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第五版序言

———纪念Bohr “伟大的三部曲暠发表一百周年,
暨北京大学物理学科建立一百周年

(一)它山之石,可以攻玉

2013年,迎来了北京大学物理专业建系一百周年纪念.一个偶然,但很愉

快的巧合,同时迎来了 N.Bohr “伟大的三部曲暠(TheGreatTrilogy)栙 发表一

百周年.此文敲开了原子结构量子理论的大门.之后的十几年中,在Bohr思想

的影响下,经一批杰出物理学家的共同努力,使当时还比较后进的欧洲小国丹麦

首都Copenhagen的Bohr研究所,成为世界公认的量子物理学研究中心.在北京

大学建设世界第一流的物理学科院所之际, 《玻尔研究所的早年岁月,1921-
1930》栚 一书所讲述的经验很值得借鉴.“它山之石,可以攻玉暠栛.按照我的理

解,这些宝贵经验是:
(1)科学进步本身有赖于鼓励不同思想的自由交流,也有赖于鼓励不同国家

的科学家提出的各具特色的研究方法的相互切磋与密切合作栚 (p.127).Bohr的

原子结构的量子理论就汇合了当时物理学两支主要潮流.一是以英国人E.Ruth灢
erford和J.J.Thomson为先驱的有关物质结构的实验发现,另一是德国物理学

家 M.Planck和 A.Einstein引导的关于自然规律的理论研究栚 (p.61).表征

Bohr研究所初期特色的不是一张给人深刻印象的庞大的物理学家名单,而是存

在于这个集体中的不寻常的合作精神.不断地讨论和自由交换思想,给每个物理

学家带来了最美好的东西,常常提供了一个能引起决定性突破的灵感或源泉.
Bohr不是一个人孤独地工作,把世界上最活跃的,最有天赋和最有远见的物理

学家集聚在他的周围是他最大力量所在.矩阵力学的奠基人 Heisenberg说过:“

Scienceisrootedinconversation暠栚 (p.134).对量子力学和相对论量子力学做出

了杰出贡献的Dirac在获得 Nobel物理学奖后给Bohr的信中提到:“我感到我所
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N.Bohr,PhilosophicalMagazine,26 (1913),OntheConstitutionofAtomsandMolecules,1灢25,

471灢502,857灢875.
玻尔研究所的早年岁月,1921灢1930.杨福家,卓益忠,曾谨言译.北京,科学出版社,1985 .

译自P.Robertson,TheEarlyYears,TheNielsBohrInstitute,1921—1930.AkademiskForlag,1979.
《诗经·小雅·鹤鸣》.



有最深刻的思想,都受了我和你谈话的巨大而有益的影响,它超过了与其他任何

人的谈话,即使这种影响并不表现在我的著作中,它却支配着我进行研究的一切

打算和计划暠栚 (p.153).Bohr相信,国际合作能在物理学发展中发挥积极的作

用.在20世纪20年代,Bohr研究所已成了培育世界各国物理实验室和研究所的

未来指挥员的一个苗圃栚 (p.155).
(2)相对论与量子力学是20世纪物理学的两个划时代的贡献.A.Einstein

的名字被神话般地在人群中流传,可能是因为相对论主要是由他一人完成.与此

不同,量子力学的建立是如此困难和复杂,不可能由一个人独立完成.在此艰辛

的征途上,闪烁着当时最优秀的一群科学家的名字:M.Planck,A.Einstein,

N.Bohr,W.Heisenberg,W.Pauli,L.deBroglie,E.Schr昳dinger,M.Born,

P.A.M.Dirac等.值得注意的是,他们都是在青年时代 (曑45岁)对量子力

学理论做出了杰出贡献,之后获得 Nobel物理学奖.Bohr研究所的一条重要经

验是:不仅仅要依靠少数科学家的能力和才华,而是要不断吸收相当数量的年轻

人,让他们熟悉科学研究的结果与方法.只有这样,才能在最大程度上不断提出

新问题.新思想就会不断涌进科研工作中栚 (p.32).
(3)进行理论性研究工作,必须每一时刻把理论的这个或那个结果与实验相

比较,然后才能在各种可能性之间做出选择.这种工作方式表现在量子力学理论

体系提出之前,Bohr的原子的电子壳层结构理论对于化学元素周期律的唯象探

索工作中.尔后,Pauli的第4个量子数和不相容原理的提出,也深受其影响.
“Bohr的巨大力量之一在于他总是凭借神奇的直观就能了解物理现象,而不是形

式地从数学上去推导出同样的结果暠栚 (p.116).同样,实验研究工作者必须与理

论研究密切结合,这样可以减少实验工作的盲目性栚 (p.15).实验结果永远是检

验一个自然科学理论正确与否的决定性的判据.

(二)量子论是科学史中经过最准确检验的和最成功的理论

量子论诞生100周年之际,物理学界的主流认为: “量子论是科学史中经过

最准确检验的和最成功的理论暠栜.量子力学理论在微观领域 (原子与分子结构,
原子核结构,粒子物理等),物质的基本属性 (导电性,导热性,磁性等),以及

天体物理,宇宙论等众多宏观领域都取得了令人惊叹的成果.但由于量子力学的

基本原理和概念与人们日常生活经验是如此格格不入,人们对它的疑虑和困惑长

期存在.J.A.Wheeler把量子力学原理比作 “Merlinprinciple暠栞.(Merlin是传
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D.Kleppner& R.Jackiw,Science289 (2000)893;A.Zeilinger,Nature408 (2000)639;M.
Tegmark&J.A.Wheeler,ScientificAmerican284 (2001)68.

S.Popescu& D.Rohrlich,FoundationsofPhysics,24 (1994)379.



说中的一个魔术师,他可以随追逐者而不断变化,让追逐者感到困惑).回忆量子

理论的一百多年的进展历史,真是光怪陆离.忽而柳花明,忽而又迷雾重重.
N.Bohr曾经说过: “Anyonewhowasnotshockedbyquantumtheoryhasnot
understoodit暠.R.P.Feynman栟 也说过:“IthinkIcansafelysaythatnobody
todayunderstandsquantummechanics.暠

20世纪伊始,Planck和 Einstein以及Bohr的辐射(光)和实物粒子的能量的

量子化所展示的离散性(discreteness)与经典物理量的连续性(continuity)的概念

格格不入.1927年 Heisenberg栠 的不确定性原理(uncertaintyprinciple)动摇了经

典力学中用相空间(正则坐标和正则动量空间)描述粒子运动状态的概念.1935
年,EPR佯谬栢文章对量子力学正统理论的完备性提出质疑 [主要涉及波函数的

几率诠释和量子态的叠加原理所展示的 “非局域性暠(non灢locality)].同年稍早,

Schr昳dinger猫态佯谬栣提出的 “纠缠暠(entanglement),对量子力学正统理论是

否适用于宏观世界提出质疑.在尔后长达几十年时期中,EPR佯谬与 Schrod灢
inger猫态佯谬一直成为人们争论的课题.但迄今所有实验观测都与基于局域实

在论(localrealism)而建立起来Bell不等式(CHSH 不等式)矛盾,而与量子力学

的预期一致枮爜爦.量子非局域性在 R.P.Feynman提出的 “路径积分暠(path灢inte灢
gral)理论中,特别是在 AB(Aharonov灢Bohm)效应中,表现得特别明显栞 .例

如,电子经过一个无磁通的空间中的轨迹,依赖于此空间以外的磁场.此外,
迄今人们所知的所有基本相互作用,与 AB效应一样,都具有规范不变性.

