，绝热近似最基本的内容可以表述为如下定理。假设哈密顿量由初值
iH 逐渐变

化到终值
fH 。绝热定理指出：如果粒子开始时处在

iH 的第n 阶本征态，它将演化
fH 的第 n 阶本

征态（演化按薛定鄂方程）。（我将假设从
iH 到

fH 的演化过程中谱是分立的并且不简并，这样态的

次序不会混淆；有合适的方法“跟踪”本征函数时，这些条件可以放宽，但这里我不打算讨论这个。） 

 
 

 

 

图10.1 绝热运动:如果箱子移动得非常缓慢,里面的摆将在与原来平面平行的平面振动,并且振幅保

持不变 

                                                        
1一个有关经典绝热过程的有趣讨论可参见 Frank S.Crawford,Am.J.Phys.58,337(1990)。 



 

 
图 10.2: (a) 粒子开始时处于无限深方势阱的基态。（b）如果井壁移动的非常缓慢，粒子仍然处于

基态。（c）如果井壁移动的非常迅速，粒子处在（暂时）它原来的态。 

 

例如，假设我们使一个粒子处在无限深方势阱的基态（图 10.2（a））： 

2( ) sin( ).i x x
a a

πψ =                                [10.1] 

如果现在我们逐渐移动势阱右壁到 2a ,绝热定理指出：粒子将最终处于扩展后势阱的基态（也许会

有一个相因子的差别）（图 10.2（b）: 

                            
1( ) sin( ),

2
f x x

a a
πψ =                                [10.2] 

注意这里我们不是在讨论哈密顿量的一个微小变化（如微扰理论中）⎯这个变化是很大的。我们所

要求的仅是变化非常缓慢。这里能量不再守恒：移动阱壁者将从体系吸取能量，这就像活塞缓慢地

运动使气体膨胀一样。另一方面，如果势阱扩展非常迅速，那么终态仍然是 )(xiψ 态（图 10.2（c）），

它将是新哈密顿量本征态的一个复杂的线性叠加（习题 2.38）。在这种情况下，能量是守恒的（至

少能量期待值是）；这像气体（向真空）的自由膨胀一样，当挡板突然移去，气体并不做功。 

 

∗∗∗ 习题 10.1  可对无限深方势阱的右壁以恒定的速度 v扩张问题精确求解
2
，一组完备解是 

                       
2( 2 ) / 22( , ) sin( ) ,

i
ni mvx E at w

n
nx t x e

w w
π −Φ ≡ =

                     [10.3] 

其中 vtaw +≡ 是势阱的瞬时宽度，
2222 2/ manEi

n =π≡ 是初始势阱（宽度 a ）的第 n 能级，一般

解是诸Φ的线性叠加： 

                            
1

( , ) ( , );n n
n

x t c x t
∞

=

Ψ = Φ∑                                [10.4] 

展开系数 nc 不依赖时间 t 。 

(a) 在适当的边界条件下，验证 10.3 式满足含时薛定鄂方程。 

(b) 假设粒子初始态为初始势阱的基态： 

                           
2( ,0) sin( ).x x
a a

π
Ψ =  

证明展开系数可以写成如下形式： 

                           
2

0

2 sin( )sin( ) ,i z
nc e nz z dz

π α

π
−= ∫                         [10.5] 

式中 =22/ πα mva≡ 是对势阱扩展速度量度的一个无量纲量。（不幸的是，这个积分不能积为初等

函数。） 

(c) 假设势阱的宽度扩展为原来的二倍，因此“外部时间”由 aTw e 2)( = 确定。“内部时间”是（初

始）基态含时指数因子的周期，确定 eT 和 iT ，并证明绝热近似对应 1<<α ，因此在整个积分区域

                                                        
2 S.W.Doescher and M.H.Rice , Am.J.Phys.37,1246(1969)。 



1)exp( 2 ≅−iaz 。由此确定展开系数 nc ，构造 ),( txΨ ，并验证它与绝热定理一致。 

(d) 指出在 ),( txΨ 中，相因子可以写成 

                              10

1( ) ( ) ,
t

n t E t dtθ ′ ′≡ − ∫=                              [10.6] 

这里
2222 2/)( mwntEn =π≡ 是时刻 t 的瞬时能量本征值，讨论这个结果。 

 

10.1.2  绝热定理的证明 
绝热定理表述很简单，并且听起来也很有道理，但证明并不容易

3
。如果哈密顿量不依赖时间，则开

始时处在满足 

                               ,n n nH Eψ ψ=                                     [10.7] 

第n 本征态 nψ 4
的一个粒子以后将仍然处在第n 本征态，只是具有了一个相因子： 

                              
/( ) .niE t

n nt eψ −Ψ = =
                                 [10.8] 

如果哈密顿随时间变化，则本征函数和本征值也随时间变化： 

                             ( ) ( ) ( ) ( ),n n nH t t E t tψ ψ=                              [10.9] 

但它们（在任何瞬间）仍然构成正交归一集 

                              ( ) ( ) ,n m nmt tψ ψ δ=                               [10.10] 

并且它们是完备的，因此含时薛定鄂方程 

                       )()()( ttHt
t

i Ψ=Ψ
∂
∂=                                    [10.11] 

的一般解可以表示成它们的线性叠加： 

                       
( )( ) ( ) ( ) ,ni t

n n
n

t c t t e θψΨ =∑                                 [10.12] 

式中 

                        ∫ ′′−≡
t

nn tdtEt
0

)(1)(
=

θ                                   [10.13] 

是把“标准”含时位相因子推广到 nE 随时间变化的情况。（通常，本可以把这个因子包含在 )(tcn 里

面，但把它单独写出比较方便，因为它在哈密顿量不含时也同样存在。） 

把方程 10.12 代入方程 10.11，我们得到 

              nn i
n

n
n

i
nnnnnn

n
n eHceiccci θθ ψθψψψ )(][ ∑∑ =++ ���=                   [10.14] 

(点表示对时间的导数)。由 10.9 和 10.13 式， 上式中的最后两项相抵消，给出  

                        .n ni i
n n n n

n n
c e c eθ θψ ψ−∑ ∑ �� ＝                                [10.15] 

取与 mψ 的内积，并利用瞬时本征函数的正交性（10.10 式，可得 

                    ,n ni i
n mn n m n

n n
c e c eθ θδ ψ ψ−∑ ∑ �� ＝  

即 

                      
( )( ) .n mi

m n m n
n

c t c e θ θψ ψ −−∑ �� ＝                             [10.16] 

现在，把方程 10.9 对时间求微分，得到 

                                                        
3这个定理通常归功于 Ehrenfest ,他用早期的量子力学理论研究了绝热过程。Born 和 Fork 最先用现代量子力学给予了

证明。Zeit.f.Physik 51.165(1928)。其它的证明可参见 Wessiah，量子力学，Wiley，New York（1962），第二卷，第 XVII
章，12 节，J-T Hwanghe Philip Pechukas,J.Chem.Phys.67,4640,1977,及 Gasiorowicz, 量子物理, Wiley，New York（1974），
第 22 章, 习题 6. 这里的表述源于 B.H. Bransden 和 C.J. Joachain, 量子力学导论, 第二板, 
Addison-Wesley,Boston,MA(2000),9.4 节. 
4我将略写对位置（或自旋，等）的依赖；仅时间与现在的讨论有关。 



                      ,n n n n n n nH H E Eψ ψ ψ ψ= +� �� �＋                     

因此有（再次取与 mψ 的内积）： 

               .m n m n n mn n m nH H E Eψ ψ ψ ψ δ ψ ψ+ = +� �� �                     [10.17] 

利用 H 的厄米性， nmmnm EH ψψψψ �� = ，在 mn ≠ 时，上式可写为 

                        ( ) .m n n m m nH E Eψ ψ ψ ψ=� �－                         [10.18] 

此式代入 10.16 式（记住我们假设了能级不简并），我们得到： 

           0
( / ) [ ( ) ( )]

( ) .
t

n mi E t E t dtm n
m m m m n

n m n m

H
c t c c e

E E
ψ ψ

ψ ψ
′ ′ ′− −

≠

∫− −
−∑

=
�

�� ＝            [10.19] 

这个结果是精确的。现在回到绝热近似：假设 H� 非常小，舍弃第二项
5
，得到 

                             ( ) ,m m m mc t c ψ ψ− �� ＝                              [10.20] 

其解为 

                                 
( )( ) (0) ,mi t

m mc t c e γ＝                            [10.21] 

其中
6
 

                           
0

( ) ( ) ( ) .
t

m m mt i t t dt
t

γ ψ ψ∂′ ′ ′≡
′∂∫                      [10.22] 

特别地，如果粒子开始时处在第n 本征态（即， 1)0( =nc ， 0)0( =mc ， m n≠ ），则（10.12 式） 

 

                     

[10.23] 

 

 

因此它仍然处在（演化哈密顿量的）第n 本征态，仅仅增添了一对相因子。（QED） 
 

 

例题 10.1 假设一个电子（电荷 e− ,质量m ）在强度为 0B 的磁场中静止在原点，磁场的方向与 z

轴夹角α ，并以常角速度ω绕 z 轴转动（图 10.3）： 

             0
ˆˆ( ) sin cos( ) sin sin( ) cos .t B t i t j kα ω α ω α⎡ ⎤= + +⎣ ⎦B �                    [10.24] 

哈密顿量（4.158 式）是 

          0( ) [sin cos( ) sin cos( ) cos ]
2 x y z

e BeH t t t
m m

α ω σ α ω σ ασ= ⋅ = + +B S =
 

               1 cos sin
,

2 sin cos

i t

i t

e
e

ω

ω

α αω
α ω

−⎛ ⎞
= ⎜ ⎟

−⎝ ⎠

=
                                     [1025] 

式中 

                    0
1 .eB

m
ω ≡                                           [10.26 

)(tH 的归一化的本征旋矢是 

                         
cos( / 2)

( ) ,
sin( / 2)i tt

e ω

α
χ

α+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                [10.27] 

                                                        
5这步严格的证明很复杂，参见 A.C.Aguiar Pinto 等.，Am.J.Phys.68,995(2000)。 
6
注意γ 是实的，因为 mψ 的归一化使 ( / ) 2 Re( ) 0m m m m m m m md dt ψ ψ ψ ψ ψ ψ ψ ψ= + = =� � �  

 

)()( )()( teet n
titti

n
nn ψγθ=Ψ



 
图 10.3 磁场方向沿着一个圆锥面以角速度ω扫动(10.24 式)。 

 

和 

                         
sin( / 2)

( ) ;
cos( / 2)

i te
t

ω α
χ

α

−

−

⎛ ⎞
= ⎜ ⎟

−⎝ ⎠
                               [10.28] 

它们分别代表沿着 ( )tB 的瞬时方向上的自旋向上和自旋向下（参考习题 4.30）。对应的本征值是 

                                1 .
2

E ω
± ≡ ±

=
                                   [10.29] 

假设开始时，沿 (0)B 方向，电子自旋向上:
7
  

                             
cos( / 2)

(0) .
sin( / 2)

α
χ

α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                               [10.30] 

含时薛定鄂方程的精确解（习题 10.2）是： 

            

/ 21

/ 21

( )cos( / 2) sin( / 2) cos( / 2)
( ) ,

( )cos( / 2) sin( / 2) sin( / 2)

i t

i t

t i t e
t

t i t e

ω

ω

ω ωλ λ α
λ

χ
ω ωλ λ α
λ

−

+

⎛ − ⎞⎡ ⎤−⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟=
⎜ ⎟+⎡ ⎤−⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

            [10.31] 

式中 

                        
2 2

1 12 cos .λ ω ω ωω α≡ + −                              [10.32] 

或者表示成 +χ 与 −χ 的线性叠加： 

/ 21

/ 2

( cos )( ) cos( ) sin( ) ( )
2 2

        sin sin( ) ( ).
2

i t

i t

t tt i e t

ti e t

ω

ω

ω ω αλ λχ χ
λ

ω λα χ
λ

−
+

+
−

−⎡ ⎤= −⎢ ⎥⎣ ⎦
⎡ ⎤+ ⎢ ⎥⎣ ⎦

            [10.33] 

显然，向自旋向下态的（精确）跃迁几率是（沿当前B 的方向） 

                                                        
7这和习题 9.20 在本质上是一样的，除了现在电子初始态是沿 B 方向的自旋向上，而在方程 9.20（d）中电子初始态

为沿 z方向的自旋向上。 



 
图 10.4 在非绝热区域( 1ω ω>> )的跃迁几率图,10.34 式。 

 

                      

2
2

( ) ( ) sin sin( ) .
2
tt t ω λχ χ α

λ−
⎡ ⎤= ⎢ ⎥⎣ ⎦

                        [10.34] 

绝热定理指出在 ie TT >> 极限情况下这个跃迁几率应该为零，这里 eT 是哈密顿量变化的特征时间

（对本题， eT ＝1/ω）， iT 是波函数变化的特征时间（对本题， iT ＝ 1/ 1/E E ω+ −− == ）。因此绝

热近似意味着 1ω ω<< ：即与波函数的相位变化相比，磁场的转动非常缓慢。在绝热近似下 1ωλ ≅ ，

因此,如所述那样 

                   

2
2

1

( ) ( ) sin sin( ) 0.
2
tt t ω λχ χ α

ω−

⎡ ⎤
≅ →⎢ ⎥
⎣ ⎦

                      [10.35] 

在磁场作用下，电子总是沿 B 的方向自旋向上。作为对比，如果 1ωω >> ，那么体系将在自旋向上

和自旋向下态之间来回振荡（图 10.4）。 

 

∗∗ 习题 10.2 对 10.25 式的哈密顿量验证方程 10.31 满足含时的薛定鄂方程。并验证方程 10.33 同

样满足，证明由归一化要求，叠加系数的平方和等于 1。 

 

10.2 Berry 相 
 

10.2.1 不完全过程 
 

回到我们在 10.1.1 节用的经典模型，以阐明绝热过程的概念：一个理想的无摩擦摆，它的支撑体从

一点到另一点运动。我强调过，只要支撑体的运动与摆的周期相比非常慢（摆做了许多次振荡后支

撑体才有明显移动），摆将以相同的振幅（当然，频率也相同）在同一个平面（或者平行平面）内振

动。 

但现在我把这个理想摆带到北极，并让其沿着波特兰（美国港口城市）方向振动（图 10.5）。

此时，假设地球不转动。我带着摆轻轻地（即绝热地）沿着经线经过波特兰到达赤道。此刻摆南北

振动。现在（摆仍然南北摆动）我带着摆沿赤道经过一段距离，最后沿着另一条经线回到北极。很

显然摆的振动将不会在先前出发时的平面内⎯的确，新振动面与老振动面之间有一个夹角Θ，这里

Θ是出发时的南行经线和回来时北行经线之间的夹角。 



图 10.5 摆在地球表面绝热迁移路线。 

 

可以看出，Θ等于摆经过的路径对地心所张的立体角（Ω）。因为这个路径所包围的地表面积

占北半球面积的 / 2πΘ 之一，其面积为
2 21/ 2 ( / 2 )4A R Rπ πΘ = Θ＝（ ） （ R 是地球半径），因此  

                             
2/ .A RΘ = ≡ Ω                                [10.36 

这是一个表达结果的很好方法，因为它不依赖于路径的形状（图 10.6）。
8
 

顺便提及，傅科摆是这类球面上一个闭合路径绝热输运过程的一个很好例子⎯只不过现在不

是我携摆运动，而是地球的转动在做这个工作。一条纬线 0θ 所张的立体角是（图 10.7） 

0
0 0sin 2 ( cos ) 2 (1 cos ).d d θθ θ φ π θ π θΩ = − = −∫＝                 [1037] 

相对于地球（地球此时已经转动了 π2 ），傅科摆的日进动是 0cos2 θπ —这个结果可用转动参

照系里的科里奥利力得到
9
，但是本书所给的是纯粹的几何解释。 

像这样一个体系，当环绕一个闭合圈迁移时而不回到初始状态，称不完全体系。（我们讨论的

“迁移”不必涉及物理运动：而是体系的某些参数以某种方式变化并最终回到它们的初始值。）从某

种意义上讲，不完全体系到处存在，每一个循环发动机是一个不完全装置：每一个循环结束后，汽

车已经向前运动一段距离，或者重量有了少许改变，或者其它的变化。这种思想已经应用到了低雷

诺 

（Reynolds） 数情况下流体中的微生物的运动
10
。我在下一节打算研究不完全绝热过程的量子力学。

基本问题是：如果哈密度中的参数绝热地经历了某些闭合路径的变化，终态和初态有何不同？ 

    图 10.6 对应立体角Ω的球面上的任意路径。  

 

                                                        
8如果你感兴趣的话可以自己证明一下。把曲线看作由许多微小的节环（球面上的短程线）组成；摆与每一个短程线

成一个固定角度，因此最终的偏转角是对球面多边形的所有顶角求和。 
9例如，可参见 Jerry B.Marion 和 Stephen T.Thornton, 粒子和系统的经典动力学, 第四版, Saunders, Fort Worth, 
TX(1995),例题 10.5。地理学家从赤道向上测量纬度λ ，而不是从极点向下测量，因此 λθ sincos 0 = 。 
10摆例子是Hannay角的一个应用，Hannay角是 Berry相变的经典类比。关于这两个问题的论文集可参见Alfred Shapere 
和 Frank Wilczcek 所编的, 物理中的几何相, World Scientific, Singapore (1989)。 



 图 10.7 一天过程中, 傅科摆的路径。 

 

 

10.2.2 几何相 
 

在 10.1.2节我证明了，初始态为 )0(H 第n本征态的一个粒子在经历了绝热过程之后仍然处在 )(tH
的第 n 阶本征态，仅增加了一个含时相因子。具体来讲，它的波函数是（10.23 式） 

                         
[ ( ) ( )]( ) ( ),n ni t t

n nt e tθ γ ψ+Ψ =                                 [10.38 

式中    

                   ∫ ′′−≡
t

nn tdtEt
0

)(1)(
=

θ                                 [10.39] 

是动力学相（因子 )/exp( =tiEn− 在 nE 是时间函数时的推广），而 

                        ∫ ′′
′∂

∂′≡
t

nnn tdt
t

tit
0

)()()( ψψγ                          [10.40] 

就是所谓的几何相。 

     由于哈密顿量中的一些参数 )(tR 现在是随时间变化的，所以 )(tnψ 也依赖于时间 t 。（在习题

10.1 中， )(tR 是变化的方势阱的宽度。）这样 

                              ,n n dR
t R dt
ψ ψ∂ ∂

=
∂ ∂

                                 [10.41] 

所以 

           
0

( ) ( ) ,f

i

t Rn n
n n nR

dRt i t dt i dR
R dt R
ψ ψγ ψ ψ∂ ∂′≡ =

′∂ ∂∫ ∫                  [10.42] 

这里 iR 和 fR 是 )(tR 的初始值和终态值。特别地，如果经过时间T 之后，哈密顿量回到初始形式，

有 iR ＝ fR ，因此 ( ) 0n Tγ = ⎯没有感兴趣的事情出现！ 

     然而，我假设了在方程 10.4 中哈密顿量仅有一个参数是变化的，现在假设有 N 个参数在变化：

)(1 tR ， …)(2 tR ， )(tRN ；在这种情况下， 

            1 2

1 2

( ) ,n n n n N
R n

N

dRdR dR d
t R dt R dt R dt dt
ψ ψ ψ ψ ψ∂ ∂ ∂ ∂

= + + = ∇ ⋅
∂ ∂ ∂ ∂

R"＋             [10.43] 