尽管量子力学理论的所有预期(predictions)已为迄今所有实验观测所证实,
人们对其实用性已经没有什么怀疑.但仍然有人对量子力学理论的正统理论(Co灢
penhagen诠释)提出非议,认为它是 “来自北方的迷雾暠(thefogfromthe
north)枮爜爧.特别是对于电子的双缝干涉实验的诠释,Feynman枮爜爩 认为是 “量子力

学中核心的问题暠.在此干涉实验中,人们不知道电子是经过哪一条缝而到达干

涉屏上的.而一旦人们能确定电子是经过哪一条缝 (例如紧靠一条缝放置一个适

当的测量电子位置的仪器),干涉条纹就立刻消失.Copenhagen诠释认为:这

是由于测量仪器的不可避免的干扰(“unavoidablemeasurementdisturbance暠)所
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T.Hey&P.Walters,TheNewQuantumUniverse.CambridgeUniversityPress,2003,pagexi.
中文译本,雷奕安译,新量子世界,湖南科技出版社,2005.

W.Heisenberg,Zeit.Physik43 (1927)172;英译本见QuantumTheoryandMeasurement,J.
A.Wheeler&W.H.Zurek主编,PrincetonUniversityPress,NJ,1984,p灡62.

A.Einstein,B.Podolsky,& N.Rosen,Phys.Rev.47 (1935)777.
E.Schr昳dinger,Naturwissenschaften,23 (1935)807.
A .Aspect,Nature398 (1999)189;S.Gr昳blacher,etal.,Nature446 (2007)871.
M.Schlosshauer,Nature453(2008)39.
TheFeynmanLecturesofPhysics,vol.3,QuantumMechanics.Addison灢Wesley,Reading.



致.近期 D湽rr等枮爜爫在原子干涉仪上做了一个 “测定路径的实验暠(which灢way
experiment),即用一束冷原子对光驻波(standingwavesoflight)的衍射,可观测

到对比度很高的衍射花样.在此实验中未用到双缝,也不必测定原子的位置,
而是用原子的内部态来标记原子束的不同的路径.此时,衍射花样立即消失.
在此实验中, “the‘backaction暞ofpathdetectionistoosmall(aboutfourorders
ofmagnitudethanthefringeseparation)toexplainthedisappearanceoftheinterfer灢
encepattern暠.他们认为不必借助于测量仪器的不可控制的干扰来说明此现象.
他们提出另一种看法:即用 “correlationsbetweenthewhich灢waydetectorandthea灢
tomicmotion暠,即用 “纠缠暠(entanglement)来说明.P.Knight枮爜爭 指出:

“Entanglementisapeculiarbutbasicfeatureofquantummechanics.In灢
dividualquantum灢mechanicalentitiesneedhavenowell灢definedstate;

theymayinsteadbeinvolvedincollective,correlated (‘entangled暞)

statewithotherentities,whereonlytheentiresuperpositioncarriesin灢
formation.Entanglementmayapplytoasetofparticles,ortotwoor
morepropertiesofasingleparticle暠.

(三)如何理解不确定度关系的表述

近期,在文献中有不少涉及不确定度关系的评论.在量子力学教材中,不确

定度关系(uncertaintyrelation)通常表述如下:对于任意两个可观测量A 和B,

殼A殼B 曒 1
2旤暣[A,B]暤旤 (1)

上式中,[A,B]曉(AB-BA),殼A= 暣A2暤-暣A暤2与 殼B= 暣B2暤-暣B暤2是标准

偏差,暣A暤=暣氉|A|氉暤与暣B暤=暣氉|B|氉暤是可观测量A 和B 在量子态|氉暤下的平

均值.不确定度关系(1)首先由 Robertson枮爜爮,Kennard枮爜爯 和 Weyl枮爜爲 给出.在量子

力学教材中,不确定度关系(1)是基于波函数的统计诠释和Schwartz不等式得出

的.它的确切含义是:对于完全相同制备的大量量子态(即系综),可观测量A
和B 的独立测值的标准误差的乘积受到的限制枮爜爳.不确定度关系并不涉及一个测

量的精度与干扰,而是给定的量子态|氉暤本身的不确定度所固有的,不依赖于任
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S.D湽rr,T.Nonn& G.Rempe,Nature395 (1998)33.
P.Knight,Nature395 (1998)12.
H.P.Robertson,Phys.Rev.34 (1929)163.
E.H.Kennard,Zeit.Phys.44 (1927)326.
H.Weyl,Gruppentheorieundquantenmechanik,Hirzel,Leipzig,1928.
C.Branciard,PNAS110 (2013)6742灢6727.



何特定的测量枮爜爴,并已经在许多实验中得到证实枮爞爦,是没有争议的.但不确定度关

系(1)常常被误解为:对于给定的量子态|氉暤,如果暣氉|[B,A]|氉暤曎0,则人们不能

对A和B联合地(jointly)[或相继地(successively)]进行测量 .关于不确定度关系

含义的更全面的讨论,可参见卷栺,4灡3灡1节的[注].
不确定度关系的物理内涵就理解为不确定性原理(uncertaintyprinciple).特

别是,对于一个粒子的坐标和动量,A=x,B=px,C=淈,是一个非0的常量,因此,
一个粒子同一时刻的坐标和动量不可能具有完全确定的值;或者说,一个粒子的坐

标和动量不可能具有共同本征态.
Schr昳dinger很早还指出枮爞爧,与不确定度关系(1)的平方相应的表示式的右侧,

还应加上一项正定的协变项

(殼A)2(殼B)2 曒 1
2

暣氉旤AB-BA旤氉暤
2

+1
4

[暣氉旤AB+BA旤氉暤-4暣氉旤A旤氉暤暣氉旤B旤氉暤]2

(2)
在一般情况下,不确定度关系式(1)给出的(殼A)2(殼B)2 小于Schr昳dinger给出的

式(2).
应该指出,Heisenberg原来讨论的是测量误差 干扰关系(measurementer灢

ror灢disturbancerelation)

毰(A)毲(B)曒 1
2旤暣[A,B]暤旤 (3)

其中毰(A)是可观测量A 的测量误差,毲(B)反映可观测量B 受到的测量仪器的干

扰(包括反冲等).我国老一辈物理学家王竹溪先生把 Heisenberg原来讨论的关系译

为测不准关系,是有根据的.文献枮爞爩已指出,测量误差 干扰关系(3)形式上不完全

正确的.后来,Ozawa枮爞爫 证明,测量误差 干扰关系(3)应该修订为

毰(A)毲(B)+毰(A)殼B+毲(B)殼A 曒 1
2旤暣[A,B]暤旤 (4)

暋暋近期,文献 枮爞爭 给出了 Ozawa测量误差 干扰关系(4)的借助于所谓弱测量

(weakmeasurement)的实验验证.由此,引发了涉及不确定性原理的很多议论.
有人认为,应该把有关内容写进量子力学教材中去,而有人对于 Ozawa的测量
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L.A.Rozema,A.Darabi,D.H.Mahler,A.Hayat,Y.Soudagar,andA.M.Steinberg,Phys.
Rev.Lett.109(2012)100404.