这里 1 2( , , )NR R R≡R " , R∇ 是对这些参量求梯度。此时我们有 

                         ( ) ,f

i
n n R nt i dγ ψ ψ∇ ⋅∫

R

R
R＝                             [10.44] 

如果经过时间 T 之后，哈密顿量回到初始形式，那么最终的几何相是 

 

 

[10.45] 

 

( )n n R nT i dγ ψ ψ∇ ⋅∫ Rv＝



  图 10.8 通过被一条闭合曲线C 所包围面积 S 的磁通量。 

 

这是一个参数空间中闭合路径的线积分，一般而言，它并不为零。方程 10.45 是 Michael Berry 在
1984 年首先得到的

11
， )(Tnγ 称为 Berry 相。注意 )(Tnγ 仅仅依赖所选择的路径，而不依赖在这个

路径运动的快慢（当然，只要它慢到足以使绝热过程有效）。相比之下，累积的动力学相 

                            
0

1( ) ( ) ,
T

n nT E t dtθ ′ ′≡ − ∫=  

关键地依赖所需时间。 

我们习惯的认为波函数的位相是任意的⎯物理量与
2ψ 有关，其中相因子被抵消。由于这个原

因，直到现在许多人还认为几何相没有实在的物理意义⎯毕竟， )(tnψ 自身的相是任意的。Berry

洞察到：如果使哈密顿量沿闭合回路变化一周后回到初始形式，初始时刻与最终时刻的相差不是任

意的，并且是可以测量的。 

例如，假设我们有一束粒子（所有粒子都处于Ψ态），把它们分成两束，使一束经历绝热变化

的势，而另一束不经历。当这两束粒子重新合并到一起时，总的波函数形式为 

                            0 0
1 1 ,
2 2

ie ΓΨ Ψ Ψ＝ ＋                              [10.46] 

其中 0Ψ 是不经历绝热变化势的那束粒子的波函数，Γ是经历绝热变化 H 那束粒子获得的额外相（部

分是动力学，部分是几何）。在这种情况下 

                
2 2

0
1 1 (1 )
4

i ie eΓ − ΓΨ Ψ +＝ （＋ ）  

                    
2 2 2

0 0
1 (1 cos ) cos ( / 2).
2

= Ψ + Γ = Ψ Γ                         [10.47] 

因此通过寻找干涉相增和干涉相消位置（这里Γ是π 的奇数倍或者偶数倍），我们很容易测量Γ。 

(Berry 和其他一些早期作者担心几何相会因为动力学相太大而被掩盖，但可以证明我们可以适当安

排把两个相的贡献分开。) 

当参数空间是三维时， 1 2 3( , , )R R R=R ,Berry 公式（10.45 式）可以使我们联想到用矢势A 来

表示磁通量。通过曲线C 所围面积 S 的磁通量Φ（图 10.8）是： 

                            .
S

dΦ ≡ ⋅∫ B a                                  [10.48] 

如果我们把磁场用矢势表示（ = ∇×B A ），应用 Stokes 定理： 

                            .
C

S

d dΦ = ∇× ⋅ = ⋅∫ ∫A a A rv（ ）                         [10.49] 

这样 Berry 相可以看作是通过参数空间（闭合）路径一个“磁场”的 “通量” 

                              " " .R n R ni ψ ψ∇ × ∇B ＝                             [10.50 

换一种表述，在三维情况下，Berry 相可以写作一个面积分 

                                                        
11 M. V. Berry, Proc. R. Soc. Lond. A 392, 45(1984) ,reprinted in Wilczek and shapere (foot note 10). 事后看来，这是个令

人震惊的结果，这个结果消失了六年之久。 



                          ( ) [ ] .n R n R nT i dγ ψ ψ∇ × ∇ ⋅∫ a＝                         [10.51] 

与磁场的类比还可以更深入，但是对我们的目的而言， 10.51 式仅是 )(tnγ 的另外一种比较方便的

表达形式。 

 

∗习题 10.3 

（a） 当无限深方势阱的宽度从 1w 绝热变化到 2w 时，用方程 10.42 计算几何相，并讨论结果。 

（b） 当宽度匀速变化时（ /dw dt v= ），对于这个变化过程动力学相如何变化？ 

（c） 如果势阱缩小到初始宽度，对于这个循环 Berry 相如何变化？ 

 

习题 10.4  δ 函数势阱（2.114 式）有一个单束缚态（2.129 式）。当α 由 1α 逐渐变化到 2α 时，计

算几何相。如果α 均匀变化（ /d dt cα = ），在变化过程中，动力学相如何变化？ 

 

习题 10.5 证明如果 )(tnψ 是实的，那么几何相为零。（习题 10.3 和 10.4 是这类例子） 你也许想在

本征函数上添加一个不必要（但是逻辑上合理的）的相因子来处理这个问题： )()( tet n
i

n
nψψ φ=′ ，

其中 ( )nφ R 是一个任意实函数。试一下。没有问题，你可以得到一个非零的几何相，但是注意当你

把结果代入到方程 10.23 时将会出现什么情况。对于闭合路径结果为零。切记：对于非零的 Berry

相，你需要(i)哈密顿量中的含时参数应该多于 1 个（ii）一个可以产生非平庸的复数本征函数的哈

密顿量。 

 

 

 

例题 10.2  Berry 相的经典例子是原点处一个电子处在方向变化的一个恒定磁场中。首先考虑一个

特殊情况（例题 10.1 所分析的），其中 ( )tB 以恒定的角速度ω进动，且与 z 轴夹角恒为α . 方程

10.33 给出了（电子初始态为沿B 方向自旋向上）精确解。在绝热范围: 1ωω << ， 

        

2

1 1 1
1 1 1

1 2 cos 1 cos cos ,ω ω ωλ ω α ω α ω ω α
ω ω ω

⎛ ⎞ ⎛ ⎞
+ − ≅ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
＝ ＋ －            [10.52] 

方程 10.33 可写为 
1 / 2 ( cos ) / 2 / 2

/ 21

1

( ) ( )

      sin sin ( ).
2

i t i t i t

i t

t e e e t

ti e t

ω ω α ω

ω

χ χ

ωω α χ
ω

− −
+

+
−

≅

⎡ ⎤⎛ ⎞+ ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

                   [10.53] 

当 1/ 0ω ω → 时，第二项可以完全舍去，这个结果和所期望的绝热形式（方程 10.23）一致。动力

学相是 

                          1
0

1( ) ( ) ,
2

t tt E t dt ωθ+ + ′ ′≡ − = −∫=                          [10.54] 

(其中,由方程 10.29, 2/1ω==+E )，因此几何相是 

                            ( ) (cos 1) .
2
tt ωγ α+ = −                                [10.55] 

对于一个完整周期 ωπ /2=T ，因此 Berry 相是 

                             ( ) (cos 1).tγ π α+ = −                                [10.56] 

现在考虑更一般的情况，磁场矢量的顶端在半径为 0Br = 的球面上扫过一个任意形状的闭合曲

线（图 10.9）。代表沿B 方向自旋向上的本征态形式为（参见习题 4.30）： 

                            
cos( / 2)

,
sin( / 2)ie φ

θ
χ

θ+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                [10.57] 



图 10.9 大小不变但是方向变化在球面上扫出一个闭合路径的磁场。 

 

这里θ 和φ（B 的球坐标）都是时间的函数。利用球坐标的梯度表达式，我们可以得到 

                
1 1ˆ ˆˆ

sin
r

r r r
χ χ χχ θ φ

θ θ φ
+ + +

+

∂ ∂ ∂
∇ + +

∂ ∂ ∂
＝  

                   
(1/ 2)sin( / 2) 01 1ˆ ˆ.

(1/ 2) cos( / 2) sin( / 2)sini ie ier rφ φ

θ
θ φ

θ θθ
⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

－
＝             [10.58] 

因此 

     
21 sin ( / 2)ˆ ˆ ˆsin( / 2) cos( / 2) sin( / 2) cos( / 2) 2

2 sin
i

r
θχ χ θ θ θ θ θ θ φ
θ+ +

⎡ ⎤
∇ − + +⎢ ⎥

⎣ ⎦
＝  

               
2sin ( / 2) .̂
sin

i
r

θ φ
θ

=                                                   [10.59 

与方程 10.51 相比，我们需对 10.59 式求旋度： 

           
2

2

1 sin ( / 2) ˆ ˆsin ( ) .
sin sin 2

i ir r
r r r

θχ χ θ
θ θ θ+ +

⎡ ⎤∂
∇× ∇ = =⎢ ⎥∂ ⎣ ⎦

                [10.60] 

根据 10.51，我们有  

                          2

1 1 ˆ( ) .
2

T r d
r

γ + = − ⋅∫ a                                  [10.61] 

积分区域是B 在球面上扫过一周所围的面积，所以 
2 ˆd r d r= Ωa ，我们得到 

                         
1 1( ) ,
2 2

T dγ + = − Ω = − Ω∫                               [10.62] 

这里Ω是这个面积所对的立体角。这个结果优美简单，并立即使我们回想到开头所讨论的经典问题

（在地球表面上一个无摩擦的摆环绕闭合回路的迁移问题）。结果表明：如果你用一个磁铁引导电子

自旋沿任意一个闭合回路绝热地转动，最终的几何相的变化等于磁场矢量的顶端扫过的面积所对应

的立体角的一半，然后取负值。回顾 10.37 式，这个一般情况的结果与特殊情况（方程 10.56）下

的结果一致，当然它也必须一致。 

 

 

 

 

∗∗∗ 习题 10.6  对自旋为 1的粒子，求出类似于方程 10.62 的 Berry 相。答案：−Ω。（自旋为 s 的
结果恰好为 s− Ω。） 

 

 

 

10.2.3  Aharonov-Bohm 效应 
 



在经典电动力学中势（ϕ和A ）
12
是不可直接测量的量⎯物理量是电场和磁场： 

                     ,
t

ϕ ∂
= −∇ −

∂
AE         .= ∇×B A                          [10.63] 

基本定律（麦克斯韦方程和洛仑兹力公式）不含势，（从逻辑上讲）势的引入不过是为了方便，而理

论上并非是必要的。的确，我们可以对势作如下变换： 

                   ,
t

ϕ ϕ ϕ ∂Λ′→ −
∂

＝       
' ,→ = ∇ΛA A A＋                    [10.64] 

其中Λ是位置和时间的任意函数；这称为规范变换，这种变换对场没有任何影响（用方程 10.63 可

以很容易验证这一点）。 

在量子力学中势具有更重要的地位，因为哈密顿量是用ϕ和A ，而不是E 和B 来表示的： 

                         
21 ( ) .

2
H q q

m i
ϕ= ∇− +A=

                           [10.65] 

然而，理论仍然是在规范变换下不变的(参见习题 4.61)，并且在相当长的时间内大家认为在E 和B
为零的区域没有电磁场的影响⎯与经典理论完全一样。但是在 1959 年 Aharonov 和 Bohm13证明矢

势可以影响带电粒子的量子行为,即使它是在场本身为零的区域中运动。首先我将用一个简单的例子

来讨论 Aharonov-Bohm 效应，最后指出这个效应和 Berry 相的关系。 
假设一个粒子被限制在半径为b 的圆环上运动（如果你喜欢的话可认为是珠子穿在环上）。通

有稳恒电流 I ，半径为 a 的螺线管沿轴向放置， a b< （见图 10.10）。如果螺线管足够长，那么它

内部的磁场是均匀的，外面的磁场为零。但螺线管外面的矢势并不为零；事实上（采用通常的

0∇⋅ =A 规范）
14
 

                       ˆ,       ( ),
2

r a
r
φ

π
Φ

= >A                              [10.16] 

其中
2a BπΦ = 是通过螺线管中的磁通量。同时，螺线管自身不带电，所以标势为零。在这种情况

下，哈密顿量（10.65 式）可写为 

 

 

2 2 2 21 2 .
2

H q A i q
m
⎡ ⎤= − ∇ + + ⋅∇⎣ ⎦A= =                       [10.67] 

但波函数仅依赖于方位角φ（ 2/πθ = ， br = ），因此 )/)(/ˆ( φφ ddb→∇ ，薛定鄂方程可写为 

                   
2 2

2
2 2 2

1 [ ( ) ] ( ) ( ).
2 2

d q q di E
m b d b b d

ψ φ ψ φ
φ π π φ

Φ Φ
− + + =
= =

              [10.68] 

这是一个具有常系数的线性微分方程： 

                            
2

2 2 0,d di
d d
ψ ψβ εψ
φ φ

− + =                             [10.69] 

其中 

               ,
2
qφβ
π

≡
=

      
2

2
2

2 .mb Eε β≡ −
=

                      [10.70] 

解具有如下形式 

                                   ,iAe λφψ =                                   [10.71] 

式中 

                                                        
12在量子力学中大家习惯用字母V 表示势能，但是在电动力学中相同的字母通常用来表示标势。为了避免混淆，我

用ϕ 表示标势。参考习题 4.59，4.60 和 4.61 来了解本节的背景。 
13 Y.Aharonov 和 D.Bohm, Phys. Rev. 115, 485 (1959)。 一个著名的前期工作, 参见 W. Ehrenberg 和 R.E. Siday, Proc. 
Phys. Soc.  London  B62, 8 (1949)。 
14例如，参见 W.J.Griffiths , 电动力学导论, 第三版, Prentice Hall, Upper Saddle River, NJ (1999), 5.71 式。 



 
图 10.10 穿有带电小珠的金属环,一个螺旋管穿过环面。 

 

                  
2 2 .b mEλ β β ε β= ± + = ±

=
                         [10.72] 

)(φψ 在 πφ 2= 时的连续性，要求λ是整数： 

                              2 ,b mE nβ ± =
=

                                 [10.73]   

由此得到 

                     

22

2 ,
2 2n

qE n
mb π

Φ⎛ ⎞= −⎜ ⎟
⎝ ⎠

=
=

    （ 0,  1,  2,n = ± ± "）             [10.74] 

螺线管使环—珠体系的两重简并分裂（习题 2.46）：正的n 代表粒子运动方向与螺线管中电流

方向一致；正的 n 比负的 n 有更低的能量(假设电荷为正)，负的 n 描述粒子的运动方向与螺线管中

电流方向相反。更重要的是，能量的允许值明显依赖螺线管内的场，即便是粒子所处位置处的场为

零
15
！  

     更一般的，假设一个粒子运动在磁场B 为零的区域（ 0∇× =A ）运动，但是在这个区域A 本

身不为零。（我将假定A 是不随时间变化的，但是这里的方法可推广到为含时势情况。）含时薛定鄂

方程 

                         
21 ( ) ,

2
q V i

m i t
∂Ψ⎡ ⎤∇ − + Ψ =⎢ ⎥ ∂⎣ ⎦

A= =                       [10.75] 

中的势能V 可包括也可以不包括电的贡献qϕ，我们可以用 

                                  ,ige ′Ψ = Ψ                                   [10.76] 

来简化方程，其中 

                    
' '

Q
( ) ( ) ,qg d≡ ⋅∫

r
r A r r

=
                              [10.77] 

                                                        
15磁通量子化是超导环的特征： (2 / )q nπ ′Φ = = ，这里 n′是整数。在这种情况下，场的效应不可能测到，因为此

时
222 ))(2/( nnmbE n ′+= = 并且 )( nn ′+ 只是另一个整数。（顺便提及，这里的电量是电子电量的两倍；超

导电子成对的结合在一起。）然而，磁通量子化是由超导体产生（超导体感生出环电流去弥补差别），不是由电磁场

或者螺线管产生，这儿所考虑的情况（非超导）不会发生磁通量子化。 



 
图 10.11 Aharonov-Bohm 效应:电子束分为两束,通过长螺旋管的两侧。 

 

其中Q是（任意选择的）参考点。注意这个定义仅在 0∇× =A 区域成立⎯否则线积分将依赖于从Q
到r 的路径，并且不能定义为r 的函数。用

'Ψ 表示，Ψ的梯度是 

                          ( ) ( );ig ige i g e′ ′∇Ψ = ∇ Ψ + ∇Ψ  

但是 ( / )g q∇ = A= ，所以 

                         ( ) ,igq e
i i

′∇ − Ψ = ∇ΨA= =
                              [10.78] 

从而 

                       
2 2 2( ) .igq e

i
′∇ − Ψ = − ∇ ΨA= =                              [10.79] 

把此式代入 10.75 式，消去公共因子
ige ，我们得到 

                       
2

2 .
2

V i
m t

′∂Ψ′ ′− ∇ Ψ + Ψ =
∂

= =                               [10.80] 

显然，Ψ′满足不含A 的薛定鄂方程。如果我们能解出方程 10.80，那么得到（旋度为零）矢势存在

时的解非常简单：只需要添加上相因子
ige 。 

   Aharonov 和 Bohm 提出来一个实验，在这个实验里，一束电子被分成两部分，各沿长螺线管的

一边经过，然后汇聚（图 10.11）。电子束和螺线管保持足够的距离，因此电子束只在磁场 0=B 的

区域运动。但是 10.66 式所给的矢势A 并不为零，因此（假设V 在两边一样）两束电子汇聚时相位

不同： 

                   
1 ˆ ˆ( ) ( ) .

2 2
q q qg d r d

r
φ φ φ

π
Φ Φ

= ⋅ = ⋅ = ±∫ ∫A r
= = =

                    [10.81] 

正号对应于电子行进方向与A 的方向一样，即和螺线管中电流方向一致。两电子束汇聚时的相差与

它们路径包围的磁通量成正比： 

                                .qΦ
=
=

相差                                    [10.82] 

这个相移可导致可测量的干涉（10.47 式），已被 Chambers 和其他的人用实验证实。
16
 

                                                        
16 R.G. Chambers, Phys. Rev. Lett. 5, 3 (1960)。 



     
图 10.12 粒子被势 ( )V −r R 限制在一个盒子中。 

 

    正如 Berry 在他的第一篇论文中指出的那样，Aharonov-Bohm 效应可被视为几何相的一个例子。

假设一个带电粒子被一个势 ( )V −r R 限制在一个箱子里（箱子的中心固定在螺线管外面一点R ）⎯
见图 10.12。(稍后，我们将使箱子绕着螺线管运动，所以R 将是时间的函数，但现在它是一个固定

的矢量。) 哈密顿量的本征函数由下式决定 

                    

21 ( ) ( ) .
2 n n nq V E
m i

ψ ψ
⎧ ⎫⎪ ⎪⎡ ⎤∇ − + − =⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

A r r R=
                  [10.83] 

我们已经知道如何解这种形式的方程：令 

                                 ,ig
n neψ ψ ′=                                    [10.84] 

其中
17
 

                              
' '( ) ,qg d≡ ⋅∫

r

R
A r r

=
                               [10.85] 

并且仅当 0→A
K

,ψ ′满足相同的本征值方程： 

                           
2

2 ( )
2 n n nV E
m

ψ ψ
⎡ ⎤

′ ′− ∇ + − =⎢ ⎥
⎣ ⎦

r R=
                     [10.86] 

注意这里 nψ ′仅是（ −r R ）的函数，而（如 nψ 那样）不是单独的r 和R 函数。 

     现在我们让箱子绕着螺线管运动（在这个应用中，该过程甚至不必是绝热的）。为了得到 Berry
相，我们首先需要计算 nRn ψψ ∇ 。注意到 

          ( ) ( ) ( ) ( ),ig ig ig
R n R n n R n

qe i e eψ ψ ψ ψ′ ′ ′⎡ ⎤∇ = ∇ − = − − + ∇ −⎣ ⎦r R A R r R r R
=

 

我们得到 

       nRn ψψ ∇  

                                                        
17把参考点Q设在箱子的中心很方便，这样可以保证我们在绕螺线管一周后能重新回到最初规定的相位惯例。比如，

如果用固定空间中的一点，你最终将不得不“用手”重新调整相位，因为路径将会缠绕螺线管，会环绕 0∇× ≠A
区域。这样虽然会得到同样的结果，但方法很笨。一般来讲，当选择 10.9 式中本征函数的约定相位时，要使得

)0,(),( xTx nn ψψ = 成立，这样不会产生附加的相位。 



          
3[ ( )] ( ) ( ) ( )ig ig

n n R n
qe e i dψ ψ ψ− ∗ ⎡ ⎤′ ′ ′= − − − +∇ −⎢ ⎥⎣ ⎦∫ r R A R r R r R r
=

 

          
3( ) [ ( )] ( ) .n n

qi dψ ψ∗′ ′= − − − ∇ −∫A R r R r R r
=

                            [10.87] 

没有下标的∇表示和r 有关的梯度，并且我利用了当作用到有关（ −r R ）的函数上时， −∇=∇ R 。 

最后一项积分是 =/i 乘上动量的期待值，从 2.1 节我们知道，在哈密顿量 Vm +∇− 22 )2/(= 的本征

态，动量期待值为零。因此 

                           ( ).n R n
qiψ ψ∇ = − A R
=

                             [10.88] 

把此式代入 Berry 公式（10.45 式），我们得到 

                    ( ) ( ) ( ) ,n
q q qT d dγ Φ

⋅ = ∇× ⋅ =∫ ∫A R R A a
= = =v＝                  [10.89] 

这样就完美地证实了 Aharonov-Bohm 的结果（10.82 式），并揭示了 Aharonov-Bohm 效应是几何相

的一个特例
18
. 