O.Nairz,M.Arndt,&A.Zeilinger,Phys.Rev.A65 (2002)032109,以及所引文献.
E.Schr昳dinger,Sitz.Preuss.Akad.Wiss.14(1930)296灢303;英译本见arXiv:quant灢ph9903100

v215Jun2000.
L.E.Ballentine,Rev.Mod.Phys.42 (1970)358.
M.Ozawa,Phys.Rev.A67 (2003)042105;Phys.Lett.A320 (2004)367.
J.Erhart,S.Sponar,G.Sulyok,G.Badurek,M.OzawaandY.Hasegawa,NaturePhysics8

(2012)185.



误差 干扰关系持不同的观点枮爞爮.最近,C.Branciard 提出了另外一个关系式,
他称之为对于近似联合测量 (approximatejoint灢measurement)的error灢tradeoff
relation

殼B2毰2
A +殼A2毰2

B +2 殼A2殼B2-1
4C2

AB毰A毰B 曒 1
4C2

AB (5)

(5)式中殼A与殼B是标准偏差,毰A 与毰B 是测量误差的方均根偏差,C=i暣[B,A]暤.
在经典力学中,一个粒子在同一时刻的坐标和动量可以精确确定,粒子的运

动状态用相空间(正则坐标与正则动量空间)中的一个点来描述.对于给定

Hamilton量的体系,其运动状态随时间的演化,由它在相空间的初始点位置和

正则方程完全确定,这就是经典力学中的决定论.
在量子力学中,基于 Heisenberg不确定性原理,一个粒子的同一时刻的坐

标和动量不具有确定值.表现在量子态只能用 Hilbert空间中的一个矢量|氉(t)暤
来描述.而对于给定 Hamilton量的体系,量子态随时间的演化由它的初始量子

态|氉(0)暤和Schr昳dinger方程完全确定.Heisenberg不确定性原理的提出,是科

学史中的一个重大发现.不确定性原理展现出量子力学中的非决定性(indetermi灢
nacy)与经典力学中的决定论(determinism)形成截然反差,它标志量子力学理论

与经典力学理论的本质的差异.
我们认为,测量误差 干扰关系(测不准关系)与不确定度关系的含义不同,

不可混为一谈.更不可把测量误差 干扰关系与不确定性原理混为一谈.测量误

差 干扰关系的修订,不会动摇 Heisenberg不确定性原理的普适性和量子力学理

论的基础.

(四)纠缠的确切含义与纠缠纯态的CSCO判据

现今人们已经普遍认同,1935年Schr昳dinger提出的纠缠,是一个非常基本

但又很奇特的概念 .不确定度关系与纠缠之间的密切关系,值得人们注意枮爞爯.
关键点是要搞清量子纠缠的确切含义.

对于一个量子纯态的纠缠,一种看法是:“与波动 粒子二象性属于单粒子性

质相反,量子纠缠至少涉及两个粒子枮爞爲暠.另一种看法是:纠缠并不一定涉及两个

粒子,而只涉及不同自由度的(至少)两个彼此对易的可观测量.这一点在 P.
Knight的文献 中已提及.在 V.Vedral枮爞爳 文中更明确提到:
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“Whatexactlyisentanglement? Afterallissaidanddone,ittakes(at
least)twototangle,althoughthesetwoneednotbeparticles.Tostudy
entanglement,twoormoresubsystemsneedtobeidentified,together
withtheappropriatedegreesoffreedomthatmightbeentangled.These
subsystemsaretechnicallyknownasmodes.Mostformally,entangle灢
mentisthedegreeofcorrelationbetweenobservables (pertainingto
differentmodes)thatexceedsanycorrelationallowedbythelawsof
classicalphysics.暠
只涉及单个粒子的不同自由度的两个对易的可观测量的纠缠纯态的实验制备,

已经在很多实验室中完成.例如,在D湽rr等 的实验中,制备了一个原子的质心动

量与它的内部电子态的纠缠纯态.在C.Monroe等枮爞爴实验中,实现了在Paul阱中的

一个9Be+ 离子的内部态 (电子激发态)与其质心运动 (即离子的空间运动)的纠

缠纯态.在文献枮爟爦中,分析了一个自旋h/2为的粒子的自旋与其路径的纠缠态.
对于一个给定的量子纯态的纠缠问题,已经有很多的理论工作,但问题似未

得到很好解决.下面给出一个纯态的纠缠判据.
一般而言,量子纠缠涉及不同自由度的至少两个对易的可观测量.为确切起

见,谈及一个纠缠纯态,必须指明,它是什么样的两个(多个)对易的可观测量的

共同测量之间的关联 .例如,对易的两个可观测量A 和B 的纠缠纯态,有如下

两个特点枮爟爧:
(a)测量之前,A 和B 都不具有确定的值 (即不是A 和B 的共同本征态).
(b)A 和B 的共同测量值之间有确切的关联(概率性的).
我们注意到,按照不确定度关系,一般说来,不对易的可观测量不能同时具

有确定值,或者说,它们不能具有共同本征态枮爟爩.不确定度关系本身,不明显涉

及自由度的问题.如果两个可观测量属于不同自由度,则彼此一定对易,因而不

涉及不确定度关系.而纠缠则是涉及不同自由度的两个或多个可观测量(彼此一

定对易)的共同测量值之间的关联.所以,量子纠缠与不确定度关系应该有一定

的关系.但在此,一定会涉及多自由度体系.
一个多自由度或多粒子体系的量子态,需要用一组对易可观测量完全集

(CSCO)的共同本征态来完全确定枮爟爫,而一组对易可观测量原则上是可以共同测
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定的.在实验上,相当于进行一组完备可观测量的测量,用以完全确定体系的一

个量子态.一组对易的可观测量完全集的共同本征态,张开体系的 Hilbert空间

的一组完备基,体系的任何一个量子态都可以用这一组完备基来展开.
设(A1,A2,…)构成体系的一组 CSCO,其共同本征态记为{|A曚1,A曚2,…暤},

同样,设 (B1,B2,…)构成体系的另一组 CSCO,其共同本征态记为{|B曚1,

B曚2,…暤}.定义厄米对易式矩阵C=C+ ,其矩阵元素为C毩毬曉i[B毬,A毩]用以描述

(A1,A2,…)中的任何一个可观测量与(B1,B2,…)中任何一个可观测量的对易关系.
与不确定度关系相似,A毩 与B毬 也满足与不确定度关系相似的关系,

殼A毩殼B毬 曒 1
2

[暣[A毩,B毬]暤旤= 1
2旤C毩毬旤 (6)

暋暋下面考虑,在CSCO(A1,A2,…)的某一个给定的共同本征态下,彼此对易

的各可观测量(B1,B2,…)的共同测量值之间的关联.以下给出一个纯态的纠缠判

据:[证明见本书卷栻,3灡4灡3节]
(a)设矩阵C的每一行i(i=1,2,…),至少有一个矩阵元素Cij不为0,[即

每一行i的所有元素Cij(j=1,2,…),不完全为0].
(b)对于所有{|氉暤=|A曚1,A曚2,…暤},暣氉|C|氉暤不完全为0.
如以上两个条件都满足,则在量子态{|氉暤=|A曚1,A曚2,…暤}态下,对(B1,

B2,…)进行完备测量时,它们的测量值是彼此关联的(几率性),即{|氉暤=|A曚1,
A曚2,…暤}是(B1,B2,…)的纠缠态.

如果只有 条 件 (a)满 足,而 条 件 (b)不 满 足,则 不 能 判 定 所 有 量 子 态

{|A曚1,A曚2,…暤}都是,或都不是,(B1,B2,…)的纠缠态.
可以看出,上述量子纯态的纠缠判据与不确定度关系,在结构上有相似之

处,可以认为它是不确定度关系在多自由度体系情况下的推广.读者不难从一些

常见的纠缠纯态来进行验证 (参见卷栻,3灡4节).

(五)量子力学理论与广义相对论的协调

在纪念量子论诞生一百周年之际,Amelino灢Camelia枮爟爭提及:量子理论与相对

论是20世纪物理学的最成功的两个理论.广义相对论是一个纯经典的理论,它

描述的空间-时间的几何是连续和光滑的,而量子力学描述的物理量一般是分立

的.这两个理论是不相容的,但都在各自的不同的领域取得巨大成功 (“大爆炸暠
现象除外).量子力学成功地说明了微观世界以及一定条件下的一些宏观现象的

规律,而广义相对论成功说明了宇观领域的一些现象.把相对论与量子理论结合

起来,是人们必须克服的一个巨大障碍,而在解决两者冲突的过程中可能诞生新

的物理学规律.
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关于纠缠和非局域关联,N.Gisin枮爟爮 谈道: “在现代量子物理学中,纠缠是

根本的,而空间是无关紧要的,至少在量子信息论中是如此,空间并不占据一个

中心位置,而时间只不过是标记分立的时钟参量.而在相对论中,空间 时间是

基本的,谈不上非局域关联.暠
涉及纠缠和非局域关联的近期工作,应提及 Schr昳dinger的操控 (steer灢

ing)枮爟爯 以及信息因果性 (informationcausality)枮爟爲.操控是一种新的量子非局域

性形式,它介于纠缠与非局域性之间.信息因果性作为一个原理,它对于能够进

行传递的信息总量给出了一个限制.特别应该提到J.Oppenheim &S.Wehner枮爟爳

的不确定性原理与非局域性的密切关系的工作.该文提到:
“量子力学的两个核心概念是的 Heisenberg不确定性原理与Einstein称之为

‘离奇的超距作用暞的一种奇妙的非局域性.迄今,这两个基本特性被视为不同

的概念.我们指出,两者无法分割,并定量地联系在一起.量子力学的非局域性

不能超越不确定性原理的限制.事实上,对于所有物理理论,不确定性与非局域

性的联系都存在.更特别提及,任何理论中的非局域度 (degreeofnon灢locality)
由两个因素决定:不确定性原理的力度和操控的力度,后者决定在某一个地点制

备出来的量子态中,哪些量子态可以在另一个地点被制备出来暠.
与任何一个自然科学理论一样,量子力学是在不断发展中的一门学科,而且

充满争议.从更积极的角度来看待过去长时期有关量子力学理论的争论,C.
Teche枮爟爴 说:

“Theparadoxesofthepastareabouttothetechnologyofthefuture.暠
的确,在过去的20多年中,量子信息理论和技术,量子态工程,纳米材料

学科等领域都有了长足的进展.
在20世纪即将结束之际,P.Davis写道栟 :

“The19thcenturywasknownthemachineage,thetwentiethcen灢
turywillgododowninhistoryastheinformationage.Ibelievethat
thetwenty灢firstcenturywillbethequantumage.暠
对此,有人持不同看法,认为21世纪将是生物学和医学的时代.作者认为,

这两种说法都有一定道理.不同学科领域的进展是互相影响和互相渗透的.显

然,如果没有物理学的进展,例如,光谱学、显微镜、X射线与核磁共振等技

术,现代生物学和医学的进展就难以理解.物理学研究的是自然界最基本的,但
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相对说来又是比较简单的规律.生物学与医学的规律要复杂得多,它的发展与化

学和物理学等学科的进展密切相关.可以期望,在21世纪,这些领域都可能有

出乎我们意料之外的进展.
*暋暋暋暋暋暋暋暋*暋暋暋暋暋暋暋暋 *

作为 《现代物理学丛书》之一,本书从1981年出版以来,受到广大读者的

欢迎和同行专家的肯定.考虑到量子力学近期的进展,本书曾经几次再版,并且

每年都大量重印.多年以来,本书的繁体字版本还在台湾大量发行.三十多年过

去了,本书是 《现代物理学丛书》中至今仍在发行的唯一著作.本书的历届责任

编辑:陈菊华、张邦固、昌盛、贾杨、窦京涛的长年细致工作,保证了本书出版

的高质量.本书第四版的各章的习题的详细解答,可参见张鹏飞教授等所著 《量
子力学习题解答与剖析》 (科学出版社,2011).本书第五版的习题与第四版相

同,未做变动.裴寿镛教授对本书第五版的修订提了很多宝贵建议.作者在此一

并表示感谢.欢迎广大读者和同行教师对本书提出宝贵的修改意见,以便再版时

进行修改.

作者于北京大学

2013年8月
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第四版 (2007年)序言 (摘录)

量子论的提出,已经历一百多年.量子力学的建立已有80年的历史.简单

介绍一下国际学术刊物的一些文献对量子力学的评价及有关实验结果,对读者是

有裨益的.
在纪念量子论诞生100周年之际,D.Kleppner& R.Jackiw写道栙:
“Quantumtheoryisthemostpreciselytestedandmostsuccessfultheoryin
thehistoryofscience.暠

尽管量子力学已经取得如此重大的成功,由于量子力学的基本概念和原理 (波
动 粒子二象性与波函数的统计诠释,量子态叠加原理和测量问题,不确定度关

系等)与人们日常生活经验严重抵触,人们接受起来有很大难度.正如 N.Bohr
所说:

“Anyonewhoisnotshockedbyquantumtheoryhasnotunderstoodit.暠
对待量子力学基本概念和原理的诠释,一直存在持续的争论.而大多数争论集中

在著名的EPR (Einstein灢Podolsky灢Rosen)佯谬栚和Schr昳dinger猫态佯谬栛两个

问题栜.
对于EPR佯谬的争论,M.A.Rowe等 (2001)栞 做了如下表述:
“Localrealismistheideathatobjectshavedefinitepropertieswhether
ornottheyaremeasured,andthatmeasurementsofthesepropertiesare
notaffectedbyeventstakingplacesufficientlyfaraway.Einstein,