     我们从 Aharonov-Bohm 效应可以得到什么？很明显，我们的经典预测是完全错误的：在场为零

的区域仍然有电磁效应。然而应当注意这并不能使A 本身可测量⎯只有闭合通量进入最终的答案，

并且理论仍然保持规范不变。 

 

习题 10.7 

(a) 由 10.65 式推导出 10.67 式。 

(b)由 10.78 式开始，推导出 10.79 式。 

 

 

 

第十章补充习题 
 

∗∗∗ 习题 10.8 在无限深方势阱中运动的一个粒子开始时处在基态（势阱范围 ax ≤≤0 ）。现在有

一个稍微偏离势阱中心的墙壁缓慢的竖起
19 )19(

： 

                            ( ) ( ) ( ),
2
aV x f t xδ ε= − −  

这里 )(tf 逐渐从0 增加到∞。 根据绝热理论，粒子将仍处在演化后的哈密顿量的基态。 

(a)求出（并草画出） ∞→t 时的基态。 提示：这应该是在 ε+2/a 处有一个不能穿透的势垒的无

限深方势阱的基态。注意粒子是限制在势阱中稍大一点的左半部分。 

(b)给出时刻哈密顿量基态满足的（超越）方程。答案： 

                       sin [cos cos( )],z z T z zδ= −  

其中
2, ( ) / , 2 / ,z ka T maf t aδ ε≡ ≡ ≡= =/2mEk ≡ 。 

(c) 设 0=δ ，图解 z，证明当T 从0 增加到∞，z从π 到 π2 的变化。解释这个结果 

(d) 设 01.0=δ ，数值求解 z，用 0,  1,  5,  20,  100,  1000T = 。 

(e) 作为 z 和δ 的函数，求出粒子处在势阱右半部分的几率 rP 。答案： )]/(1/[1 −++= IIPr ，其

中 ]2/)1([sin))]1(sin()/1(1[ 2 δδδ ∓zzzI ±−±≡± 。 用这个表达式数值估计（d）中的T 。讨论

你的结果。 

(f) 对于那些同样的T 和δ 值，绘制基态波函数。观察随着势垒的增加，波函数是怎么挤进势阱的

                                                        
18顺便提及，在这种情况下，Berry 相和磁通量（10.50 式）之间的类比几乎一样：" " ( / )q=B B= 。 
19 Julio Gea-Banacloche, Am. J. Phys. 70,307 (2002) 用了一个矩形势垒；用δ 函数是由 M. Lakner 和 J.Peternelj 提出的, 
Am. J. Phys. 71,519 (2003)。 



左半部分的
20 )20(

 

 

∗∗∗ 习题 10.9 假设一维谐振子（质量m ，频率ω）受到驱动力 )()( 2 tfmtF ω= ，这里 )(tf 是某

一具体的函数（我把因子
2ωm 放在外面是为了标记方便； )(tf 具有长度量纲）。哈密顿量是 

                     
2 2

2 2 2
2

1( ) ( ).
2 2

H t m x m xf t
m x

ω ω∂
= − + −

∂
=

                    [10.90] 

假设在 0=t 时开始施加力的作用： 0)( =tf （ 0≤t ）。这个体系无论用经典力学还是量子力学都可

以精确求解。
21
 

(a) 求谐振子的经典位置，假设它从原点静止开始运动（ 0)0()0( == cc xx � ）。答案： 

                        
0

( ) ( )sin[ ( )] .
t

cx t f t t t dtω ω′ ′ ′= −∫                          [10.91] 

(b) 假设谐振子开始时处在非受迫谐振子的第 n 本征态（ ( ,0) ( )nx xψΨ = ，其中 )(xnψ 由 2.61 式

给出），证明这个谐振子（含时）薛定鄂方程的解可以写成如下形式: 

  

2

0

1( ) ( ) ( ) ( )
2 2 2( , ) ( ) .

tc
c c

xi mn t m x x f t x t d t

n cx t x x e
ωω

ψ
⎡ ⎤

′ ′ ′− + + − +⎢ ⎥
⎢ ⎥⎣ ⎦

∫
Ψ = −

�=
=

   [10.92] 

(c) 证明 )(tH 的本征值和本征函数是 

            ( , ) ( );n nx t x fψ ψ= −        
2 21 1( ) ( ) .

2 2nE t n m fω ω= + −=              [10.93] 

(d) 指出在绝热近似下经典位置（10.91 式）称为 )()( tftxc ≅ 。对本题，作为对 f 导数的限制，

指出绝热近似成立的精确判据。提示：把 )](sin[ tt ′−ω 写成 (1/ )( / ) cos[ ( )]d dt t tω ω ′−'
，并利用分

部积分。 

(e) 对于这个例子验证绝热定理，利用(c)和(d)的结果证明 

                        
( ) ( )( , ) ( , ) .n ni t i t

nx t x t e eθ γψΨ ≅                               [10.94] 

验证动力学相具有正确的形式（10.39 式）。几何相具有我们所期望的形式吗？ 

 

习题 10.10  绝热近似可以看成是 10.12 式中有关系数 )(tcm 的绝热级数的第一项。假设体系开始

时处在第 n态；在绝热近似中，它仍然处在第 n 态，仅仅是增加了含时的几何相因子（10.21 式）： 

                              
( )( ) .ni t

m mnc t e γδ=  

(a)把上式代入方程 10.16 的右边，可以得到绝热近似的“一级修正”： 

                
( ) ( ( ) ( ))

0
( ) (0) ( ) ( ) .n n m

t i t i t t
m m m nc t c t t e e dt

t
γ θ θψ ψ ′ ′ ′−∂′ ′ ′= −

′∂∫             [10.95] 

这使得我们能在近绝热区域计算跃迁几率。为了得到“二级近似”，我们需要把方程 10.95 代入到

10.16 式的右边，依次类推可以得到更高级的近似。 

(b) 作为一个例子，把方程 10.95 应用到受迫谐振子上（习题 10.9）。证明（在近绝热近似下）仅

能向两个紧邻的能级跃迁，对这两个能级有 

                     1 0
( ) 1 ( ) ,

2
t i t

n
mc t i n f t e dtωω ′

+ ′ ′= + ∫ �=
 

和 

                 1 0
( ) ( ) .

2
t i t

n
mc t i n f t e dtωω ′−

− ′ ′= ∫ �=
 

（当然，跃迁几率是它们绝对值的平方。） 

                                                        
20 Gea-Banacloche(脚标 19)讨论了不假设绝热定理时波函数的演化，并在绝热极限下验证了这些结果。 
21参见 Y.Nogami, Am.J.Phys.59,64 (1991)及文中的参考文献。 



第十一章    

散射 

11.1 引言 
11.1.1 经典散射理论 

设想单个粒子入射到某一散射中心（比如说，一个质子撞击一个重原子核）。其入射能

量为 E，碰撞参数为 b，以散射角 θ出射⎯如图 11.1 所示（为了简单起见，假定靶在方位角

方向是对称的，那么轨道将在一个平面上，并且靶很重，反冲可以忽略）。经典散射理论的

基本问题是给定碰撞参数，计算散射角。一般来说，碰撞参数越小，散射角越大。 
     

 
图 11.1：经典散射问题，碰撞参数为 b，散射角为 θ。 

 
图 11.2：弹性刚球散射。 
 
 
例题 11.1 刚球散射。假定靶是一个半径为 R 的刚球，入射粒子被它弹性散射（如图 11.2 所

示）。用 α表示，碰撞参数为 sinb R α= ，散射角为 2θ π α= − ，所以， 



                     sin cos
2 2 2

b R Rπ θ θ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                         [11.1] 

显然， 

                    
( )12cos , if  ,

0, if  .
b R b R

b R
θ

−⎧ ≤
= ⎨

≥⎩
                           [11.2] 

 
一般地，入射到横截面面积为 dσ 的无穷小面元内的粒子将被散射到相应的无穷小立体

角 dΩ内（如图 11.3 所示）。若 dσ 越大，dΩ将越大；比例系数， ( ) /D d dθ σ≡ Ω，称为

微分（散射）截面：1 

 
图 11.3：入射到面积 dσ 内的粒子被散射到立体角 dΩ内。 
                        
                                                                        [11.3] 
 

利用碰撞参数和方位角φ，d bdbdσ φ= ， sind d dθ θ φΩ = ，所以， 

                   ( )
θθ

θ
d
dbbD

sin
=                                        [11.4] 

(由于θ 通常是关于 b 的减函数，导数实际上是负的—所以要加上绝对值符号。) 
 
例题 11.2  刚球散射（续上例）。对刚球散射（例 11.1）， 

                   ⎟
⎠
⎞

⎜
⎝
⎛−=

2
sin

2
1 θ

θ
R

d
db

                                     [11.5] 

从而， 

                                                        
1这是很不恰当的用语：D 不是微分，它也不是截面。就我所知，用 dσ 代表名词“微分截面”更为恰当。

但是恐怕我们还得使用这个术语。我也想提醒你们注意记号 D(θ)是不标准的：大多数人把它称为 /d dσ Ω
—这使得等式 11.3 看起来像是同义反复。我认为如果我们单独用一个符号来代表微分截面的话，它将会带

来较少的混淆。 

( )d D dσ θ= Ω



                   ( ) ( )
42

2sin
sin

)2cos( 2RRRD =⎟
⎠
⎞

⎜
⎝
⎛=

θ
θ
θθ                     [11.6] 

这是一个比较特殊的情况，微分截面不依赖θ 。 
 

总截面是将 D(θ )对立体角积分： 

                   ( ) Ω≡ ∫ dD θσ                                           [11.7] 

粗略地讲，它是被靶散射的入射束的总面积。例如对刚球散射， 

                   ( ) 22 4 RdR πσ =Ω= ∫                                    [11.8] 

可以预期，它正是球的截面面积；入射到此面积内的粒子将击中靶，而在此之外的粒子将不

能击中靶。这里所给出的表达形式的实质在于它对于不能简单地说“击中或击不中”的“软”

靶（比如一个原子核的库仑场）也同样适用。 
最后，假定有一束入射粒子，具有均匀强度（或粒子物理学家所称的亮度） 

L≡单位时间内通过单位面积的入射粒子数目。                [11.9] 

单位时间内通过面积 dσ （散射到立体角 dΩ内）的粒子数目是 ( )dN d D dσ θ= = ΩL L ，

从而， 

                  ( ) 1 dND
L d

θ =
Ω

                                         [11.10] 

由于它只涉及实验室中容易测量的量，通常被作为微分截面的定义。如果探测器接收散射到

立体角 dΩ内的粒子，计录下单位时间内的粒子数目，除以 dΩ，再除以亮度得到微分散射

截面。 
 
***习题 11.1 卢瑟福散射。设电荷为 q1，动能为 E 的入射粒子被一电荷为 q2 的静止重粒子

散射。 

（a） 给出碰撞参数和散射角的关系。2 答案： 1 2 0( / 8 )cot( / 2)b q q Eπε θ= 。  

（b） 求出微分散射截面。答案： 

                   ( ) ( )
1 2

2
0

2

16 sin 2
q qD

E
θ

πε θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                           [11.11] 

 
（c） 证明卢瑟福散射的总截面是无穷大。通常说 1/r 势具有“无穷大作用距离”；你逃脱

不了库仑力的作用。 
 

11.1.2 量子散射理论 

在散射的量子理论中，我们设想有一列入射平面波， ( ) ikzz Aeψ = ，在 z 方向上传播，它与

                                                        
2可参考有关经典力学的书，例如：Jerry B. Marion and Stephen T. Thornton, Classical Dynamics of Particles and 
Systems, 4th ed., Saunders, Fort Worth, TX (1995), Section 9.10。 



一散射势相遇，产生一列出射球面波（图 11.4）3。也就是说，我们要寻求具有以下通式的

薛定谔方程的解： 

                   ( ) ( ),    
ikr

ikz er A e f r
r

ψ θ θ
⎧ ⎫⎪≈ +⎨ ⎬
⎪ ⎭⎩

对大的                 [11.12] 

（球面波项中出现因子 1/r 是为了在远离散射中心处
2ψ 形如 1/r2 以保证几率守恒。）与通常

一样，波数 k 与入射粒子的能量之间的关系为： 

 

图 11.4：波散射；入射平面波产生出射球面波。 
 

                   
=
mEk 2

≡                                            [11.13] 

像以前那样，我将假定靶关于方位角对称；不过对更一般的情况，出射球面波的振幅 f 也可

能依赖于φ。 

 
图 11.5：在时间 dt 内通过面积dσ 的入射束体积 dV。 
 

                                                        
3
就目前来说，这里没有牵涉到很多量子力学方面的知识；我们在讨论的是波（相对于经典粒子）的

散射，甚至可以把图 11.4 看作一幅描述水波遇到一块岩石的画面，或者（更好地三维散射的角度）一幅表

示声波从一个篮球上反弹的图画。在这种情况下，我们以实函数形式写出波函数： 

                      [cos( ) ( ) cos( ) / ]A kz f kr rθ δ+ +  

( )f θ 将代表被散射到θ方向上的声波振幅。 



所有问题就归结为确定散射振幅 ( )f θ ；由它可给出θ方向上的散射几率，进而与微分

截面相联系。以速度υ运行的入射粒子在时间 dt 内通过无穷小面积 dσ 的几率是（图 11.5） 
2 2

incident ( )dP dV A dt dψ υ σ= =  

它等于粒子被散射到相应的立体角 dΩ内的几率： 

2 2
2 2

scattered 2 ( )
A f

dP dV dt r d
r

ψ υ= = Ω， 

由此得出
2d f dσ = Ω，从而， 

                ( ) ( ) 2θσθ f
d
dD =
Ω

≡                                   [11.14] 

显然微分截面（实验工作者感兴趣的量）等于散射振幅（可通过求解薛定谔方程而得到）绝

对值的平方。在随后的几节中我们将学习计算散射振幅的两种方法：分波法和波恩近似。 
 

问题 11.2  对一维和二维散射，构造与 11.12 式相对应的表达式。                     
 
11.2 分波法 
11.2.1 理论表述 

正如我们在第四章中所发现的那样，在球对称势 ( )V r 情况下，薛定谔方程的解可表示为： 

                ( ) ( ) ( )φθφθψ ,,r, m
lYrR=                               [11.15] 

其中
m

lY 是球谐函数（4.32 式）， ( ) ( )u r rR r= 满足径向方程（4.37 式）： 

                ( ) ( ) Euu
r
ll

mdr
ud

m
=⎥

⎦

⎤
⎢
⎣

⎡ +
++− 2

2

2

22 1
2

rV
2

==
                 [11.16] 

当 r 很大时势趋于零，并且离心部分贡献可以忽略，上式变为， 

2
2

2

d u k u
dr

≈ −  

其通解为： 

( ) ikr ikru r Ce De−= + ； 

第一项代表出射球面波，第二项代表入射球面波。我们目的是求散射波，所以要求 D=0。因

此，当 r 很大时，我们有， 

               ( )
ikreR r
r

∼ ， 

这符合上一节中的物理图象（11.12 式）。 
上述讨论是针对 r 很大的情况（更准确地说对应 1kr � 的情况；光学中称为辐射区）。

正如在一维散射理论中那样，我们假定势是“局域的”，即认为在有限的散射区域之外势为



零（如图 11.6 所示）。在中间区域（此区域内 V 可以忽略，但是需保留离心项），4径向方程

变为： 

              
( ) uku
r
ll

dr
ud 2

22

2 1
−=

+
−                                  [11.17] 

通解（方程 4.45）是球贝塞尔函数的线性组合： 

( ) ( ) ( )l lu r Arj kr Brn kr+=                            [11.18]  

然而，无论 lj （它有点像正弦函数） 还是 ln （它像一个余弦函数的推广）都不能表示出射

波（或入射波）。我们需要的是类似于
ikre 和

ikre−
的线性组合；因此选择球汉克尔函数： 

    ( ) ( ) ( ) ( )1 ;l l lh x j x in x≡ +       ( ) ( ) ( ) ( )2
l l lh x j x in x≡ −                [11.19] 

 
图 11.6：局域势散射：散射区（较暗的阴影），中间区（较亮的阴影）和辐射区（此区域内

1kr � ）。 

表 11.1：球汉克尔函数，
(1) ( )lh x 和 (2) ( )lh x  。 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        
4这里不适用于库仑势，因为当 r →∞时，1/r 比 1/r2 更慢地趋于零，在此区域内离心项不占主导地位。

因此库仑势不是局域的，分波法不适用。 

( )
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⎠
⎞

⎜
⎝
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⎠
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  当 1>>x 时 



表 11.1 列出了前面几个球汉克尔函数。在 r 很大的情况下，
(1) ( )lh kr （第一类汉克尔函数）

趋于 /ikre r ，而
(2) ( )lh kr （第二类汉克尔函数）趋于 /ikre r−

；因而对于出射波，我们需要

第一类球汉克尔函数： 

                     ( ) ( )( )krhrR l
1~                                       [11.20] 

因此，在散射区域之外（ ( ) 0V r = ），波函数为： 

                 ( ) ( )( ) ( )
⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

+≡ ∑
ml

m
llml

ikz YkrheAr c
,

1
, ,,, φθφθψ             [11.21] 

第一项是入射平面波，求和项（展开系数 ,l mC ）代表散射波。但是由于我们假定势具有球对

称性，波函数不依赖于φ，5所以，仅有对应于 0m = 的项存在（注意
m im

lY e φ∼ ）。根据方程

4.27 和 4.32 ，有： 

                      ( ) ( )0 2 1, cos
4l l
lY Pθ φ θ
π
+

≡                          [11.22] 

其中 lP 为 l 阶勒让德多项式。通常重新定义展开系数，令 1
,0 4 (2 1)l

l lC i k l aπ+≡ + ： 

                ( ) ( ) ( )( ) ( )
⎩
⎨
⎧

⎭
⎬
⎫

++= ∑
∞

=

+

0

11 cos12,
l

lll
likz pkrhalikeAr θθψ           [11.23] 