PodolskyandRosenusedthosereasonableassumptionstoconcludethat
quantummechanicsisincomplete.暠
很长一段时间,争论一直停留为纯理论性或思辨性的.但栞

“Startingin1965,Bellandothersconstructedmathematicalinequalities
wherebyexperimentstestscoulddistinguishbetweenquantum mecha灢
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nicsandlocalrealistictheories.Manyexperimentshavesincebeendone
thatareconsistentwithquantum mechanicsandinconsistentwithlocal
realism.暠

Bell不等式栙栚所揭示的局域实在论 (localrealism)与量子力学的矛盾是统

计性的.Bell不等式是对2量子比特的自旋纠缠态 (自旋单态)的分析得出的.
Greenberger,Horne& Zeilinger对Bell的工作做了推广栛,他们分析了 N (曒
3)量子比特的纠缠态 (GHZ态),发现量子力学对某些可观测量的确切预期

(perfectprediction)结果与定域实在论是矛盾的栛栜.后来的实验观测结果与量

子力学预期完全一致,而与定域实在论尖锐矛盾栞.A.Zeilinger在纪念量子论诞

生100周年的文章栟中写道:
“Allmodernexperimentsconfirmthequantumpredictionswithunpre灢
cedentedprecision.Evidenceoverwhelminglysuggeststhatalocalrea灢
listicexplanationofnatureisnotpossible.暠

Schr昳dinger猫态佯谬一文提出了一个疑问,即 “量子力学对宏观世界是否

适用?暠这也涉及量子力学和经典力学的关系 [注意,不可把 “经典暠(classical)
与 “宏观暠 (macroscopic)等同起来].近年来,在特定的实验条件下,已相继

制备出介观尺度和宏观尺度的 Schr昳dinger “猫态暠栠栢.H.D.Zeh和 W.H.
Zurek栣枮爜爦枮爜爧 提出用退相干 (decoherence)观点来描述微观世界到宏观世界的过

渡.他们认为栤 :
“Statesofquantumsystemsevolveaccordingtothedeterministic,linear
Schr昳dingerequation

i淈d
dt|氉暤=H|氉暤
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Thatis,justasinclassicalmechanics,giventheinitialstateofthesys灢
temanditsHamiltonianH,onecancomputethestateatanarbitrary
time.Thisdeterministicevolutionof|氉暤hasbeenverifiedincarefully
controlledexperiments.暠

同时他们又指出,由于实在的宏观物体不可避免与周围环境相互作用,从而导致

相干性迅即消失.在一般情况下,不可能观测到宏观量子叠加态.对此,G.J.
Myatt等写道栙:

“Thetheoryofmechanicsappliestoclosedsystem.Insuchidealsitua灢
tions,asingleatomcan,forexample,existsimultaneouslyinasuper灢
positionoftwodifferentspatiallocations.Incontrast,realsystemsal灢
waysinteractwiththeirenvironment,withtheconsequencethatmacro灢
scopicquantumsuperpositions(asillustratedbytheSchr昳dinger狆scat狆
thought灢experiment)arenotobserved.暠
对于量子力学基本概念的持续多年的争论,R.Blatt (2000)评论道栚:
“Theapparentlystrangepredictionsofquantumtheoryhaveledtothe
notionof ‘paradox暞,whicharisesonly whenquantum systemsare
viewedwithaclassicaleye.暠

而C.Tesche认为栛:
“Theparadoxesofthepastareabouttothetechnologyofthefuture.暠

人们看到,伴随这个长期的争论,一些新兴的学科领域,例如量子信息论 (量子

计算,量子远程传态,量子搜索,量子博弈等),量子态工程等,正方兴未艾.
当然,尽管量子力学已在如此广泛和众多领域取得极为辉煌的成功,19世

纪末物理学家的历史经验值得注意.量子力学是经过大量实验工作验证了的一门

科学,它的正确性在人们实践所及领域内毋庸质疑.但量子力学并非绝对真理.
量子力学并没有,也不可能关闭人们进一步认识自然界的道路.人们应记住

Feynman的如下告诫:
“Weshouldalwayskeepinmindthepossibilitythatquantummechanics
mayfail,sinceithascertaindifficultieswithphilosophicalprejudices
thatwehaveaboutmeasurementandobservation.暠

此外,量子力学与广义相对论的矛盾,还未解决栜.关于量子力学的争论,或许
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是一个更深层次的有待探索的问题的一部分栙.正如中国古代伟大诗人屈原的

《离骚》中所说:
“路漫漫其修远兮,吾将上下而求索.暠

在进一步探索中,人们对于自然界中物质存在的形式和运动规律的认识,或许还

有更根本性的变革.

作者于北京大学

2007年1月
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第三版 (2000年)序言 (摘录)

今年,我们迎来了量子论诞生一百周年.量子力学的建立,也已历七十余

载.量子力学与相对论的提出,是20世纪物理学两个划时代的成就.可以毫不

夸张地说,没有量子力学与相对论的建立,就没有人类的现代物质文明.
“原子水平上的物质结构及其属性暠这个古老而基本的课题,只有在量子力

学理论基础上才原则上得以解决.可以说没有哪一门现代物理学的分支及相关的

边缘学科能离开量子力学这个基础.例如,固态物理学、原子与分子结构和激光

物理、原子核结构与核能利用 (核电技术和原子弹)、粒子物理学、量子化学和

量子生物学、材料科学、表面物理、低温物理、介观物理、天体物理、量子信息

科学等,实在难以胜数.
然而在量子力学建立的早期年代,很少人意识到这个基本理论的广阔应用前

景.当时,很少人能认识到,有朝一日量子力学会提供发展原子弹和核电技术所

必需的理论基础.同样,也很少人想到基于量子力学而发展起来的固态物理学,
不仅基本搞清了 “为什么有绝缘体、导体、半导体之分?暠“在什么情况下会出现

超导现象?暠“为什么有顺磁体、反磁体和铁磁体之分?暠等最基本的问题,还引

发了通讯技术和计算机技术的重大变革,而这些进展对现代物质文明有决定性的

影响.
但事情到此并没有完结.尽管量子力学基本理论体系已在20世纪20年代建

立起来,尽管正统的量子力学理论在说明各种实验现象和在极广泛领域中的应用

已取得令人惊叹的成就,但围绕量子力学基本概念和原理的理解及物理图像,一

直存在激烈的争论.我们兴奋地注意到,近年来量子力学在实验和理论方面已取

得令人瞩目的新进展.在国际上一些权威性学术刊物 (如 Nature,Science,

Phys.Rev.Lett.等)上不断出现一系列报道.一方面,关于量子力学基本概

念和原理的争论,已从思辨性讨论转向实证性研究 [包括 EPR佯谬,Bell不等

式,量子力学中的非定域性的实验检验,Schr昳dinger猫态在介观尺度上的实现,
纠缠态概念与路径判断 (which灢way)实验,作为描述系综的波函数的实验测

量,等],这些成果有助于人们重新理解量子力学的基本概念和原理,以及量子

力学和经典力学的关系.另一方面,一系列新的宏观量子效应不断被发现,例

如,继激光、超导和超流现象、Josephson效应等之后,近年来发现的量子 Hall
效应,高温超导现象,Bose灢Einstein凝聚等.相关的应用技术也正在迅速开展.
估计在21世纪初,量子力学的实用性会更加明显,一批新的交叉学科将应运而

生,例如,量子态工程,量子信息科学等.
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所有这些新的进展给人们两个印象:一是量子力学基本概念和原理的深刻内

涵及其广阔的应用前景,还远未被人们发掘出来,在我们面前还有一个很大的必

然王国.量子力学的进一步发展,也许会对21世纪人类的物质文明有更深远的

影响.另一方面,人们看到,量子力学理论所给出的预言,已被无数实验证明是

正确的.当然,人们对量子力学基本概念和原理的理解还会不断深化,但可以相

信,至少在人们现今对物质存在形式的概念下,量子力学的理论体系无疑是正

确的.
*暋暋*暋暋*

本书是根据作者在北京大学从事量子力学教学和研究40年经验写成的.作

为一个教师,我愿对同行教师和同学们讲讲自己的对教学的一些看法.
教师的职责是从事教学.教师教学生,教什么? 如何教? 学生要学,学什

么? 如何更有效地学? 我认为一个好的高校教师,不应只满足于传授知识,而应

着重培养学生如何思考问题、提出问题和解决问题.
这里涉及到科学上的继承和创新的关系.中国有句古话:“继往开来暠,说得

极好,很符合辩证法.我的理解, “继往暠只是一种手段,而目的只能是 “开
来暠.诚然,为了有效地进行探索性工作,必须扎扎实实继承前人留下的有用的

知识遗产.但如就此止步,科学和人类的进步自何而来? 有了这点认识,我们的

教学思想境界就会高得多,就别有一番天地,就把一个人的认识活动汇进不断发

展的人类认识活动的长河中去了.
基于这点认识,教师就会自觉地去贯彻启发式的教学方式.学生学一门课,

学的是前人从实践中总结出来的间接知识.一个好的教师,应当引导学生设身处

地去思考,是否自己也能根据一定的实验现象,通过分析和推理去得出前人已认

识到的规律? 自然科学中任何一个新的概念和原理,总是在旧概念和原理与新的

实验现象的矛盾中诞生的.讲课虽不必要完全按照历史的发展线索讲,但有必要

充分展开这种矛盾,让学生自己去思考,自己去设想一个解决矛盾的方案.在此

过程中,即使错了,也不要紧,学生可以由此得到极为宝贵的独立工作能力的锻

炼.如果设想出来的方案与历史上解决此矛盾的途径不一样,那就更好.科学史

上殊途同归的事例是屡见不鲜的.对这样的学生,就应格外鼓励.他们比能够原

封不动重述书本的学生要强百倍.
学生有了这点认识,就不会在书本和现有理论面前顶礼膜拜 (“尽信书不如

无书暠),而是把它们看成在发展中的东西.一切理论都必须放在实践的审判台前

来辩明其真理性.我们提倡,对待前人的知识遗产,既不可轻率否定,也不可盲

目相信.这样,学生就敢于在通过思考之后对现有理论或老师所讲的东西提出怀

疑.这对于培养有创造性的人才是至关紧要的,也是应提倡的学风和师生关系

(所谓 “道之所存,师之所存也暠,亦即 “吾爱吾师,吾尤爱真理暠.)还应该在教

学中提倡讨论的风气.Heisenberg说过:“科学植根于讨论之中.暠
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要真正贯彻启发式教学,教师有必要进行教学与科学研究.而教学研究既有

教学法的研究,但更实质性的是教学内容的研究.
从教学法来讲,教师讲述一个新概念和新原理时,应力求符合初学者的认识

过程.真理总是朴素的.我相信,一切理论,不管它多困难和多抽象,总有办法

深入浅出地讲清楚.做不到这一点,常常是由于教师自己对问题的理解太肤浅.
此外,讲述新概念,如能与学生学过的知识或熟悉的东西联系起来讲,进行类

比,则学习的难度往往会大为减轻,而且学生对新东西的理解也会更深刻.
在教学内容上,至少对于像量子力学这样的现代物理课程来讲,我认为还有

很多问题并未搞得很清楚,很值得深入研究,决不可人云亦云.吴大猷先生在他

的 《量子力学》(甲部)的序言中批评不少教材 “辗转抄袭暠,这并非夸张之词.
(例如国内广泛流传的布洛欣采夫的 《量子力学原理》书中提到:基于波函数的

统计诠释,从流密度的连续性即可导出波函数微商的连续性,但这种论证是错误

的.)教师如能以研究的态度来进行教学,通过 “潜移默化暠,学生也就会把这种

精神和学风带到他们尔后的工作中去,这就播下了宝贵的有希望的种子,到时候

就会开出更美丽的花朵,并结出更丰硕的果实 (“青出于蓝而胜于蓝,冰生于水

而寒于水暠栙).
高校教师,除教学之外,还很有必要在某些前沿领域进行科学研究.一个完

全没有科研实践经验的人,对于什么是认识论,往往只会流于纸上谈兵.对于人

们怎样从不知到知,怎样从杂乱纷纭的现象中找出它们的内在联系,则一片茫

然.有科学实践经验的教师,在讲述一个规律或原理时,一般会注意剖析人们怎

样从不了解到了解它的过程,而不是把它看成一堆死板的知识去灌输给学生.我

自己有过多次这样的体会,即当讲述一个问题时,如果自己在该问题有关领域做

过一定深度的工作,讲起来就 “很有精神暠, “左右逢源暠,并能做到 “深入浅

出暠,“言简意赅暠.反之,就只能拘谨地重述别人的话,不敢逾越雷池一步.
高校教师从事科学研究还有两个有利条件:一是有可能触及学科发展中某些

根本性的问题,这对于只搞科研而不从事教学的人,往往难以注意到它们.另一

有利条件是能广泛接触很多年轻学生 (本科生和研究生),他们是一支重要的新

生力量,受传统思想的束缚较少.教师在教他们的过程中,往往会得到很多启

发.历史上有不少科学家,在大学生或研究生阶段,就已对一些科学问题作出了

重要贡献.例如,R.P.Feynman的量子力学路径积分理论,就是他在研究生

阶段完成的.有鉴于此,我在教学中,对改革考试制度做过如下的尝试:即在适

当的时机,向同学们提出一些目前人们还不很清楚,而学生已有基础可以进行探

讨的问题,如哪一位同学能给出一个解决的方案,就予以免试,给予最优秀的成

绩.出乎意料,有一些问题竟被少数聪明而勤奋的学生相当满意地解决了.有人
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也许会说,这样的问题不太好找.但我的经验表明,只要这门学科还在发展,这