下面将会看到这种表达形式的方便之处； la 称为第 l 分波振幅。 

在 r 很大的情况下，汉克尔函数近似于
1( ) /l ikri e kr+− （表 11.1），因此， 

                   ( ) ( )
⎩
⎨
⎧

⎭
⎬
⎫

+≈
r

efeAr
ikr

ikz θθψ ,                         [11.24] 

其中， 

                    ( ) ( ) ( )θθ cos12
0

ll
l

palf ∑
∞

=

+=                        [11.25] 

从而更严格地证实了方程 11.12 所假设的通式，并且告诉我们如何根据分波振幅（ la ）计

算散射振幅 ( )f θ 。微分截面是： 

             ( ) ( ) ( )( ) ( ) ( )θθθθ coscos1212 ''
'

*'2

llll
l l

ppaallfD ++== ∑∑       [11.26] 

                                                        
5由于入射平面波定义了一个 z 方向，球对称性被破坏，θ 依赖性没有问题。但是方位角对称性仍然存在；

入射平面波不依赖φ ，并且散射过程也不可能导致出射波依赖于φ 。 



总截面是： 

                       ( ) 2

0

124 l
l

al∑
∞

=

+= πσ                                [11.27] 

(这里对角度的积分利用了 Legendre 多项式的正交性和方程 4.34 。) 
 
11.2.2 计算技巧 

余下的事情是根据问题中的势能计算确定分波振幅 la 。这可通过求解内部区域（ ( )V r 显著

地不为零区域）的薛定谔方程，加上适当的边界条件使解和外部解（11.23 式）相匹配。唯

一的问题是记号的混乱：在前面的表达式中，散射波用球坐标表示，而入射波用笛卡尔坐标

表示。我们需要以一种统一的记号表达波函数。 

ikze 显然满足 0V = 时的薛定谔方程。另一方面，正如前面的讨论， 0V = 时的薛定谔

方程的通解可以表达为如下形式： 

, ,
,

[ ( ) ( )] ( , )m
l m l l m l l

l m
A j kr B n kr Y θ φ+∑  

那么，以这种形式表示
ikze 一定是可能的。但在原点处

ikze 有限，没有合适的诺埃曼函数

（ ( )ln kr 在 0r = 处发散），并且由于 cosz r θ= 不依赖φ，只有相对于 0m = 的项出现。平

面波用球面波展开式称为瑞利公式：6 

                      ( ) ( ) ( )∑
∞

=

+=
0

cos12
l

ll
likz pkrjlie θ                       [11.28] 

利用这个公式，外部区域的波函数就可以完全以 r 和θ 表示： 

                ( ) ( ) ( )( )[ ] ( )θθψ cos12, 1

0
llll

l

l pkrhikakrjliAr ++= ⎟
⎠
⎞⎜

⎝
⎛

∞

=
∑           [11.29] 

 
例题 11.3 量子刚球散射。假定 

                    ( )
,  ,

0,   .
r a

V r
r a

∞ ≤⎧
= ⎨ >⎩

                             [11.30] 

那么边界条件为： 

                     ( ) 0, =θψ a                                          [11.31] 

所以，  

                    ( ) ( )( )[ ] ( ) 0cos12 1

0

=++ ⎟
⎠
⎞⎜

⎝
⎛

∞

=
∑ θllll

l

l pkrhikakrjli              [11.32] 

对于所有的θ 成立，由上式可以得出(习题 11.3)： 

                                                        
6其证明参考： George Arfken and Hans-Jurgen Weber, Mathematical Methods for Physicists, 5th ed., Academic 
Press, Orlando (2000), 习题 12.4.7 和 12.4.8。 



                      
( )
( )( )kakh

kajia
l

l
l 1−=                                   [11.33] 

总截面为： 

                      ( ) ( )
( )( )∑

∞

=

+=
0

2

12 124
l l

l

kah
kajl

k
πσ                           [11.34] 

上式是精确解，但是它并不十分能直观，所以让我们考虑低能散射的极限情况： 1ka� （由

于 2 /k π λ= ，因而这等于说波长远大于球的半径）。从表 4.4 可以看出，当 z 较小时， ( )ln z

远大于 ( )lj z ，所以， 
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因此， 

                    
4

4 2
2

0

4 1 2 ! ( )
2 1 (2 )!

l
l

l

l ka
k l l
πσ

∞
+

=

⎡ ⎤
≈ ⎢ ⎥+ ⎣ ⎦

∑ 。 

由于我们假定 1ka� ，较高次幂项可以忽略—在低能近似下散射由 0l = 的项主导（这意味

着类似于经典情况中那样，微分截面不依赖于θ ）。那么，对于低能刚球散射，我们有 

                        24 aπσ ≈                                         [11.36] 

散射截面是几何截面的四倍—事实上σ 是球的表面面积。这种“增大的有效尺寸”是长波

长散射所独有的特征（在光学中也是同样）；在某种意义上，这些波在整个球的周围“摸索”

着前进，而经典粒子只能看到正面的截面。 
 
习题 11.3 试从等式 11.32 证明[11.33]式。提示：利用 Legendre 多项式的正交性来证明具有

不同 l 值的系数必定会分别为零。 
 
**习题 11.4 考虑下述δ-函数球壳的低能散射： 

                   ( ) ( )V r r aαδ= −  

其中α 和 a 是常数。计算散射振幅 ( )f θ 、微分截面 ( )D θ 以及总截面σ 。假定 1ka� ，从

而仅有 0l = 项的显著贡献（为简单起见，从一开始就舍去 0l ≠ 的项）。当然主要问题就是

确定 0a 。以无量纲量
22 /maβ α≡ = 来表示答案。 

答案：
2 2 24 /(1 )aσ π β β= + 。 

 
 
11.3 相移 



首先考虑在半轴 0x < 上一局域的势 ( )V x 所产生的一维散射（图 11.7）。在 0x = 处建一堵

“砖墙”，因此从左边入射的一列波， 

                   ( ) ( )ikx
i x Ae x aψ = < −                             [11.37] 

被完全反射： 

                 ( ) ( )ikx
r x Be x aψ −= < −                              [11.38] 

无论在相互作用区域（ 0a x− < < ）发生什么，由于几率守恒，反射波的振幅一定和入射波

的振幅相等，但是它们的相位未必相同。如果完全没有势（仅有 0x = 处的墙），因为总的

波函数（入射波函数加上反射波函数）在原点处必须等于零，那么 B A= − ： 

        ( ) ( )0 ( ( ) 0)ikx ikxx A e e V xψ −= − =                              [11.39] 

如果势不为零，波函数（对于 x a< − ）为如下形式： 

               ( ) ( )( )2 ( ( ) 0)i kxikxx A e e V xδψ −= − ≠                      [11.40] 

 
图 11.7：右边被一堵无限高的墙约束的定域势的一维散射。 
整个散射理论归结为计算相对于一给定的势的相移7δ （它是关于 k 的函数，因而也是能量

2 2 / 2E k m= = 的函数）。为此，我们需要在散射区域（ 0a x− < < ），并考虑适当的边界条

件，求解薛定谔方程（见问题 11.5）。用相移（相对于复振幅 B）讨论的价值在于它能阐明

物理（因为几率守恒，所以势的作用就是改变反射波的相位）并且简化数学（用一个实数替

换一个具有两个实数的复数）。 

让我们回到三维情况。入射平面波（
ikzAe ）不具有 z 方向上的角动量（瑞利公式不含

0m ≠ 的项），但是它包括总角动量的所有值（ 0,1,2,...l = ）。因为角动量守恒（球对称势），

所以每个分波（由特定的 l 标记）独立地被散射，而在此过程中振幅8不变—只有相位改变。

                                                        
7在δ 前面的 2 是约定俗成的。我们认为入射波在进来时被移相一次，在射出时又被移相一次；通常把δ 看

作“单程”相移，总相移就是 2δ 。 
8这个名词容易被混淆，其中一个原因就是几乎每个量都被叫做“振幅”： ( )f θ 是“散射振幅”， la 是“分

波振幅”，但是前者是θ 的函数，两者都是复数。我现在谈到的“振幅”是基于其最初的含义：一列正弦波

的高度（当然是实数）。 



如果在任何区域都没有散射势，那么 0
ikzAeψ = ，并且第 l 分波是（11.28 式）： 

         ( ) ( ) ( ) ( )0 2 1 cos ( ( ) 0).l l
l lAi l j kr p V rψ θ= + =               [11.41] 

但是（由 11.19 式和表 11.1 可知）： 

        ( ) ( ) ( ) ( ) ( ) ( ) 11 2 11 1 ( 1).
2 2

l ix l ix
l lj x h x h x i e i e x

x
+ + −⎡ ⎤⎡ ⎤= + ≈ − +⎣ ⎦ ⎣ ⎦ �     [11.42] 

所以，对于大 r， 

       ( ) ( ) ( ) ( )0

2 1
1 cos ( ( ) 0)

2
ll ikr ikr

l

l
A e e p V r

ikr
ψ θ−+ ⎡ ⎤≈ − − =⎣ ⎦             [11.43] 

其中方括号中的第二项代表一列入射球面波；当我们引入散射势时它不变。第一项是出射波；

它获得了相移 lδ ： 

                 ( ) ( ) ( ) ( )[ ] ( )θψ δ cos1
2

12 21
l

ikrllkri pee
ikr
lA −− −−
+

≈                [11.44] 

这是一列收敛的球面波（由于去除了
ikze 中的

(2)
lh 部分），此波被移相2 lδ （见脚注 7），表现

为一列出射球面波（
ikze 中的

(1)
lh 部分以及散射波）。 

在 11.2.1 节中整个理论是用分波振幅 la 来表达的; 而现在, 我们用相移 lδ 来表达。这

两种表达方式之间必定存在联系。的确, 将 11.23 式的渐近形式（大 r 时） 

                ( ) ( ) ( )[ ] ( ) ( )
⎩
⎨
⎧

⎭
⎬
⎫+

+−−
+

≈ − θψ cos121
2

12
l

ikr
l

ikrlikrl pea
r

lee
ikr
lA      [11.45] 

 
与 11.44 式比较，我们发现9 

                   ( ) ( )lll ii
l e

k
e
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a δδδ sin2 11

2
1

=−=                            [11.46] 

将上式分别代入 11.25 式和 11.27 式，则 

                    ( ) ( ) ( ) ( )θδθ δ cossin121
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l
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k
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                    ( ) ( )∑
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k
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我们再次看到使用相移的优点（与分波振幅相比较），它使得物理解释更清晰，而且数学更

简单——用相移的表述利用了角动量守恒，从而把一个复数量 la （两个实数）替换为单个

                                                        
9
虽然用波函数的渐近形式来导出 la 和 lδ 之间的关系，但是所得结果（[11.46] 式）是严格的。两者都是常

量（不依赖于 r）， lδ 代表渐近区域（在此区域内 Hankel 函数趋于 /ikre kr±
）内的相移。 

 



实数量 lδ 。 

 
习题 11.5 一个质量为 m，能量为 E 的粒子从左边入射到如下的势： 

                  0

0,      ( ),
( ) ,  ( 0),

,     ( 0).

x a
V x V a x

x

< −⎧
⎪= − − ≤ ≤⎨
⎪∞ >⎩

 

(a) 如果入射波是
ikxAe （其中 2 /k mE= =），求反射波。 

答案：
2 'cot( ' )

'cot( ' )
ika ikxk ik k aAe e

k ik k a
− −⎡ ⎤−

⎢ ⎥+⎣ ⎦
，其中 0' 2 ( ) /k m E V= + =。 

(b) 证明反射波振幅与入射波相同。 

(c) 对于一个很深的势阱（ 0E V� ），求相移δ （11.40 式）。 

答案： kaδ = − 。 
 

习题 11.6 对于刚球散射（例题 11.3），给出分波相移（ lδ ）。 

 

习题 11.7 对于δ—函数球壳势散射（习题 11.4），求 S-波（ 0l = ）分波相移 0 ( )kδ 。假定当

r →∞时，径向波函数 ( )u r 趋于 0。答案： 

1
2cot cot( )

sin ( )
kaka

kaβ
− ⎡ ⎤

− +⎢ ⎥
⎣ ⎦

，其中 2

2m aαβ ≡
=

。 

11.4 波恩近似 
 
11.4.1 薛定谔方程的积分形式 
定态薛定谔方程， 

                         ψψψ EV
m

=+∇− 2
2

2
=

，                     [11.49] 

可写为简洁的形式 

                          Q=+∇ ψκ )( 22
，                          [11.50] 

其中 

                       
=
mEk 2

≡   ， ψVmQ 2

2
=

≡ 。                 [11.51] 

这与赫尔姆霍茨（helmholtz）方程的形式相同；但是，需要注意是“非齐次”项（Q）与ψ



有关。 
   定义 G(r)，满足 

2 2 3( ) ( ) ( )k G δ∇ + =r r 。                     [11.52] 

则ψ 可表达为如下积分： 

3
0 0 0( ) ( ) ( )G Q dψ = −∫r r r r r 。                   [11.53] 

容易证明它满足薛定谔方程 11.50: 
2 2 2 2 3

0 0 0

3 3
0 0 0

( ) ( ) [( ) ( )] ( )

( ) ( ) ( )

k k G Q d

Q d Q

ψ

δ

∇ + = ∇ + −

= − =

∫
∫

r r r r r

r r r r r
 

G(r)称为赫尔姆霍茨方程的格林函数。（一般地，一个线性微分方程的格林函数代表对一个δ
函数源的“响应”。） 

下面首先求解方程 11.52 得到 G(r)10。利用傅里叶转换，把微分方程转化为代数方程，

从而简化求解过程。令 

3
3/ 2

1( ) ( )
(2 )

iG e g d
π

⋅= ∫ s rr s s 。                       [11.54] 

则 

2 2 2 2 3
3/ 2

1( ) ( ) [( ) ] ( )
(2 )

ik G k e g d
π

⋅∇ + = ∇ +∫ s rr s s 。 

再利用 

2 2i ie s e⋅ ⋅∇ = −s r s r
，                          [11.55] 

和（见 2.144 式） 

3 3
3

1( )
(2 )

ie dδ
π

⋅= ∫ s rr s ，                         [11.56] 

方程 11.52 可写为 

2 2 3 3
3/ 2 3

1 1( ) ( )
(2 ) (2 )

i is k e g d e d
π π

⋅ ⋅− + =∫ ∫s r s rs s s . 

由此可得11 

3/ 2 2 2

1( )
(2 ) ( )

g
k sπ

=
−

s 。                       [11.57] 

将上式代回 11.54 式，可得 

3
3 2 2

1 1( )
(2 ) ( )

iG e d
k sπ

⋅=
−∫ s rr s。                    [11.58] 

 

                                                        
10注意：接下来的两页是包含回路积分的复杂的分析，读者可以直接跳过这些分析看结果，即 11.65 式。 
11 这显然是充分的，但是它也是必要的，你可以把两项并入一个积分并利用 Plancherel 定理 2.102 式. 



图 11.8：[11.5]）式积分的坐标系。 

 
在此积分中 r 是固定，对 s 的积分，我们选择极轴沿着 r 方向的球坐标系（s,θ,φ）（如图 11.8）。
那么， cossr θ⋅ =s r ，对φ的积分很简单（其值为 2π），对θ的积分为 

sr
sr

isr
ede

isr
isr )sin(2|sin 00

cos
cos =−=∫ ππ θ

θ θθ 。                [11.59] 

代入 11.58 式，可得 

2 2 2 2 2 20

1 2 sin( ) 1 sin( )( )
(2 ) 4

s sr s srG ds ds
r k s r k sπ π

∞ ∞

−∞
= =

− −∫ ∫r 。                 [11.60] 

剩下的积分就没有那么简单了。为此，将 11.60 式中的积分项还原为指数形式，并将分

母因子化： 

2

1 22

( )
8 ( )( ) ( )( )

       ( ).
8

isr isri se seG ds ds
r s k s k s k s k

i I I
r

π

π

−∞ ∞

−∞ −∞

⎧ ⎫
= −⎨ ⎬− + − +⎩ ⎭

= −

∫ ∫r
            [11.61] 

对其中两个积分的计算可利用柯西积分公式： 

∫ =
−

)(2
)(

)(
0

0

zifdz
zz
zf π ，                           [11.62] 

其中 z0 位于积分回路之内（否则积分为零）。现在的积分沿着实轴向右，并且依次穿越两个

奇点±k。我们必须考虑如何绕过这两个奇异点。这里选择从上面绕过点-k，从下面绕过点+k
（如图 11.9 所示）。（读者也可以选择不同的积分路径，甚至多次环绕奇点，那样会得到不

同的 Green 函数，但可证明它们都是等价的。） 

θ

φ 

r 

s 



 

 
图 11.9 ： 绕过奇点的积分路径（11.61 式）。 
 

对于 11.61 式中的每个积分，我们必须选择适当的闭合回路使得在无穷远处半圆路径上

的积分贡献为零。在 1I 的被积函数中，当 s 的虚部为正且趋于无穷大时因子
isre 趋于零，因

而对 1I 的积分选择 s 复平面内上半平面中的闭合积分回路（如图 11.10（a））。此回路仅包围

奇点 ks += ，所以 

1
1 2

isr isr
ikr

s k

se seI ds i i e
s k s k s k

π π
=

⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥+ − +⎣ ⎦ ⎣ ⎦
∫v 。                 [11.63] 

在 2I 的被积函数中，当 s 的虚部为负且趋于负无穷大时因子
isre−
趋于零，所以对 2I 的积分

选择 s 复平面内下半平面中的闭合积分回路（如图 11.10（b））; 此时回路包围奇点 ks −= （并

且回路沿顺时针方向，所以有负号）： 

2
1 2

isr isr
ikr

s k

se seI ds i i e
s k s k s k

π π
− −

=−

⎡ ⎤ ⎡ ⎤
= − = − = −⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦
∫v 。               [11.64] 

将 11.63 式和 11.64 式代入 11.61 式，得： 

( ) ( )2( )
8 4

ikr
ikr ikri eG i e i e

r r
π π

π π
⎡ ⎤= − − = −⎣ ⎦r 。                 [11.65] 

这就是赫尔姆霍茨方程的格林函数⎯即方程 11.52 的解。（也可以通过进行微分来验证

这个结果⎯见习题 11.8.）。或者说这只是赫尔姆霍茨方程的一个格林函数，因为我们可以对

G(r)加上满足如下齐次赫尔姆霍茨方程的任一函数 G0(r)： 

2 2
0( ) ( ) 0k G∇ + =r ；                           [11.66] 

结果时（G+G0）仍满足方程 11.52。这种不确定性来源于积分绕过奇点的选择方式的不唯一

性⎯不同的选择给出不同的 0 ( )G r 。 

 
 



 
图 11.10： 11.63 和 11.64 式中的闭合积分回路。 
 

再回到 11.53 式，薛定谔方程的一般解就可写为 

| |
3

0 0 0 02
0

( ) ( ) ( ) ( ) ,
2 | |

ikm e V dψ ψ ψ
π

−

= −
−∫

0r r

r r r r r
r r=

                 [11.67] 

其中 0ψ 满足自由粒子薛定谔方程 

2 2
0( ) 0k ψ∇ + = 。                           [11.68] 

11.67 式是薛定谔方程的积分形式；它完全等价于所熟悉的微分形式。初看起来 11.67 式好

像是薛定谔方程(对任何给定势)的显式解⎯这好的不敢令人相信. 不要上当, 其实等式右边

的积分中仍含有ψ ，因而不能直接进行积分, 除非你知道解。尽管如此，这一积分形式非常

有用，下面将看到它特别适用于求解散射问题。 
 

习题 11.8 用直接代入法验证 11.65 式满足方程 11.52。提示：
2 3(1/ ) 4 ( )r πδ∇ = − r 。12 

 
**习题 11.9  证明：对于适当的 V 和 E，氢原子基态（4.80 式）满足积分形式薛定谔方程（注

意 E 为负值，所以 k iκ= , 其中 2 /mEκ ≡ − =）。 

 

11.4.2 一级波恩近似 

假设 V（r0）是在 0=0r 附近的局域势（就是说，该势在某个有限区域之外为 0，这在散射

问题中很常见。），我们想要计算在远离散射中心处的ψ(r)。 那么，在 11.67 式中对积分有贡

献的所有区域有|r|>>|r0|，所以 

2 2 2 2 0
0 0 0 2| | 2 1 2r r r

r
⋅⎛ ⎞− = + − ⋅ ≅ −⎜ ⎟

⎝ ⎠

r rr r r r ，                [11.69] 

                                                        
12见 D. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall, Upper Saddle River,NJ,1999),Section 
1.5.3 



因而 

0 0| | r r− ≅ − ⋅r r r� 。                       [11.70] 

令 

;kr≡k � ；                            [11.71] 

从而 

0 0| |ik iikre e e− − ⋅≅r r k r
，                         [11.72] 

 

0
0

| |

0| |

ik ikr
ie e e

r

−
− ⋅≅

−

r r
k r

r r
。                         [11.73] 

（对分母我们可取近似 r− ≅0r r ; 在指数因子中我们需保留到下一项。其合理性可以通过

在分母的展开式中也写出下一项，然后做 r0/r 的幂级数展开，仅保留最低阶项而得到验证。） 
   在散射问题中，用 

0 ( ) ikzAeψ =r ，                            [11.74] 

表示入射平面波，对于较大的 r ，有 

0 3
0 0 02( ) ( ) ( )

2

ikr
iikz m er Ae e V d

r
ψ ψ

π
− ⋅≅ − ∫ k r r r r

=
。           [11.75] 

与标准形式（11.12 式）对比，我们可以得到散射振幅： 

∫ ⋅−−= 0
3

002 )()(
2

),( 0 rdrrVe
A

mf rik ψ
π

φθ
=

。                   [11.76] 

到目前为止, 推导都是严格的。现在我们引入波恩近似：假设在散射过程中入射平面波没有

被势场严重改变，则在上式积分中可令 
'

0 0
0 0 0( ) ( ) ikz ir r Ae Aeψ ψ ⋅≈ = = k r ,                         [11.77] 

其中 

' k z≡k � ，                                    [11.78] 

 
（如果 V 为零，则 11.77 式是一个精确波函数；这里本质上是一个弱势场近似13。）在波恩

近似下，有 
'

0( ) 3
0 02( , ) ( )

2
i rmf e V dθ φ

π
− ⋅= − ∫ k k r r

=
 。                [11.79] 

 

                                                        
13一般地，分波分析法适用于入射粒子具有较低能量的情形，因为这时只有前几项的贡献是主要的；波恩

近似适用于弱势场(与入射能量相比而言)，从而偏转不大的情形。 



 
图 11.11 波恩近似中的两个波矢量：k′指向入射方向，k 指向散射方向。 
 
（按照 k′和 k 的定义，它们量值 k 相同，但是前者是指向入射束流的方向，而后者是指向

探测器的方向—如图 11.11 所示；
'( )−k k= 是散射过程中的动量转移。） 

特别地，对于低能散射（长波），在整个散射区域指数因子基本上不变，从而波恩近似

可简化为： 

3
2( , ) ( )

2
mf V dθ φ
π

= − ∫ r r
=

 ，(低能情形)。              [11.80] 

（其中积分中省略了 r 的下标, 这不会引起混淆。） 

例题 11.4 低能软球散射14。设 

⎩
⎨
⎧

>
≤

=
.,0
,,

)( 0

ar
arV

rV                         [11.81] 

在低能情况下，散射振幅为 

⎟
⎠
⎞

⎜
⎝
⎛−≅ 3

02 3
4

2
),( aVmf π

π
φθ

=
，                [11.82] 

（与θ和φ无关），微分截面为 

2

2

3
02

3
2

|| ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅=

Ω =
amV

f
d
dσ

，                  [11.83] 

总截面为 
2

2

3
0

3
2

4 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅

=
amV

πσ 。                      [11.84] 

 
在球对称势的情况下，V(r)=V(r)，对不是低能的情形，波恩近似也可以约化简洁的形

式。定义： 
κ≡k′−k，                              [11.85] 

在对 r0 的积分中取球坐标的极轴沿着κ的方向，从而 
(k′−k)⋅r0= κ r0 cosθ0                            [11.86] 

                                                        
14波恩近似不适用于刚球散射（V0=∞）, 积分发散。我们所做的假设中关键点在于弱势场，从而在散射区

波函数没有大的改变。但是，对于刚球散射情形，进入散射区波函数由
ikzAe 变为零。 



那么 

∫−≅ 0000
2

00
cos

2 sin)(
2

)( 00 φθθ
π

θ θ dddrrrVemf ikr

=
。      [11.87] 

其中对φ0 的积分很简单，值为 2π；对θ0 的积分参照 11.59 式。省略 r 的下标，上式变为： 

∫
∞

−≅
02 )sin()(2)( drrrrVmf κ

κ
θ

=
，（球对称势情形）。      [11.88] 

其中 f 对角度的依赖包含在κ中；由图 11.11，可知 

κ=2ksin(θ/2) 。                                [11.89] 
================================================================== 
例题 11.5  汤川散射。汤川势（原子核内部束缚力的一个粗略模型）具有以下形式 

r
erV

rμ

β
−

=)( ，                       [11.90] 

其中β和μ是常数。波恩近似给出 

)(
2)sin(2)( 22202 κμ

βκ
κ
βθ μ

+
−=−≅ ∫

∞ −

==
mdrremf r  。     [11.91] 

（在习题 11.11 中，要求计算该积分。） 
================================================================== 

例题 11.6  卢瑟福散射。若令 021 4/ πεβ qq= ，μ=0，则汤川势变为库伦势，描述两个点电

荷之间的电相互作用。显然，散射振幅为 

22
0

21

4
2)(

κπε
θ

=
qmqf −≅ ，                     [11.92] 

或（根据 11.89 和 11.51 式） 

                  
( ) ( )2sin16 2

0

21

θπ
θ

E
qqf

ε
−≅

                              [11.93] 

微分截面为上式的平方： 

                    ( )

2

2
0

21

2sin16 ⎥
⎦

⎤
⎢
⎣

⎡
=

Ω θπ
σ

E
qq

d
d

ε
                            [11.94] 

上式正是卢瑟福公式（11.11 式）。非常巧合，用库仑势，经典力学、波恩近似和量子场论都

得到了相同的结果。用计算机行业界人士的话说，卢瑟福公式惊人的“强壮”。 
 
 
 
*习题 11.10 对于任意能量的软球散射，求出波恩近似下的散射振幅。证明所得结果在低能

情况下变为 11.82 式。 
 
习题 11.11 计算 11.91 式中的积分，验证右边的表达式。 
 



**习题 11.12 在波恩近似下，计算汤川势散射的总截面，并将结果表达为 E 的函数。 
 
*习题 11.13 对于习题 11.4 中的势， 

（a）在低能波恩近似下，计算 ( )f θ ， ( )D θ 和σ ； 

（b）利用波恩近似，计算任意能量情况下的 ( )f θ ； 

（c）证明所得结果在适当的范围与问题 11.4 的答案一致。 
 
 
11.4.3 波恩级数 
波恩近似的精神类似于经典散射理论中的冲量近似。在冲量近似中我们先假定粒子沿直线运

动（如图 11.12 所示），然后计算传递给粒子的横向冲量： 

                            dtFI ∫ ⊥=                                [11.95] 

 
图 11.12：冲量近似中先假定粒子不被偏转，然后计算传递的横向动量。 
 
如果偏转相对较小，此横向冲量就是传递给粒子的横向动量的一个很好的近似，从而散射角

为 

                    ( )pI1tan−≅θ                                        [11.96] 

其中 p 是入射粒子动量。这可以说是“一阶”冲量近似（零阶近似就是我们最初考虑的情

况：完全没有偏转）。同样地，在零阶波恩近似中入射平面波没有任何改变地穿过，我们在

上一小节中所讨论的情况正是对此的一阶修正。 但是，按照同样的思路进行迭代能够得到

一系列高阶修正，可以推测它将收敛于精确解。 
薛定谔方程的积分形式可写为： 

              ( ) ( ) ( ) ( ) ( ) 0000 rrrrrrr 3
0 dVg ψψψ ∫ −+=                   [11.97] 

其中 0ψ 为入射波， 

                   ( )
r

emg
ikr

22 =π
−≡r                                      [11.98] 

为格林函数（为方便起见，这里合并了因子
22 /m = ），V 是散射势。用简单的符号表示为 



                   ψψψ ∫+= gV0                                       [11.99] 

迭代一次，得： 

                    ∫∫∫ ++= ψψψψ gVgVgV 00                          [11.100] 

 
 
图 11.13 波恩级数的图形分析（式 11.101） 
 
重复该过程，可得到ψ的级数如下： 

...0000 ++++= ∫∫∫∫∫∫ ψψψψψ gVgVgVgVgVgV  。           [11.101] 

在每一项的被积函数中，只出现入射波函数ψ0，以及越来越高幂次的 gV。一阶波恩近似正

是该级数从第二项后截断的结果，但是现在很清楚地知道如何生成高阶修正。 
波恩级数可以用图形表示，如图 11.13 所示。在零阶ψ中，它不受势的影响；一阶与势

相互作用一次，然后以某个新的方向向外传播；二阶则是与势相互作用一次后，传播到某个

位置再次与势相互作用，然后沿着某个新方向向外传播；以此类推。从这个角度来说，格林

函数有时又被称作传播子，它告诉人们在相邻两次相互作用之间扰动是如何干扰传播的。基

于波恩级数产生的灵感，造就了相对论量子力学的费曼表述形式，在费曼图中，完全由顶点

项（V）和传播子（g）联结在一起。 

习题 11.14 用冲量近似计算卢瑟福散射的θ（作为碰撞参数的函数）。 并证明在适当的极限

下所得结果与精确表达式（习题 11.1(a) ）相一致。 

***问题 11.15 在二阶波恩近似下，计算低能软球散射的散射振幅。 

答案： ]5/41)[3/2( 22
0

23
0 == amVamV −− . 

第 11 章补充习题 

***习题 11.16  推导出一维薛定谔方程的格林函数，并它构造出积分形式（类似于 11.67 
式）。 

答案： ∫
∞

∞−

−−= 000
||

20 )()()()( 0 dxxxVe
k

imxx xxik ψψψ
=

                  [11.102] 

***问题 11.17  利用习题 11.16 的结果推导一维散射的波恩近似（在区间−∞<x<∞上，原点

处无“砖墙”）。选择
ikxAex =)(0ψ ，且假定 )()( 000 xx ψψ ≅ 以计算积分。证明反射系数为

如下形式： 

22
2

2 |)(| ∫
∞

∞−
⎟
⎠
⎞

⎜
⎝
⎛≅ dxxVe

k
mR ikx

=
.                          [11.103] 

问题 11.18  利用一维波恩近似（习题 11.17），分别对δ 函数（2.114 式）散射和有限方势

阱（2.145 式）散射，求透射系数（T=1−R），并将所得结果与精确解（2.141 和 2.169 式）



进行比较。 

问题 11.19  证明光学定理，它将总截面和向前散射振幅的虚部相联系： 

))0(Im(4 f
k
πσ =                       [11.104] 

提示：利用 11.47 式 和 11.48 式。 
 
 



第十二章    

后记 

 
现在(我希望)你们对量子力学的内容已经有了一定的了解，我们将回到它究竟意味着什么的

老问题－继续我们在1.2节的讨论。问题的根源是与波函数统计诠释密切相联系的不确定性。

即Ψ（或者更普遍的，量子态－比如，它可以是一个旋量）不能唯一地确定测量的结果；

它所能提供的仅仅是可能结果的统计分布。这就产生了一个深刻的问题：物理体系在测量之

前“确实”存在这样的统计分布（现实主义学派），还是测量本身（在波函数统计限制的条

件下）“创造”这种属性（正统学派），或者它根本就是“玄学”，我们完全不必回答这个问

题（不可知论的观点）？ 
   按照现实主义学派的观点，量子力学是一个不完备的理论，因为即使你依据量子力学知

道体系的所有信息（即，它的波函数），你仍然不能确定测量的结果。显然在量子力学之外，

存在另外的信息，要对物理现实进行完备的描述，这种信息（与Ψ一起）是必须的。 
   正统学派的观点引起更棘手的问题，如果测量的作用强迫体系“以某种姿态出现”，帮助

创造了一种先前不存在的属性1，则测量过程一定有某些独到之处。另外，为了解释即刻的

重复实验产生同样的结果这一事实，我们被迫假设测量使波函数塌陷，这种塌陷是与由薛定

谔方程描述的正常演化是不同的，至多，两者可能会一致而以。 
   由于上述原因，一代代物理学家常常重回不可知论的观点，并建议他们的学生不要在担

心理论的基础概念上浪费时间也就不奇怪了。 
 

12.1 EPR 佯谬 
在 1935 年，Einstein、Podolsky 和 Rosen2发表了著名的 EPR 佯谬，它设计的目的是想证明

（在纯理论的基础上）现实主义是唯一经得起考验的观点。下面，介绍一个简化的 EPR 佯

谬实验方案，它由 David Bohm 首先引入。考虑一个中性
0π 介子到电子－正电子对的衰变： 

                        0 .e eπ − +→ +  

设
0π 介子是静止的，电子和正电子的运动方向相反（图 12.1）。由于

0π 的自旋是零，所以

角动量守恒要求电子和正电子对处在单态组态： 
（此处插入图 12.1） 

图 12.1 EPR 实验的 Bohm 方案: 一个静止
0π 介子衰变为电子-正电子对。 

                                                        
1 这可能有点奇怪，但并非不可思议，如某些普及读物所建议的那样。所谓的波粒二相性，Niels Bohr 把它

提升到宇宙普遍原理的地位（并协性），使电子看起来像不可预言的青年人，有些时候其行为像成年人，有

些时候，没有任何特殊理由，行为像小孩。我试图避免这样的说法。当我说一个粒子在它测量之前不具有

一个特定的属性，我意味着，例如，一个电子处在自旋态
1
0

χ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

；一个它角动量 x 分量的测量可以得

到 / 2，或者（以相等的几率） / 2− ，但在测量前，它没有确定的 xS 值。 
2 A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777(1935) 



                      ( )1 .
2 − + − +↑ ↓ + ↓ ↑                                  [12.1] 

如果电子的自旋向上，正电子的自旋必须向下，反之亦然。在任何一个特定的
0π 介子衰变

中，量子力学无法预测会得到哪一种自旋组合，但是它明确指出电子、正电子自旋的测量是

相关的，平均说来得到每一种组合的几率是 1/2。现在假设在一个实验中我们让电子和正电

子各飞行 10 米远，或者，原理上，可以 10 光年远，然后测量电子的自旋。如果你测量电子

的自旋向上，你立即就知道 20 米远（或者 20 光年远）正电子的自旋向下，如果有人在远处

测量正电子的自旋的话。 
对现实主义者来说，这没什么奇怪的－从它们被产生的那一时刻，电子的自旋就是向

上（正电子向下）…只是量子力学无法告知我们而以。但是“正统学派”的观点是，在测量

介入之前粒子的自旋是不确定的：是测量使电子的波函数发生塌陷，同时“产生出”20 米

（或 20 光年）远处正电子的自旋。Einstein、Podolsky 和 Rosen 认为这样的超距怪异作用

（spooky action-at-a-distance）是十分荒谬的，所以正统学派的观点是站不住脚的；无论量子

力学能不能预言，电子和正电子始终有确定的自旋。 
EPR 论据是基于任何影响的传播速度都不能快于光速这个基本假设之上的。这个原则

被称为定域性。你可能会试图去假设波函数的塌陷不是瞬时的，而是以一定的速度“传播”

的。但是，这样的假设将违反角动量守恒，因为如果我们在电子波函数塌陷的消息传到之前

测量正电子的自旋，将有 50％几率发现两者自旋都向上。无论你在抽象上如何想象这样的

理论，实验结果是确凿的，违反角动量守恒的结果不会出现－自旋的相关性是完美无缺的。

显然，无论本质是什么，波函数的塌陷是瞬时的。 
 

习题 12.1 纠缠态. 自旋单态组态(12.1 式)是纠缠态的经典之例－一个两粒子态不能表示为

两个单粒子态的乘积，对此，我们也无法分开来单独说一个粒子的态。你可能会置疑，在某

种程度上这是一个人造的概念－也许单粒子态的某些线性组合可以使体系退纠缠。证明下列

定理： 

考虑一个两－能级体系， aφ ， bφ ， i j ijφ φ δ= 。（例如， aφ 可以是表示自旋向

上的态， bφ 自旋向下。）证明对任何单粒子态 rψ 和 sψ ，两粒子态 

             (1) (2) (1) (2)a b b aα φ φ β φ φ+  

（ 0, 0α β≠ ≠ ）都不能够被表示为积 

                         (1) (2)r sψ ψ  

的形式。 

提示：把 rψ ， sψ 分别写成 aφ 和 bφ 的线性组合。 

 
12.2 Bell 定理 
 
平心而论，Einstein、Podolsky 和 Rosen 并不是怀疑量子力学的正确性；他们仅是认为在描



述物理现实时量子力学是不完备的。波函数不是所有的故事－除了波函数，为了完全描述体

系的状态，需要某个另外的量，λ。我们称λ为“隐变量”，因为此刻我们没有任何线索去

预测或测量它3。在过去的年代中，提出了不少隐变量理论，做为量子力学的补充4；这些理

论繁杂难以令人置信，不过没人介意－因为直到 1964 年这种方案被认为是值得探究的。但

是在 1964 年，J. S. Bell 证明任何定域的隐变量理论同量子力学是不相容的5。  
Bell 提出了一个推广的 EPR/Bohm 实验：同原来实验中电子和正电子探测器沿相同方向

不同，Bell 让两个探测器都能独立的转动。第一个测量电子自旋沿一个单位矢量a 的分量，

第二个测量正电子自旋沿另一个单位矢量b的分量（图 12.2）。简单起见，以 / 2为单位记

录自旋；则每个探测器沿指定方向记录＋1（自旋向上）或－1（自旋向下）。对多次
0π 衰变

所记录的结果，如下表所示： 
         

电子 
＋1 
＋1 
－1 
＋1 
－1 

. 

. 

. 

正电子 
-1 
+1 
+1 
-1 
-1 
. 
. 
. 

乘积 
-1 
+1 
-1 
-1 
+1 
. 
. 
. 