样的问题就比比皆是,但它们只对勤于思考的人敞开大门.当然,这样的问题并

不一定都非常重要,但对于培养创新人才却是非常有效的.
最后谈谈教材建设.也许有人认为,像量子力学这样一门学科,世界上已有

不少名著,没有必要再写一本教材.但我认为只要科学发展不停顿,教材就应不

断更新.量子力学虽然比较成熟,但并不古老.学科的发展和教材的建设还远没

有达到尽头.我们充分尊重世界名著,但也不必被它们完全捆住了手脚,何况这

些名著也不尽适合我国的教学实际情况.回想20世纪50年代,国内各高校开设

量子力学课的经验还很不足.当时北大有一些学生批评 “量子力学不讲理暠,“量
子力学是从天上掉下来的暠.这些批评虽嫌偏激,但也反映教学中存在不少问题.
我从研究生毕业后走上讲台开始,就下了决心要改变这种状况.在长期教学实践

和科学研究的基础上,写成了 《量子力学》(上、下册,1981,科学出版社).90
年代初,又改写成两卷本.在撰写时,我结合教学实际,对基本概念和原理的讲

述,做了一些新的尝试.实践证明,收到了较好的效果.出版之后,我先后收到

一千多封读者热情的来信,给予了肯定,认为对提高我国的量子力学教学水平以

及培养我国 (包括台、港、澳地区及世界各地华裔)一代年轻物理学工作者做出

了积极的贡献.该书先后十几次重版,仍不能满足读者要求.
岁月如流,40年转瞬即逝.我们的祖国正欣欣向荣.但应该看到,我国的

教育事业,与先进国家相比,还有较大差距.我们中华民族曾经有过光辉的历

史,对人类的科学和文化做出过很多重大贡献.但近几百年来,我们落后了.一

个国家,如果教育长期落后,就不可能强大繁荣,一个民族如不重视教育,就无

法自立于世界民族之林.在此新世纪来临之际,我们必须不失时机奋起直追.这

可能需要几代人的努力,作为一个教师,我寄希望于年轻一代. “十年树木,百

年树人暠.深信我们祖国群星灿烂、人才辈出的光辉前景,定会加速到来.

作者于北京大学

2000年1月
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第一、二版 (1990,1997年)序言 (摘录)

10年前,作者所著 《量子力学》(上、下册,科学出版社,1981)的内容是

针对当时国内量子力学教学实际情况而选定的.该书出版以来,受到广大读者欢

迎,多次重印,仍不能满足要求.作者先后收到读者近千封热情洋溢的来信,给

予了肯定和较高的评价,认为对提高我国量子力学教学水平起了积极的作用.
1988年初国家教委颁发了建国以来首届国家级高校优秀教材奖,该书是获奖的

六本物理书之一.1989年又获得第一届国家级高等院校优秀教学成果奖.
10年以来,我国量子力学教学水平有了明显提高.各高校普遍招收了研究

生.作为物理及有关专业研究生的基础理论课,普遍设置了高等量子力学课.为

适应这种情况,本书将分两卷出版.卷栺作为本科生教材或参考书,而卷栻则作

为研究生的教学参考书.
在撰写本书时,作者参照了国外近年来出版的一些新教材的优点,更多地反

映了量子力学在有关科研前沿领域中的应用,同时还选用了同行和作者近年来所

做的某些教学研究成果.
关于量子力学发展史的介绍,过去国内教材很少直接引证原始文献,有些史

实的讲述与历史有出入.本书根据国外一些可靠的量子力学史籍和原始文献,做

了一些重要订正.例如,关于Planck黑体辐射公式提出的历史背景,Bohr的对

应原理等.
基本概念和原理的讲述,历来是一个大难点.过去学生批评 “量子力学课不

讲理暠,“量子力学是从天上掉下来的暠.根据作者多年从事教学和科研工作的经

验,在 《量子力学》(1981)中,曾经对基本概念和原理的讲述做了一些新的尝

试,例如,从波动 粒子二象性的分析来引进波函数的统计诠释,以及说明为什

么必须引进算符来刻画可观测量,关于量子态概念与态叠加原理,表象理论等.
作者着重引导读者去分析问题和解决问题,以增进读者的学习兴趣.这方面得到

了很多同行和读者的肯定.在撰写本书时,作者又做了进一步改进,并纠正了一

些流行的不恰当的讲法.
过去国内量子力学课的讲法往往给读者造成一个印象,认为力学量本征值问

题似乎总是在一定边条件下去求解微分方程,这有历史的原因.但据作者所知,
实际科研工作中更多地是用代数方法求解力学量的本征值.有一些本征值问题可

以用代数方法给出极漂亮的解法.例如,角动量的 Dirac理论和 Schwinger表

象.为弥补这方面的不足,本书增设力学量本征值问题的代数解法一章.
还有一些问题,在有关科研领域中经常碰到,但在过去教材中讨论得很少,
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例如,低维体系,定态微扰论与量子跃迁的关系,共振态与束缚态的关系,散射

振幅的极点与束缚定态能级的关系,Hellmann灢Feynman定理,自然单位等,本

书用了适当篇幅予以介绍.散射理论一章做了大幅度修改.对于散射的经典描述

和量子力学描述的比较,守恒量分析在散射理论中的重要性,Born近似的适用

条件等,都做了较详细的讨论.
为了有助于读者更深入理解有关概念和原理,书中安排了适量的思考题和练

习题.为增进读者运用量子力学处理具体问题的能力,在每章之末选进了大量习

题供读者选用,并附有答案和提示.这些习题中有相当部分选自近年来国外研究

生资格考试题.采用本书的读者,可同时选用 《量子力学习题精选与剖析》 (钱
伯初,曾谨言,科学出版社)作为主要参考书.

应该强调,教材是给学生学习用的.教师讲课时应根据不同情况 (学生水

平,专业需要等)选讲本书的一部分 (<2/3),其余部分最好留给学生自由阅

读,这有利于不同程度和兴趣的学生发展其聪明才智.教师应该明确,教学的目

的主要是培养学生分析问题和解决问题的能力,而不应局限于传授具体的知识.

作者于北京大学

1989年春
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原始版 (上、下册)(1981年)序言 (摘录)

量子力学是在人类的生产实践和科学实验深入到微观物质世界领域的情况

下,在20世纪初到20年代中期建立起来的.人们从实践中发现,在原子领域

中,粒子的运动行为与日常生活经验中粒子的运动行为有质的差异,在这里我们

碰到一种新的自然现象———量子现象,它们的特征要用一个普适常量———Planck
常量h来表征.经典物理学在这里碰到了无法克服的矛盾,量子力学的概念与规

律就是在解决这些矛盾的过程中逐步揭示出来的.
但是,不能认为量子力学规律与宏观物质世界无关.事实上,量子力学的规

律不仅支配着微观世界,而且也支配着宏观世界,可以说全部物理学都是量子力

物理学的.已被长期实践证明的描述宏观自然现象的经典力学规律,实质上不过

是量子力学规律的一个近似.一般说来,在经典物理学中不直接涉及物质的微观

组成问题,因而量子效应并不显著,所以经典力学是一个很好的近似.例如,行

星绕太阳的运动,与氢原子中电子绕原子核的运动相似,都受量子力学规律支

配,但对于前者,量子效应是微不足道的 (角动量mvR烅h,m 是行星质量,v
是速度,R 是轨道半径),因此,经典力学规律被证实是相当正确的.