 
 
 
 
(插入图 12.2) 
图 12.2 EPR-Bohm 实验的 Bell 方案：探测器独立指向a 、b方向。 
 

    对于一个给定的探测器指向，Bell 建议计算自旋乘积的平均值。以 ( , )P a b 标记这

个平均值。如果两个探测器方向是平行的（ =b a），我们回到最初的 EPRB 方案；在这种

情况下，一个自旋向上，另一个则向下，所以自旋乘积总是－1，从而乘积平均值也是－1： 

                        ( , ) 1P = −a a                                   [12.2] 

如果安排探测器方向反平行( = −b a )，则自旋乘积总是＋1，所以 

                            ( , ) 1P − = +a a                                  [12.3] 

对于任意的指向，量子力学给出 
                                                                          [12.4] 
                           
                                                        
3 隐变量可以是一个数，或者它也可以是一组数的集合；也许λ 在将来的某些理论中是可以计算的，由于

某些原则上的原因，它也许不可计算。这都没有关系。我所强调的是：定有某些因素－如果仅有每一个可

能实验的结果－与测量前的体系相联系。 
4 D. Bohm, Phys. Rev. 85,166,180(1952)。 
5 Bell 原始的论文(Physics 1, 195(1964)) 是一个精品著作：简练，易懂，文笔优美。 

   ( , )P = − ⋅a b a b  



（见习题 4.50）。Bell 所发现的是，这个结果与任何定域隐变量理论是不相容的。 
     这个结论的论证非常简单。假设电子/正电子体系的“完整”态是由隐变量λ表征的（λ
从一个衰变到下一个的变化是我们不知也不可控制的）。进一步假设电子测量的结果是独立

于正电子探测器指向（b）的－这个指向可以在对电子马上要进行测量之前由试验者选择，

使得指向选择的信息无法在电子测量之前传到电子。（这就是定域性假设。）则存在某个函数

( , )A λa ，它给出电子测量的结果，另一个函数 ( , )B λb 给出正电子测量的结果。这些函数

的值仅能取 1± ：6 

                     ( , ) 1;     ( , ) 1.A Bλ λ= ± = ±a b                           [12.5] 

当探测器指向一致时，对于所有的λ，结果完全（反）相关： 

                       ( , )  ( , ).A Bλ λ= −a a                                 [12.6] 

现在，测量结果乘积的平均值是 

              ( , ) ( ) ( , ) ( , ) ,P A B dρ λ λ λ λ= ∫a b a b                         [12.7] 

其中 ( )ρ λ 是隐变量的几率密度。（和任何几率密度一样，它是非负的，并且满足归一化条

件 ( ) 1dρ λ λ =∫ ，但是除此之外，我们对 ( )ρ λ 不做任何假定；不同的隐变量理论或许给出

非常不同的 ( )ρ λ 表式。）由 12.5 式，我们可以消去 B ： 

                 ( , ) ( ) ( , ) ( , ) .P A A dρ λ λ λ λ= −∫a b a b                         [12.8] 

如果c 是任何一个另外的单位矢量，则有 

         [ ]( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ) .P P A A A A dρ λ λ λ λ λ λ− = − −∫a b a c a b a c        [12.9] 

或者，由于[ ]2( , ) 1A λ =b ： 

       [ ]( , ) ( , ) ( ) 1 ( , ) ( , ) ( , ) ( , ) .P P A A A A dρ λ λ λ λ λ λ− = − −∫a b a c b c a b        [12.10] 

但是，由 12.5 式，有 [ ]1 ( , ) ( , ) 1A Bλ λ− ≤ ≤ +a b ；从而 [ ]( ) 1 ( , ) ( , ) 0A Aρ λ λ λ− ≥b c ，所

以 

              [ ]( , ) ( , ) ( ) 1 ( , ) ( , ) ,P P A A dρ λ λ λ λ− ≤ −∫a b a c b c              [12.11] 

或者，更简洁的： 
 
                                                                        [12.12] 
 
 

                                                        
6 这个已经比经典决定论者所允许的放松了许多，因为它舍弃了有关粒子有可同时确定的自旋分量的任何

概念。不过不必介意－Bell 论述的要点是要证明量子力学是同任何局域隐变量理论的不相容性－即使一个

进行了某种修补的理论。 

 ( , ) ( , ) 1 ( , ).P P P− ≤ +a b a c b c  



这就是著名的 Bell 不等式。它对任何隐变量理论都成立（仅需满足 12.5 和 12.6 式），因为

我们对隐变量的属性和分布 ρ 没有做任何假设。 
但是很容易证明，量子力学的结果（12.4 式）与 Bell 不等式是不相容的。比如，设所

有三个矢量处于同一个平面内，c 与分别与a 和b成 45°夹角(图 12.3)；在这种情况下，量

子力学的结果为 

           ( , ) 0,     ( , ) ( , ) 0.707,P P P= = = −a b a c b c  

而 Bell 不等式给出 
                    0.707 1 0.707 0.293.≤ − =  
显然是不成立的，即 Bell 不等式与量子力学是不协调的。 
 
(插入图 12.3) 
图 12.3 验证 Bell 不等式量子违背的探测器指向。 
 
    以 Bell 的方案，比其原设想者的思想，EPR 佯谬展示出某种更基本的东西：如果 Einstein
等人是正确的，则量子力学不仅是不完备的，而是完全错误的。另一方面，如果量子力学是

正确的，则没有什么隐变量理论能从 Einstein 反常的非定域性考虑解救我们。另外，我们将

给出一个非常简单的实验去一劳永逸地解决这个争论。 
在 60 年代和 70 年代，许多实验用来检验 Bell 不等式，以 Aspect、Grangier 和 Roger

的工作为其顶点。7我们不涉及实验的细节（他们实际是用双光子原子跃迁，而不是π 衰变）。 
为了排除正电子探测器可能会“感觉“到电子探测器指向的微小可能性，探测器的指向是在

光子已经在飞行后准随机地设置。实验结果完美地同量子力学的预言符合，明显地与 Bell
不等式矛盾。8 
   量子力学实验上的证实对科学界产生了极大震动。但是并非是它对 “现实主义”观点的

否定－大多数物理学家早已改变了观点（对那些坚持的人，认为 Bell 定理不适用的非定域

隐变量理论仍存在可能性9）。真正的震动来自于实验证实了自然本身本质上是非定域的。非

定域性，以波函数的瞬时塌陷为存在形式（由于这个原因同样存在于全同粒子波函数的对称

性要求），一直是佯谬解释的一个要点，但是在 Aspect 等人的实验之前，一直期望量子的非

定域性可能是理论形式中的某些非物理的人造物，没有可测量的结果。这样的期望现在不复

存在了，我们被迫去重新检验我们对瞬时超距作用的异议。 
为什么物理学家对超光速的作用如此谨慎？毕竟，存在许多事情其传播速度快于光速。

比如，如果一个昆虫飞过电影放映机的光束，它在荧幕上影子的速度正比于放映机到荧幕的

距离；原则上，这个距离可以是任意长，因此昆虫影子的速度可以是任意大（图 12.4）。但

是影子不携带能量，它也不能在荧幕上从一点到另一点传递信息。在 X 点的一个人不能通

过操作影子而引起任何事情在 Y 点发生。 
                                                        
7 A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49,91(1982)。有关更多最近的实验，见 G. Weihs et al., Phys. 
Rev. Lett. 81, 5039(1998)。 
8 Bell 定理涉及平均值，它是可以想到的，如 Aspect 等人的仪器存在不可预见的偏离，这些偏离产生非代

表性样本，对平均值造成扰动。在 1989 年，提出了 Bell 定理的一个改进方案，一次测量就可以区分量子

力学的预言和任何定域隐变量理论。见 D. Greenberger, M. Horne, A. Shimony, and  A. Zeilinger, Am. J. Phys. 
58,1131(1990)和 N. David Mermin, Am. J. Phys. 58,731(1990)。 
9 它是一个很奇妙的曲折结局，EPR 佯谬假设了定域性本想去证实现实主义的观点，但是最终却否定了定

域性，而对现实主义仍没定论－一个 Einstein 所不愿看到的结果。现今的物理学家认为，如果没有定域的

现实主义，现实主义就没有什么价值，由于这个原因非定域的隐变量理论是关注的重点。同样的原因，某

些作者－最著名的是 Bell 本人，在其著作“量子力学中的可说与不可说”（Cambridge University，Press，
1987）－争辩说这样的理论是最有希望填补在被测体系和测量仪器之间的概念空隙，同时对波函数的塌陷

提供一个清晰的机理。 



（插入图 12.4） 

图 12.4 只要荧幕足够远，昆虫的影子以快于光速的速度
'v 横过荧幕,。 

 
另一方面，比光速传播快的因果影响会造成不可接受的推论。按狭义相对论，如果传

播速度比光速快，可以找到一个惯性系使时间逆转－使结果在原因之前发生－这将引起不可

避免的逻辑上的混乱。（例如，你可以试图谋杀你幼年的爷爷。这可不是一个好主意！）问题

在于，由量子力学预言和 Aspect 检测到的超光速影响是因果的？或者是它们实在是太微妙

（像影子的运动一样）以躲避哲学上的异议？ 
让我们考虑 Bell 的实验。对电子测量的结果确实影响对正电子的测量吗？的确影响－

否则我们无法解释数据的相关性。但是，对电子的测量会产生正电子的一个特别结果吗？一

个操作电子探测器的人没有任何方法可以用他的测量对正电子探测器发出一个信号，因为他

并不能控制他自己的测量结果（像一个在 X 点的人不能影响昆虫的影子一样，他无法使一

个电子测量结果为向上）。的确他可以决定是否去进行一个测量，但是正电子探测者，是在

另一端进行测量，不知电子是被测量了还是没有，数据的采集在两端是分开进行的，完全是

随机的。仅当我们在测量以后比较两端的结果才发现相关性。在另外的参考系，对正电子的

测量可以发生在对电子测量之前，但是这不会引起逻辑的矛盾－观察到的相关性对测量顺序

是完全对称的，我们说对电子的观测影响正电子的测量，或者说对正电子的观测影响电子的

测量，着没有实质的区别。这是一个十分微妙的影响类型，它仅有的表现是在两组随机数据

之间神秘不可思议的相关性。 
现在我们需要区分两种不同类型的影响：“因果”类，此类型会使接受者的物理特性产

生实质的变化，并在接受者系统是可测的，另一种是“以太”类，此类型不传递能量或信息，

它仅有的表现是两个分离子系统测量数据的相关性－这种相关性由其本质是不能由仅在一

处的测量所能检测的。“因果”类的影响不能以比光速快的速度传播，但是对“以太”类没

有令人信服的理由受此限制。与波函数塌陷相联系的以太类，其传播比光速快的事实也许令

人惊讶，但是它毕竟还不是一场灾难。10 
 

12.3 无复本定理 
 
量子测量是典型的毁坏性测量，因为它们改变了被测体系的态。这就是为什么在实验室要用

不确定原理。你们可能置疑为什么我们不能准备原始态的多个复本，测量它们，而不损伤原

始态本身？这是做不到的。实际上，如果你能发明一个复本装置（一个“量子复印机”），量

子力学将不复存在。 
例如，利用 EPRB 实验传输超光速信息将变得可能。比如说，从正电子探测器操作者

传到电子探测器操作者的信号设定为“是”或“否”。如果测量信号为“是”，表明发送者（正

电子处）测量了 zS 。不必介意他所得的测量结果－只表明他进行了测量，这意味着电子有

了确定态↑或↓（那一个无关紧要）。接受者马上制备电子的很多复本，并测量每一个的 zS 。

如果所有测量都得到同样的结果，我们可以确信正电子确实是被测量了，所以信号是“是”。 
如果测量结果一半是自旋向上，一半是向下，则正电子还没有被测量，信号是“否”。 

                                                        
10 对 Bell 定理的论述很多。我比较喜爱 David Mermin 的一篇有启发的短文，PhysicsToday （April 1985，
38 页）。一个较完整的文献目录由 L. E. Ballentine 给出, Am. J. Phys. 55, 785(1987)。 



   但是如 Wootters、Zurek 和 Dieks 在 1982 年证明的那样11，你无法制造量子复印机。大致

上，我们希望对复印机输入一个处在 ψ 态的粒子（被复印物）及处在 X 的第二个粒子（空

白纸），吐出处在 ψ 态的两个粒子（原来的一个加复制的一个）： 

                              Xψ ψ ψ→                           [12.13] 

假定我们制造了这样的机器并成功复制了 1ψ  

                         1 1 1Xψ ψ ψ→                              [12.14] 

同样可以复制 2ψ 态 

                        2 2 2Xψ ψ ψ→                              [12.15] 

（比如，如果粒子是电子， 1ψ 、 2ψ 可以分别是自旋向上和自旋向下态）。到目前为止，

好像没有什么问题。但是如果我们想要复制一个线性组合态 1 2ψ α ψ β ψ= + ，那会发

生什么？显然我们将得到12 

                   1 1 2 2Xψ α ψ ψ β ψ ψ→ +                       [12.16] 

这并不是我们想要的－我们想要的是 

   
1 2 1 2

2 2
1 1 2 2 1 2 2 1                             = .

Xψ ψ ψ α ψ β ψ α ψ β ψ

α ψ ψ β ψ ψ αβ ψ ψ ψ ψ

→ = ⎡ + ⎤ ⎡ + ⎤⎣ ⎦ ⎣ ⎦
+ + ⎡ + ⎤⎣ ⎦

   [12.17] 

你可以制作一个机器去复制自旋向上的电子和自旋向下的电子，但是无法复制任何非平庸的

线性组合态。这可以想象为你买了一部复印机，它可以完美地复制竖直线和水平线，但是对

对角斜线的复制却完全失真。 
 
12.4 薛定谔猫 
 
测量过程在量子力学中起着十分独特的作用：不确定性、非定域性、波函数的塌陷及其它伴

随而生概念上的困难都与此有关。不存在测量时，波函数按薛定谔方程以一种从容不迫决定

性的方式演化，像一个极其普通的场理论（比如，比经典电动力学要简单的多，那里有两个

场（ ,E B ），而这里仅有一个场（Ψ）而且是一个标量）。是测量过程的奇异角色使量子力

学变得丰富微妙。但是测量严格来讲是什么？是什么使它变得与其它物理过程如此不同？13

                                                        
11 W. K. Wootters and W. H. Zurek, Nature 299, 802(1982); D. Dieks, Phys. Lett. A 92, 272(1982)。 
12 这里假设了机器是线性作用在 ψ 态上的，它也必须如此，因为含时薛定谔方程（该方程应该支配着这

个过程）是线性的。 
13 有一些人反对这样的区分，他们认为体系和测量仪器应该被一个巨大波函数一起描述，这个波函数本身

按薛定谔方程演化。在这样的理论中没有波函数的塌陷，但是我们必须放弃对任何个体事件描述的希望－

量子力学（以这种观点）仅适用于全同体系构成的系综。例如，见 Philip Pearle, Am. J. Phys. 35, 742(1967), 或
者 Leslie E. Ballentine, 量子力学：一个现代的发展，第二版，World Scientific, Singapore(1998)。 



当一个测量发生后我们能告诉些什么？ 
   薛定谔在他著名的猫佯谬中尖锐地提出这个基本问题：14 
 
一只猫与可憎的奇异装置共处一铁容器内，其中有一个盖革计数器存有稀薄的放射物

质，稀薄到一个小时内可能仅有一个原子衰变，一小时内一个原子也不衰变的几率与

衰变一个的几率相等。如果一个原子衰变将触发计数器，通过一个继电器又会引起一

个小锤子的动作，从而击破一个氰化物罐子。如果一个人离开整个系统一个小时，他

将会说如果没有原子衰变，猫将活着。第一次的衰变将毒死猫。整个系统的波函数将

表示为含有相等的活猫和死猫部分。 
   
     即在一小时后，猫的波函数形式应为 

                       ( )1
2

ψ ψ ψ= 活 死＋  

直到一个测量之前－比如你打开盒子之前，猫即不是活也不是死，而是两者的线性组合。在

你观察的那一时刻，猫被迫选择“一种姿态”：活还是死。如果你发现猫死了，那就是由于

你的观察你杀死了猫。 
薛定谔认为这显然是谬论，我认为绝大多数物理学家也对此认同。把两个完全不同的

宏观事件线性组合在一起的极端想法显然是荒谬的。一个测量的本质是某些宏观体系受到了

影响（本例中的盖革计数器）。在测量发生时刻，以留下一个永久记录的方式，微观体系（由

量子力学规律所描述）与宏观体系（由经典规律所描述）相互作用。宏观体系本身不允许处

在一个由不同态所线性组合的态。15 
我不认为这是一个完全令人满意的答案，但是至少它避免了 Winger 和其他人荒谬可笑

的唯我论，他们相信是人类意识的卷入构成了量子力学的测量。部分问题是由“测量”这一

术语本身所引起的，这个用语暗示了人类的参与。海森堡提议用“事件”，这可能更好一些。

但是“测量”用语现在已经根深蒂固，恐怕很难改变。另外，对术语的操弄也不会完全驱除

这个神秘的鬼怪。 
 

12.5 量子齐诺佯谬 
 
毫无疑问，波函数的塌陷在整个奇妙故事中最有特性。它是在纯理论的基础上假设的，以解

释即刻重复测量得到同样结果这一事实。但是这样极端的假设必须有直接观测的结果。1977
年，Misra 和 Sudarshan16提出了量子齐诺效应以作为波函数塌陷的实验验证。他们的思想是

取一个不稳定的体系（比如说，处在激发态的原子），对它进行重复测量。每一次测量塌陷

了波函数，重置时钟，由这种方法可以延迟原子向低能态的跃迁。17 

                                                        
14 ESchrödinger, Naturwiss. 48, 52(1935)；Josef M. Jauch 译, 量子力学基础, Addison-Wesley, Reading(1968), 
185 页。 
15 当然，在最终的意义上，宏观体系本身也是由量子力学规律所描述的。但是波函数，首先是用来描述个

体基本粒子的。宏观物体的波函数应由构成它的 1023个粒子的所有波函数组成，是极其复杂的。也许统计

中大量数目宏观体线性组合变得根本不可能。的确，假设你能够得到衰减摆（比如说）宏观可区分量子态

的线性组合，在衰减的极短时间内，它会回到普通的经典状态。这种现象称为退相干。例如，见 R. Omnes, 
量子力学的诠释 (Princeton, 1994), 第 7 章。 
16 B. Misra 和 E. C. G. Sudarshan,J. Math. Phys18, 756(1977)。 
17 这个效应与齐诺（Zeno， 古希腊哲学家）没有关系，但是联想到古老寓言，“看锅水不开”，所以这个

效应有时也称为看锅效应。 



假定初始时刻体系处于激发态 2ψ ，其向基态 1ψ 跃迁的寿命为τ 。当时间 t 小于τ 时，

向基态跃迁的几率正比于 t （见 9.42 式）；事实上，由于跃迁速率为1/τ  

                      2 1 .tP
τ→ =                                      [12.19] 

如果我们在 t 时刻进行了一次测量，发现体系仍处在激发态的几率为 

                          2 ( ) 1 .tP t
τ

= −                                    [12.20] 

假定我们确实发现它还在激发态。测量导致波函数又塌陷为 2ψ ，所有的进程重新开始。如

果我们在 2t 进行第二次测量，体系仍处在激发态的几率显然是 

                           
2 21 1 ,t t

τ τ
⎛ ⎞− ≈ −⎜ ⎟
⎝ ⎠

                            [12.21] 

这同我们从没有在 t 时刻进行第一次测量的结果是一样的。这结果符合我们朴素期望；如果

这就是全部的故事，重复对体系进行测量不会得到任何事情，也就没有什么量子齐诺效应。 

   但是对于极短的时间，跃迁几率不是正比于 t ，而是正比于
2t （见 9.39 式）：18 

                            2
2 1 .P tα→ =                                  [12.22] 

在这种情况下，在两次测量之后体系仍处在激发态的几率是 

                        ( )22 21 1 2 ,t tα α− ≈ −                              [12.23] 

而如果我们从没有没有进行第一次测量的话，它是 

                        2 21 (2 ) 1 4 .t tα α− ≈ −                              [12.24] 

显然在时刻 t 的测量减少了向低能态的跃迁净几率! 
的确，如果我们从 0t = 开始到 t T= 以均匀时间间隔测量体系 n 次，n 次测量后体系仍

处在激发态的几率是 

                  ( )2 21 ( / ) 1 ,
n

T n T
n
αα− ≈ −                          [12.25] 

当 n →∞时，结果趋于 1：如果对不稳定体系进行连续不断的观测，它将不会衰变！某些

学者认为这是个荒谬的结论，证明了波函数塌陷的不合理性。但是，他们论据依赖于是什么

构成“观测”的不牢靠解释上。如果云雾室中一个粒子的踪迹相当于“连续的观测”，我们

就无话可说了，因为这样的粒子确实衰变。但是这样粒子在云雾室中是间歇地与原子相互作

用，量子齐诺效应要发生，测量之间的间隔必须非常小，以满足跃迁几率处在正比
2t 的范围

内。 
可以发现，上述的实验不适合自发跃迁，但是适合受激跃迁，实验结果与理论预言符

合的很好。19遗憾的是，这个实验不像它的设计者所希望的那样可以成为波函数塌陷的强有

                                                        
18 导致对时间线性依赖关系的推导，我们假设了 9.39 式中的函数

2 2sin ( / 2) /tΩ Ω 是一个锐峰。但是，

峰的宽度量级为 4 / tω πΔ = ，对极短的时间，这个近似失效，积分变为
2( / 4) ( )t dρ ω ω∫ 。 

19 W. M. Itano, D. J. Heimzen, J. J. Bollinger, and  D. J. Wineland, Phys. Rev. A 41, 2295(1990)。 



力的证明；观测到的效应可以用另外的理由解释。20 
                  
                          ********* 
 
在本书中我试图讲述一个协调自洽的故事：粒子（和体系）的状态由波函数（Ψ）表

示；一般来说，在测量介入之前，粒子不具有确定的动力学性质（位置、动量、能量、角动

量、等等）；在任何给定的实验中得到某个特定值的几率是由Ψ的统计诠释所决定的；测量

导致波函数的塌陷，所以即刻的重复测量得到相同的结果。也存在其它的可能解释－非定域

隐变量理论、“多世界”图象、“可协调历史”，系综模型，及其它理论－但是我相信本书所

介绍的是概念上最简单，当然也是被当今绝大多数物理学家所认可的。21它已经受住了时间

的检验，各种实验的挑战。但是我不认为这是故事的结尾；至少，我们还需对测量的本质和

波函数的塌陷有更多的了解。它也是完全可能的，当未来的人们有了更成熟的理论，回顾历

史，会置疑现在的我们为什么会如此幼稚。 

                                                        
20 L. E. Ballentine, Found. Phys. 20, 1329(1990); T. Petrosky, S. Tasaki, and I. Prigogine, Phys. Lett. A 151, 
109(1990)。 
21 见 Daniel Styer 等人, Am. J. Phys. 70, 288(2002)。 



附录 

 
线性代数 

 
 
线性代数概括和推广一般矢量的运算，比如，我们在一年级物理遇到的那些矢量。 这里推

广到两个方面：(1) 允许标量是复数, (2)不再限制在三维情况。 
 
A.1 矢量 

 
一个矢量空间由一组矢量( α , β , γ ,……)加上一组标量(a, b, c,……)组成1，它对矢量加

法及标量与矢量相乘是封闭的。2。 
•矢量相加 

   任意两个矢量的“和”是另一个矢量： 
        α β γ+ = .                                                     [A.1] 

   矢量相加满足交换率： 
         α β β α+ = + ，                                              [A.2] 

还满足结合率： 
         ( ) ( )α β γ α β γ+ + = + + .                                     [A.3] 

存在零矢量 0 3, 对任意矢量 α , 有 

          0α α+ = ，                                                  [A.4]    

   并且对任意矢量 α , 有逆矢量 α− 44 存在， 

          0α α+ − =                                                    [A.5] 
•标量相乘 
任意标量与任何矢量的“积”是另一个矢量： 

                   a α γ=                                               [A.6] 
对于矢量相加, 标量及标量相加与矢量相乘满足分配率： 

                  ( )a a aα β α β+ = +                                   [A.7] 
               ( )a b a bα α β+ = +                                        [A.8] 

标量积还满足结合率： 
                ( ) ( )a b abα α=                                            [A.9] 

可以想像乘以标量 0 和 1 将会得到： 
            0 0 ; 1α α α= =                                           [A.10] 

很明显, ( 1)α α− = −  (可简写为－ α ). 

    这里有许多东西不是我们一眼能够看得出来的, 我所做的是用简明语言来描述矢量的

运算法则, 这样做的好处是可以把我们学到的一般矢量运算法则的知识应用到其它具有共

同特征的体系中。 

                                                        
1 对我们的目的而言，标量是普通复数。数学家可以以非常奇特的场给你讲解矢量空间，但这对量子力学

没什么用。注意α，β，γ…并不是(普通)数；它们仅是名称(标识)－例如，“查尔利，”或者“F43A-9GL,” 

或者其它的，以在问题中用于区分矢量。 
2也就是说，这些运算的很好定义的，所得矢量总在矢量空间。 
3习惯上, 在不会引起混淆时, 把零矢量写成 00 → 。 
4这是一个有趣的标记，因为α不是一个数。这里矢量的名字是“查尔利”，简单的把相反矢量的名字记为

“－查尔利”。一个更自然暗示它自已的的术语稍后提及。 



    矢量 α , β , γ ,…,的线性组合可表示为如下形式： 

                   ...a b cα β γ+ + + ，                               [A.11] 

如果一个矢量 λ 不能够写成 α ， β ， γ ，…，的线性组合，那么称为 λ 和 α , β , 

γ ，…，线性无关. (例如，在三维空间中，单位矢量 k̂ 和 î , ĵ 线性无关, 但位于 xy 平面上

的任意矢量都和 î , ĵ 线性相关), 可推广为，如果一组矢量中的任意一个矢量都和其它的矢

量线性无关, 那么这组矢量线性无关。如果任意一个矢量都可以表达为该组矢量的线性叠

加，那么这组矢量叫完全集5。空间中的一组线性无关的完全矢集称为基矢。在任何基矢中

矢量的数目称为空间的维数。这里我们假设维数(n)有限。 
    对于一组给定的基矢 

1 2, , ... ,ne e e                                       [A.12] 
 任意给定的矢量 

1 1 2 2 ... n na e a e a eα = + + +                                [A.13] 
可由它的(有序的)n 重分量唯一表示： 
                   1 2( , , ... )na a aα ↔ .                                     [A.14] 

通常用这些分量处理起来比用其自身更方便。 矢量相加，只需把对应的分量相加：  
   

1 1 2 2( , , ... );n na b a b a bα β+ ↔ + + +                       [A.15] 
与标量相乘，只需把对应的每个分量乘以标量： 
                       1 2( , , ... )nc ca ca caα ↔ ；                            [A.16] 
零矢量可以由一串零表示： 
                     0 (0, 0, ... 0)↔                                       [A.17] 
逆矢量其分量符号相反： 
                   1 2( , , ... )na a aα− ↔ − − − .                                [A.18] 
用分量处理矢量的缺点是必须找到一组基矢, 并且处理相同的操作时将会因所使用基矢的

不同而不同。 
 
习题 A.1  考虑在三维空间中一个具有复数分量的矢量(ax î ,+ay ĵ ,+az k̂ )。 
(a) 由 az= 0 的所有矢量组成的子集可以构成一个矢量空间吗？可以的话，维数是多少？不

可以的话，给出理由？ 
(b) 由 z 分量等于 1 的所有矢量组成的子集是什么样的？提示：两个矢量的和还在子集中

吗？零矢量是什么样的？ 
(c) 由所有分量相等的矢量组成的子集是什么样的？ 
 
*习题 A.2 考虑 x 次数小于 N 的一系列多项式(系数为复数) 
(a) 这样的矢量可以构成一个矢量空间吗(把多项式看作“矢量”)？可以的话，给出一组合

适的基矢，并给出空间的维数。不可以的话，这样定义的特征还却少什么？ 
(b) 什么时候可使多项式为偶函数？ 
(c) 什么时候可使首项系数(例如，xN - 1)为 1？ 
(d) 什么时候可使多项式在 x = 0 时值等于 1？ 
(e) 什么时候可使多项式在 x = 1 时值等于 0？ 
 
习题 A.3 证明对于给定的基矢一个矢量的分量是唯一的。 

 
 

                                                        
5 一组张满空间的矢量也称为完备集，虽然我个人倾向对无限维情况保留这个词，但无限维会产生是否收

敛这个敏感问题。 



A.2 内积  
    
   在三维空间中我们常遇到两类矢量积：点积和矢积。后者不能以任何自然的方法推广到

n 维矢量空间，但前者可以——本书中被自然地称为内积。两个矢量 α , β 的内积是一个

复数，写成 βα ，并具有如下性质： 

                               
*

βααβ = ，                          [A.19] 

                     0≥αα ，并且 00 ＝＝ α⇔αα ，                [A.20] 

γα+βα=+βα cbrcb )( .                       [A.21] 

除了推广为复数，这些原则还简单地归纳了我们所熟悉的点积形式。具有内积的矢量空间叫

内积空间。 
因为任何矢量与其自身的内积是一个不小于零的数(式 A.20)，它的平方根是实数——

我们称为矢量的模： 

                          αα≡α                               [A.22] 

它推广了“长度”的概念。单位矢量(模为 1)通常称为归一化(这个单词应该是“normal”，
但我想是因为发音太像)矢量。内积为零的两个矢量称为正交(推广了“垂直”的概念)。彼此

正交归一化的一组矢量的集合， 
                                 ijji δ=αα                            [A.23] 

称为正交归一系。通常总是可能的，也是最方便的，去选择一组正交归一基矢量；在这种情

况下两个矢量的内积可由它们的分量简洁地的写为 
                           nnbababa *

2
*
21

*
1 ...+++=βα                   [A.24] 

模(平方)变成 

                           
22

2
2

1 ... naaa +++=αα                   [A.25] 

且分量是 
                                  α= ii ea                             [A.26]    

(对三维正交归一基矢 î ， ĵ ， k̂ ，这些结果产生熟悉的公式 a b x x y y z za b a b a b⋅ = + + ，

2 2 2 2a x y za a a= + + ，并且 ˆ axa i= ⋅ ， ˆ aya j= ⋅ ， ˆ aza z= ⋅ )。从现在开始，除非具体指明的情

况下我们都采用正交归一基矢，。    
另一个我们所想推广的可能几何量是两个矢量的夹角。通常的矢量分析

cos (a b) / a bθ = ⋅ 。但内积一般来讲是一个复数，相似的公式(在任意的内积空间)并不能定

义(实)角度θ 。然而，这个量的绝对值小于 1 却是一个不争的事实， 

                        ββαα≤βα
2

.                           [A.27] 

(这个重要的结论称为施魏茨不等式；证明在习题 A.5 中) 因此，如果你愿意，你可以定义 α

和 β 之间的夹角为 

                    =θcos
ββαα
αββα

.                               [A.28] 

 
 
*习题 A.4 假设初始时一组基矢( neee ,...,, 21 )不正交。格拉姆－施魏茨过程是一个产生

标准正交系 neee ′′′ ,...,, 21 的系统过程。如下： 

（i）先把第一个基矢归一化（除以它的模） 



                          
1

1
1 e

ee =′                   

（ii）找出第二个矢量在第一个矢量上的投影，并减去它 
                      1212 eeee ′′−     

    这个矢量和 1e′ 正交，归一化后可得 2e′ . 

（iii） 3e 减去其在 1e′ 和 2e′ 上投影 

                    1311313 eeeeeee ′′′−′′−    

其和 1e′ ， 2e′ 正交，归一化可得 3e′ ，如此下去。 

用 格 拉 姆 － 施 魏 茨 过 程 归 一 化 三 维 空 间 基 矢 ,ˆ)(ˆ)1(ˆ)1(1 kijiie +++=  

,ˆ)1(ˆ)3(ˆ)(2 kjiie ++= kjie ˆ)0(ˆ)28(ˆ)0(3 ++= 。 
 
 
习题 A.5 证明施魏茨不等式(式 A.27)。提示：令 ( )/γ β α β α α α= − ，并且利

用 0≥γγ 。 
 
习题 A.6 求 ,ˆ)(ˆ)1(ˆ)1( kijii +++=α kijii ˆ)22(ˆ)0(ˆ)4( −++−=β 之间的夹角（在公

式 A.28 的意义上）。 
 
习题 A.7 证明三角不等式： β+α≤β+α )( 。 

 
A.3 矩阵 

 
假设考虑三维空间中的每一个矢量并乘以 17，或者绕 z-轴转动 39°，或者在 xy 面内作反射

——这些都是线性变换的例子。一个线性变换
6
 ( T̂ )把矢量空间的每一个矢量变换为另一个

矢量( lTα α α′→ = ,并且变换是线性, 即对任意的矢量 α ， β 和任意标量 a,b 有 

              ( ) ( ) ( )ˆ ˆ ˆT a b a T b Tα β α β+ = + ,                       [A.29] 

    如果知道一个特殊的线性变换如何作用到一组基矢上，就可以知道它如何作用到其它的

任意矢量上。假设 

               nn eTeTeTeT 12211111 ...ˆ +++= ， 

               nn eT...eTeTeT̂ 22221122 +++= ， 

… 

               nnnnnn eT...eTeTeT̂ +++= 2211  

                        

或者更紧凑地 

              
1

ˆ ,
n

j ij i
i

T e T e
=

= ∑           (j = 1, 2,…, n).                    [A.30]  

 

如果 α 是一任意矢量 

                                                        
6在这章，将用一个帽号(∧ )表示线性变换；这和课文中习惯的表示(把一个帽放到算符上)并不矛盾，因为

量子算符就是线性变换。 



                      j

n

j
jnn eaeaeaea ∑

=

=+++=α
1
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显然， T̂ 把一个分量为 1 2, , ... , na a a 的矢量变换为具有下列分量的矢量
7
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因此具有 n2 个元素的 ijT 唯一的表征了线性变换 T̂ (对给定的基矢)，就像 n 个分量 ai 唯一的

表征了 α 一样(对同一基矢)： 

                       ),...,,(ˆ
1211 nnTTTT ↔                                [A.34]     

如果基矢是标准正交的，从 A.30 式得出 

jiij eTeT ˆ=                                   [A.35] 

用矩阵8很容易表示这些复数： 
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                         [A.36] 

所以线性变换的研究归结为矩阵理论。两个线性变换之和( TS ˆˆ + )很自然定义为: 
                  α+α=α+ TSTS ˆˆ)ˆˆ(                                [A.37] 

这和通常的矩阵相加是一致的（对应的元素相加）  
                ⇔+= TSU ijijij TSU +=                                [A.38] 

两个线性变换的积 TS ˆˆ 遵从次序——先 T̂ 后 Ŝ  
               α=α=α′=α ′′α=α′ TSTSST ˆˆ)ˆ(ˆˆ;ˆ                  [A.39] 

什么矩阵 U 代表组合变换 TŜÛ
�

= ?不难得到： 
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这是标准的矩阵相乘规则—把矩阵 S 的第 i 行与矩阵 T 的第 k 列对应元素依次相乘，然后各

项相加, 就得到 ST 积的第 ik 个元素。相同的规则可用于矩形矩阵相乘，只要第一个矩阵的

列数和第二个矩阵的行数相等。特别的，如果把 α 的 n 个分量写成 n×1 列矩阵(或者列矢):9  

                                                        
7请注意 A.30 和 A.33 式的角标相反。这并不是印刷上的错误。另一个表述(在式 A.30 ji ↔ )是如果分量

变换是 Tij，那么基矢变换是 Tji。 
8将直接用黑体大写字母表示方矩阵。 
9将直接用黑体小写字母表示列矩阵和行矩阵。 
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变换法则 A.33(式)可表示成矩阵的积： 
                            Taa =′                                      [A.42] 
下面是一些矩阵术语 
·转置矩阵 （将写为T~ ），和矩阵T有相同的一系列元素，但矩阵的行和列交换。特别的，

列矩阵的转置是行矩阵 
                       =a~ ),...,,( 21 naaa                                  [A.43] 
对于方矩阵的转置，沿对角线反演（较高的左侧反射到较低的右侧）                          
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如果方矩阵等于它自身的转置，那么这个矩阵是对称的；如果这个操作得到的结果逆号，那

么这个矩阵是反对称的： 
                  对称： ;~ TT =  反对称： TT −=~

                        [A.45] 
•(复)共轭矩阵(通常用

∗T 表示)由每个元素的复共轭组成： 
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如果一个矩阵的所有矩阵元都是实的，那么这个矩阵是实矩阵；反之，如果所有的矩阵元都

是虚数，那么这个矩阵是虚矩阵： 
                      ;TT =∗    TT −=∗                                [A.47] 
•厄密共轭矩阵(用

†T 表示)是转置共轭矩阵： 
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1 2( , ,..., ).na a a∗ ∗ ∗ ∗≡ =a a�        [A.48] 

如果方矩阵等于它的厄密共轭矩阵，那么它是厄密矩阵；如果厄密共轭产生一个负号，那么

这个矩阵是反厄密矩阵： 

               厄密矩阵：
† ;T = T     反厄米矩阵：

†T = -T                    [A.49] 
用矩阵相乘的概念, 两个矢量的内积(相对一正交归一基矢—A.24 式)，可以简洁写成两个矩

阵的积 
                        †α β = a b                                      [A.50] 

注意对上面定义的三个矩阵操作中的任一个，如果重复应用两次都将得到原来的矩阵。 

   一般来讲，矩阵乘法是不对易的(即 ST≠ TS),两种次序所产生的差别称为对易子:
10
  

                                                        
10
当然，对易子仅对方矩阵有意义；对矩形矩阵，甚至两个顺序所产生的矩阵大小都不一样。 



 
                                                   

[ ], .≡ −S T ST TS                               [A.51] 

矩阵积的转置是转置逆次序的积： 

                           j( ) = ,TS TS��                                      [A.52] 
(参见习题 A.11)这对厄密共轭也是同样的： 

                        
† † †(ST) = T S                                  [A.53] 

单位矩阵(代表一个把每一个矢量变换成其本身的线性变换)是对角线上元素都为 1,而

非对角元素都为零的矩阵： 
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换言之， 
                               ij ijI δ=                                    [A.55] 

显然, 逆矩阵11(以 −1T 表示)的定义应为 
 ITTTT == −− 11                                [A.56] 

当且仅当一个矩阵的行列式12为非零时，这个矩阵才有逆矩阵, 事实上 

                           
1 ,

del
=-1T C

T
�                                  [A.57] 

其中 C 是由矩阵T 的代数余子式组成的矩阵(元素 Tij 的代数余子式是(－1)i+j 乘以子矩阵的

行列式，子矩阵由 T 中划去第 i 行和第 j 列后的元素组成)。没有逆矩阵的矩阵称为奇异矩

阵。 积的逆(假设存在)是逆的逆次序积： 
                        111 −−− = ST)ST(                                   [A.58] 
如果逆矩阵等于它的厄密共轭矩阵，那么这个矩阵称为幺正矩阵:13  
               幺正矩阵： † 1U U −=                                        [A.59] 
假设基矢是正交归一的，那么一个幺正矩阵中的列构成一个正交归一系，行也同样(见习题

A12)。且其代表的线性变换保持内积不变(A.50 式)，  

             βα====′′=β′α′ +++++ baUbUaUbUaba )()(            [A.60] 

 
*习题 A.8 如下两个矩阵 
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计算(a) A+B，(b) AB，(c) [A，B]，(d) A~ ，(f) +A ，(g) det(B)，和(h) 1−B 。验证 IBB =−1
，

A 有逆矩阵吗？ 
 
 
 

                                                                                                                                                               
 
11注意到左逆矩阵等于右逆矩阵，因为如果 AT=I 和 TB=I，则 B = A (第二项左边乘 A，应用第一项)。 
12假定你们知道怎么求行列式。如果不知道的话， 参考 M. Boas,  物理学中的数学方法，第二版， (John 
Wiley, New York, 1983), 3.3 节. 
13在实矢量空间，(既标量在此空间是实的)厄密共轭和转置相同，幺正矩阵是正交的：

1~ −= OO 。例如，

三维空间的转动由正交矩阵表示。 



习题 A.9 由习题 A.8 中的方矩阵，和下面的列矩阵 
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求：(a) Aa，(b) †a b，(c) a~ Bb，(d) †ab 。 
 
习题 A.10 具体构造问题中的矩阵，证明任意矩阵 T 可以写成 
(a) 对称矩阵 S 和反对称矩阵 A 的和 
(b) 实矩阵 R 和虚矩阵 M 的和 
(c) 厄米矩阵 H 和反厄米矩阵 K 的和 
 
习题 A.11 证明 A.52、 A.53 和 A.58 式. 验证两个幺正矩阵的积仍是幺正矩阵。在什么条

件下两个厄米矩阵的积是厄米矩阵？两个幺正矩阵的和一定是幺正矩阵吗？两个厄米矩阵

的和是厄米矩阵吗？ 
 
习题 A.12 证明幺正矩阵的行和列构成正交系。 
 
习题 A.13 注意到der( ) det( )=T T� )， 验证厄米矩阵的行列式是实数，幺正矩阵的行列式

模为 1，正交矩阵的行列式等＋1 或－1. 
 
 
A.4 基矢变换 

 
一个矢量的分量依赖于(任意)所选的基矢，代表线性变换的矩阵的矩阵元也同样如此。我们

想知道当采用不同基矢时这些数是怎么变换的。原基矢 ie  —— 像所有矢量一样 —— 是

新基矢 if 的线性叠加 

nn fS...fSfSe 12211111 +++= ，  

                         nn fS...fSfSe 22221122 +++=    
                                    … 
                         nnnnnn fS...fSfSe +++= 2211  

（ ijS 是一些复数），或者更简洁地， 

                         ∑
=

=
n

i
ijijj fSe

1

，(j =1,2,…,n )                 [A.61] 

这本身是一个线性变换(和式 A.30 比较)
14
，我们立即可知道分量是如何变换的: 

           ,aSa
n

j

e
jij

f
i ∑

=
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1

                               [A.62]     

(这里的上标表示基矢)。以矩阵形式 
                               a f Sa= e                                  [A.63]   

代表一个线性变换 T̂ 的矩阵是什么样的？——当基矢改变时它又是如何变化的？在原

基矢中我们有(A.42 式) 
                               a′ e T= e a e                            
 

在 A.63 式两边同乘
1−S ，得到15 15 a e 1−= S a f，因此 

                                                        
14注意，它们有本质的不同：在这种情况下，我们是讨论一个同样的矢量相对与两组完全不同基。而以前

我们是讨论两个完全不同的矢量的相对于同一组基。 



                      a′ f = aS ′ e = S(Te a e) = STe 1−S a f 
显然                               T f = STe 1−S                             [A.64] 
一般来讲，对于某个（非奇异)矩阵S，如果两个矩阵满足

1
12

−= SSTT ，那么称 2T 和 1T 相

似。我们所发现的是：对于不同的基矢，代表同一个线性变换的矩阵是相似的。顺便体积，

如果第一组基是正交归一的，则当且仅当 S 矩阵是幺正时，第二组基才是正交归一的，(参
考习题 A.16)。因为我们总用到正交归一基，所以我们主要关注幺正相似变换。 
    在新基矢中，代表线性变换的矩阵元也许很不相同，但与矩阵相关的两个量值是不改变

的：矩阵的行列式和迹。积的行列式等于行列式的积，因此 
                det(T f ) = det(STe 1−S ) = det(S)det(Te)det( 1−S ) = detTe           [A.65] 
迹即是对角线元素的和 

                       Tr(T)
1

m

ii
i

T
=

≡∑                                      [A.66] 

它有这样的性质(参考习题 A.19) 
                       Tr(T1T2) = Tr(T2T1)                                 [A.67] 
(对任意两个矩阵 1T 和 2T )，因此 

                 Tr(T f ) = Tr(STe 1−S ) = Tr(Te 1−S S) = Tr(Te)                   [A.68] 
 
习题 A.14 用三维矢量空间中的标准基矢( k̂,ĵ,î ) 

(a) 构造代表绕 z 轴转动θ （沿轴朝向原点方向向下看，顺时针方向）的矩阵。 
(b) 构造代表绕过点 (1, 1, 1)方向的轴转动 120°(沿轴方向向下看，顺时针方向)的矩阵。 
(c) 构造代表沿 xy 面反射的矩阵. 
(d) 验证这些矩阵都是正交矩阵，并计算它们的行列式。 

 
习题 A.15 用基矢 ˆˆ ˆ, ,i j k 构造矩阵 Tx，其代表绕 x 轴旋转θ ，矩阵 Ty，其代表绕 y 轴旋转θ 。

假设把基矢变换成 ˆ ˆˆ ˆ ˆ ˆ, ,i j j i k k′ ′ ′= = − = ，构造矩阵S代表基矢的变换，验证
1−SSTx 和

1−SSTy

是你所期望得到的吗？ 
 
习题 A.16 证明矩阵相乘保持其相似性（也就是说如果A B Ce e e= ，那么A B Cf f f= ）,一般

来讲，相似性并不保持对称性，实数，或厄米性；然而，如果 S 是幺正矩阵，且 He是厄密

的， 则 Hf 也是厄密的。证明当且仅当 S 是幺正时，S 把一个正交归一基变换为另一个正交

归一基。 
 
*习题 A.17 证明 Tr(T1T2) = Tr(T2T1)。进而有 Tr(T1T2T3) = Tr(T2T3T1)，但一般来说，有

Tr(T1T2T3) = Tr(T2 T1T3)？证明一下，或者反驳一下。提示：最好的反证方法是找到一个反

例——越简单越好！ 
 
 

A.5 本征矢和本征值 
 
考虑在三维空间中，绕给定转轴，转动角为θ 的线性变换。大多数矢量经过此变换后会发生

复杂的变化(它们在绕轴线的一个锥面上转动)，但恰好位于轴线上的矢量却有简单的性质，

它们不发生变化（ α=αT̂ ）。如果 180θ = ° ，这时位于“赤道”面上的矢量反向

( α−=αT̂ )。 
 

                                                                                                                                                               
15注意

1−S 一定存在——如果 S 是奇异的， if 不能张满整个空间，因此它们不可能构成基矢。 



在一个复矢量空间16中对每一个线性变换都存在这样的“特殊”矢量，这些矢量经线性变换

后等于标量乘以矢量本身： 
                      αλ=αT̂                                         [A.69] 

它们称为变换的本征矢，（复）数λ称本征值。（不考虑零矢量，因为对任意的 T̂ 和λ零矢

都满足式 A.69；所以技术上，本征矢是满足式 A.69 的非零矢量。）注意任意非零数乘以一

个本征矢仍然是本征矢，它们有相同的本征值。 
对于具体的基矢，本征方程的矩阵形式为 

                         Ta aλ=                                        [A.70] 
（对于非零 a），或者 
                        0aIT =λ− )(                                     [A.71] 
(这里 0 是零矩阵，它的矩阵元全是零)。如果矩阵 )IT( λ− 有逆矩阵，我们可以在式 A.71

两边同乘以
1−λ− )IT( ，可得到 0=a ，但假设了 0≠a ，因此矩阵 )IT( λ− 一定是奇异的，

这也意味着它的行列式等零： 
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                 [A.72] 

展开行列式得到一个关于λ的代数方程： 
                001

1
1 =+λ++λ+λ −
− CC...CC n

n
n

n                           [A.73] 
这里系数 iC 依赖于 T 的矩阵元(参考习题 A.20)。这个方程称为矩阵的特征方程；它的解确

定了本征值。注意到它是一个 n 阶方程，(根据线性代数基本理论)所以它有 n 个（复）根17，

然而，其中的一些根可能是重根，因此在一定程度上我们说 nn × 矩阵有至少一个和至多 n
个不同的本征值。矩阵所有本征值的集合称为它谱线；如果两个（或更多）线性无关的本征

矢有相同的本征值，称谱线是简并的。 
   为了构造本征矢，通常最简单的方法是把每一个 λ带回式 A.70 然后解出 a 的分量。下面

给出一个例子。 

 

 

例 A.1 求解下面矩阵的本征值和本征矢： 

                =M  
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解：特征方程是 
 

                 0)1(
101
2)(2

20)2(
23 =λ−λ++λ−=

λ−−
λ−−

−λ−
iiiii       [A.75] 

它的根是 0，1 和 i。标记第一个本征矢的分量为 ),,( 321 aaa ，则 

                                                        
16在实空间中并不一定正确(那里标量限为实数)，参见习题 A.18。 
17这里实矢量空间变得难以处理，因为特征方程可能根本就没有任何 (实)解。参见习题 A.18。 
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它给出三个方程： 
                                022 31 =− aa  

022 321 =++− iaiaia  

031 =− aa  

第一个给出： 13 aa = ；第二个给出： 02 =a ；第三个多余。可选 11 =a (因为任意数乘以本

征矢仍是本征矢)： 
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对于第二个本征矢(分量标记仍用和第一个相同的标记)，我们有 
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得到方程 
                                131 22 aaa =−   

                        2321 22 aiaiaia =++−  

331 aaa =−  

解是 1213 ]2/)1[(,)2/1( aiaaa −== ；这次选 21 =a  
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最后，对于第三个本征矢 
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得到方程 
                                131 22 iaaa =−   

                        2321 22 iaiaiaia =++−  

331 iaaa =−  

解是 013 == aa ，选 12 =a ，得到 
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 ，对 i=λ3                                 [A.78]  

 
 



如果本征矢张满空间构成完备集时（在前例中它们的确如此)，我们可以把它们选为基矢： 
                       111 ffT̂ λ=  

                       222 ffT̂ λ=   
                            … 
                       nnn ffT̂ λ=  

在这组基矢中， 表示 T̂ 的矩阵非常简单，本征值在主对角线上而其他的矩阵元为 0： 
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                             [A.79] 

归一化的本征矢为： 
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    通过变换基矢可以把一个矩阵变为对角形式（式 A.79），这称为对角化（显然，当且仅

当本征矢构成完备集时矩阵可对角化）。把归一化的本征矢（在原基矢中）作为
1−S 的列可

构造对角化的相似矩阵： 
)( 1−S i j＝( )(a (j))i                               [A.81]   

 
 
例 A.2 在例 A.1 中 
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因此(利用 A.57 式) 
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你们自己可以验证 
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把矩阵化成对角形式有一个明显的优势：很容易处理。遗憾的是，并不是每一个矩阵都

能对角化——本征矢必须构成完备集。如果特征方程有 n 个不同的根，这时矩阵一定可以对

角化，但在有重根情况下， 矩阵也有可能对角化。（矩阵不能对角化的例子，参考习题 A.19） 



事先知道(求解本征矢之前)一个矩阵能否对角化是便利的。一个有用的充分条件（经管不是

必要的）是：如果一个矩阵与它的厄密共轭对易，那么这个矩阵称为是标准的： 
                    标准条件： 0]N,N[ =+                                 [A.83]   
每一个标准矩阵是可对角化的（它的本征矢构成完备集）。特别的，每一个厄密矩阵和每一

个幺正矩阵都是可对角化的。 
假设我们有两个可对角化的矩阵；在量子应用经常会产生这样的问题：它们能同时对角

化吗（用同样的相似矩阵 S）？也就是说，是否存在同一组基矢在这个基矢中两个矩阵都能

对角化？回答是：当且仅当两个矩阵是对易时，它们能够同时对角化，或者说它们有共同的

本征矢量系。（见习题 A.22）。 
 
习题 A.18 代表在 xy 面上的一个转动的 22× 矩阵为 

                         T ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

θθ
θθ

cossin
sincos

 

证明这个矩阵没有实本征值（除了某些特殊的角度——这些角度是那些？）。（这反映一个几

何事实，不存在这样一个矢量，其在平面上经这样一个转动后不变；对比三维转动)。然而，

这个矩阵有复数本征值和本征矢。求解它们，构造一个矩阵 S 使 T 对角化，并做一个相似

变换
1−STS ，证明它可以使 T 对角化。 

 
习题 A.19 求解下面矩阵的本征值和本征矢 
                      

                        ⎟⎟
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⎛
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10
11

M   

这个矩阵能对角化吗？ 
 
习题 A.20 求特征方程（式 A.73）第一个，第二个，和最后一个系数: 
           n

nC )1(−= , 1
1 )1( −
− −= n

nC Tr(T),  0C )det(T=                   [A.84] 

对于一个矩阵元为 ijT 的 33× 矩阵， 1C 是多少？ 
 
习题 A.21 很显然，对角矩阵的迹是其本征值的和，行列式是它们的积(A.79 式)。由(A.65 和
A.68 式)可知，同样的结论对任何可对角矩阵也成立。证明，事实上 
             )det(T nλλλ= "21 ，    Tr(T) nλ++λ+λ= "21             [A.85] 
对任何矩阵成立。(λ对应特征方程的 n 个解—— 有重根时，线性无关的本征矢数目可能少

于解的个数，但我们计入重复的λ的个数) 提示：把特征方程写成如下形式 
                      0)())(( 21 =λ−λλ−λλ−λ n"  
并用习题 A.20 的结果。 
 
习题 A.22 
(a) 证明若在一个基中两个矩阵对易，那么它们在任何基中对对易： 
                  [ e

1T , e
2T ]＝0⇒ [ f

1T , f
2T ]＝0                             [A.86] 

提示：用式 A.64 
(b) 证明若两个矩阵能同时对角化，那么它们对易18。 
 
习题 A.23 考虑矩阵 

M ⎟⎟
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⎞
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⎝

⎛
=

i1
11

 

                                                        
18证明逆定理(如果两个对角矩阵对易，则它们能同时对角化)并不容易。例如，参见 Eugen Merzbacher， 量
子力学，第三版， Wiley, New York (1998), 10.4 节。 



(a) 这个矩阵是标准化的吗？ 
(b) 它可以对角化吗？ 
 
 

 
A.6 厄密变换 
 
在 A.48 式中定义了厄密共轭矩阵：

† *T = T� 。现在我们给出一个更基本的关于线性变换的

厄密共轭的定义：线性变换 T̂ 的厄密共轭
†T̂ 作用到内积的第一项，得到的结果等同于 T̂ 本

身作用到第二项： 

                           βα=βα+ TT ˆˆ                             [A.87] 

（对任何的矢量 α 和 β 成立）。19我不得不提醒你们，尽管每个人都使用它，这是一个容

易混淆的记号。因为α，β不是矢量(矢量是 α 和 β )，它们仅是名称 。特别的，它们不

具有任何数学性质，并且“ T̂β ”的表示在字面上也没意义：线性变换是作用到矢量上，而

不是符号上。但我们所用符号的意思是非常清楚的：T̂β 是矢量 βT̂ 的名称，并且
†T̂ α β

是矢量
†T̂ α 同矢量 β 的内积。注意，对任意的标量 c： 

                          βα=βα cc                               [A.88] 

另一方面 
                         βα=βα ∗cc                               [A.89] 

如果你正在用一个正交归基（我们总是如此），线性变换的厄密共轭由对应矩阵的厄密

共轭矩阵表示；（式 A.50 和 A.53） 

                     =βα T̂ † † †a Tb = (T a) b †T α β=                [A.90] 

因此，术语上是一致的，并且在用语上我们用变换也用矩阵的术语。 
   在量子力学中，厄密变换（ TT ˆˆ =+

）起着非常重要的作用。厄密变换的本征值和本征矢

有以下三个特性： 
 

1.厄密变换的本征值是实的。 
证明：设 λ是 T̂ 的本征值： αλ=αT̂ ， 0≠α 。则 

         ααλ=λαα=αα T̂ . 

同时，如果 T̂ 是厄密算符，有 

             ααλ=αα=αα ∗TT ˆˆ , 

但是 0≠αα (A.20 式), 因此 λ=λ∗ ，所以λ是实的。证毕 

 

2. 厄密变换属于不同本征值的本征矢彼此正交。 
证明：假设 αλ=αT̂ , βμ=βT̂ ， μ≠λ . 则有  

              βαμ=μβα=βα T̂    

如果 T̂ 是厄密算符， 

                                                        
19
你也许置疑这样的变换是否存在。好问题！答案是“存在”，例如，参见 P. R. Halmos, 有限维矢量空间，

第二版， van Nostrand, Princeton (1958)， 44 节。 
 



                βαλ=βλα=βα=βα ∗TT ˆˆ  

但 λ=λ∗ （从 1 得到)，和 μ≠λ ，所以有 0=βα 。证毕 
 

3. 厄密变换的本征矢构成完备集。 
    如前所述，这等价于如下陈述：任何厄密矩阵是可对角化(见 A.82 式)。在某种意义上，

这是个相当技术性的事实表明，量子力学需要依赖许多数学知识。遗憾的是, 与我们的期望

相比，，这种证明不能推广到无限维矢量空间。 
 
 
 
习题 A.24 对于所有的 α 和 β ， 一个厄密线性变换必须满足 T̂ Tα β α β= 。证明，

对所有的矢量 γ ， lT̂ Tγ γ γ γ= 也是 lT 为厄密变换的充分的条件（这有点令人意外）。

提示：先令 γ α β= + ，然后再令 iγ α β= + 。 
 
*习题 A.25 令 

                       
1 1
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i
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（a）证明 T 是厄米的 
（b）求它的本征值（注意它们是实的） 
（c）求归一化的本征矢(注意它们是正交的) 
（d）构造幺正矩阵 S，验证它能将 T 对角化。 
（e）验证 det(T)和 Tr(T)的值与 T 是对角化形式时是一样的。 
 
**习题 A.26 考虑下面的厄米矩阵 
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（a）计算 det(T)和 Tr(T)。 
（b）根据式 A.85，求 T 的本征值；验证它们的和与积同(a)中结果相同。写出 T 的对角形

式。 
（c）求 T 的本征矢。在简并区，构造两个线性无关的本征矢（这对厄密矩阵总是可以做到

的，但并不对任意矩阵成立⎯对比习题 A.19）。使它们正交，并验证它们都和第三个本征矢

正交。把三个本征矢都归一化。 
（d）构造幺正矩阵 S，使 T 对角化，证明相似变换 S 使 T 变换成适当的对角形式。 

 
习题 A.27 一个幺正变换满足 †ˆ ˆ 1U U =  
（a）证明对所有的矢量 α 和 β ，幺正变换保持内积不变， 即 ˆ ˆU Uα β α β= 。 

（b）证明幺正变换的本征值的模为 1。 
（c）证明属于不同本征值的幺正变换的本征矢彼此正交。 

 
***习题 A.28 矩阵函数由它们的泰勒级数展开定义，例如， 

           eM "++++≡ 32

!3
1

2
1 MMMI                                [A.91] 

（a）求 exp(M), 如果 
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（b）证明如果 M 是可对角化的，那么 
                       Tr( )det( ) .e e=M M                                                     [A.92] 
事实上，这对 M 是不可对角化的也成立，只不过很难证明这种一般情况。 

（c）证明 如果矩阵 M 和 N 对易，则有 
                       e e e=M+N M N                                      [A.93] 
证明（用你可以想象得到最简单的的例子）A.93 式对非对易矩阵不成立。 

（d）如果 H 是厄密的，证明 ie H 是幺正的。 
    