但有一些宏观现象,量子效应也直接而明显地表现出来,例如,极低温下

(v很小)的超导现象与超流现象;又例如,白矮星及中子星等高密度 (R 很小)
的星体以及常温、常压、常密度情况下质量m 很小的粒子系 (例如,金属中的

电子气),量子效应都很显著,不能忽视.因此,经典力学与量子力学适用范围

的分界线,应当根据量子效应重要与否来划分.
量子力学规律的发现,是人们对于自然界认识的深化.量子力学,特别是非

相对论量子力学的基本规律与某些基本概念,从它们建立到现在的50多年中,经

历了无数实践的考验,是我们认识和改造自然界所不可或缺的工具.由于量子力学

所涉及的规律极为普遍,它已深入到物理学的各个领域,以及化学和生物学的某些

领域.现在,可以说,要在物理学的任何领域进行认真的工作,没有量子力学是不

可思议的.事实上,量子力学已成为现代物理学的不可或缺的理论基础.
当然,与任何一门自然科学一样,量子力学也只是在不断发展中的相对真

理.从量子力学建立以来,对它的某些基本概念以及对其基本规律的一些看法,
始终存在着不同见解的争论.这需要通过进一步的科学实践以及新的矛盾的揭示

来逐步加以解决.

作者于北京大学

1981年春
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第1章暋量子态的描述

1灡1暋量子力学基本原理的回顾

1灡1灡1暋波动 粒子两象性,波函数的统计诠释

经典力学中,一个粒子的运动状态,可用它在每一时刻t的坐标和动量(即相

空间中一个点)给出确切的描述;而运动状态随时间的演化,遵守 Newton方程(或
与之等价的正则方程等).所以,如粒子在初始(t=0)时刻的坐标和动量一经给定,
则以后任何t>0时刻粒子的运动状态就随之而定.这是一个决定论性的(deter灢
ministic)描述.

无数实验已确切证明,微观粒子具有波动 粒子两象性
踿踿 踿踿踿踿踿

(wave灢particleduali灢
ty).可以理解,微观粒子的运动状态的描述方式及其随时间演化的规律,必然不同

于经典力学中的粒子.
对波动 粒子两象性做认真分析(卷栺,2灡1节)后,可以看出,实验观测中所展

现出来的“粒子性
踿踿踿

暠,只不过是微观粒子的
踿踿踿踿踿踿踿踿踿

“原子性
踿踿踿

暠(atomicity)或“颗粒性
踿踿踿

暠(cor灢
puscularity),即粒子是具有确切的内禀属性(电荷、质量等)的一个客体,但并不意

味着粒子在空间中的运动具有确切的轨道,后一概念乃是经典力学中粒子运动的

特性,与双缝干涉实验中显示出的粒子的波动性是不相容的.近年来已有直接实验

(所谓“which灢way暠实验)证明栙,当人们可以确切判断粒子是从双缝中的哪一条缝

穿过时,双缝干涉花纹就会完全消失.
另一方面,实验观测到的微观粒子的“波动性

踿踿踿
暠,只不过是波动现象最本质的要

踿踿踿踿踿踿踿踿踿踿踿踿踿
素
踿

,即波的
踿踿踿

“相干叠加性
踿踿踿踿踿

暠(coherentsuperposition),但并不意味着这种波动一定是

某种实在的物理量的波动(例如密度波、压强波等).
人们经过认真分析后发现,要把经典粒子的全部属性和经典波动的全部属性

统一于同一客体是绝不可能的.能把粒子性和波动性统一起来的,更确切地说,能
把实物粒子的
踿踿踿踿踿踿

“原子性
踿踿踿

暠和波动的
踿踿踿踿

“相干叠加性
踿踿踿踿踿

暠统一起来的
踿踿踿踿踿

,惟一自洽的方案是
踿踿踿踿踿踿踿踿

M灡Born提出的“概率波
踿踿踿

暠(probabilitywave)概念,即波函数的统计诠释
踿踿踿踿踿踿踿踿

栚.这已为

无数实验所确证.为此,Born获得1954年 Nobel物理学奖.

·1·

栙

栚

例如,S灡D湽rr,T.Nonn& G.Rempe,Nature395(1998)33,Originofquantum灢mechanicalcomple灢
mentarityprobedbya“which灢way暠experimentinanatominterferometer.

M灡Born,Zeit.Phys.38(1926)803;Nature119(1927)354;P灡Jordan,Zeit.Phys.41(1927)797;W.
Heisenberg,Zeit.Phys43(1927)172.



按照Born的波函数的统计诠释,设一个粒子的波动性用波函数氉(r)(复)描
述,则

氉(r)2dxdydz (1灡1灡1)
就是发现粒子位置在r点的体积元dxdydz中的概率.按照概率的含义,显然要求

波函数满足归一化条件

曇曇曇
(全空间)

氉(r)2dxdydz=1 (1灡1灡2)

但应当强调,概率分布的最实质性的内容是
踿踿踿踿踿踿踿踿踿踿踿踿踿

“相对概率分布
踿踿踿踿踿踿

暠.因此,氉(r)与

C氉(r)(C是不依赖于粒子坐标的任意常数)所描述的粒子在空间不同地点的相对

概率分布是完全相同的,即描述的是同一个概率波.所以量子力学中的波函数总是

具有常数因子的不定性
踿踿踿踿踿踿踿踿踿踿.这一特点是经典波决不可能有的

踿踿踿踿踿踿踿踿踿踿踿踿踿踿.例如,经典波的振幅如

增大1倍,则相应的实在物理量(如振动的能量)将增为4倍.正是基于这种常数因

子不定性,一个波函数总可以要求它满足归一化条件(1灡1灡2)栙.在保证归一化条

件下,波函数还有相位不定性
踿踿踿踿踿

,因为氉与ei毮氉(毮为实常数)所描述的概率分布完全

相同,而且如氉满足归一化条件(1灡1灡2),则ei毮氉 显然也是归一化的.
对于多粒子体系

踿踿踿踿踿
,例如2粒子体系,波函数氉(r1,r2)描述的是6维位形空间

(configurationspace)中的波动,除了给予概率诠释外,别无他途,因为“6维空间中

的实在物理量的波动暠是难以理解的.
虽然长期以来一直有人对波函数的统计诠释提出了各式各样的批评,但波函

数的统计诠释已经在无数实验中被证明是正确的.我们认为,在人们现今对于物质
踿踿踿踿踿踿踿踿踿

粒子存在形式的概念框架之下
踿踿踿踿踿踿踿踿踿踿踿踿踿

,波函数的统计诠释是能把波动 粒子两象性统一起
踿踿踿踿踿踿踿踿踿踿踿踿踿 踿踿踿踿踿踿踿踿

来的惟一符合实验的方案
踿踿踿踿踿踿踿踿踿踿踿

,尽管从经典物理学的概念来看,它是格格不入的.
还应该强调,波函数的统计诠释中的概率分布,与数学概率论中的概率分布概

念有本质不同.在日常生活中,人们之所以要借助于概率统计理论来处理问题,是
因为所处理的问题太复杂,决定事物进程的因素较多,人们无法根据已掌握的事

物的现状去准确预测事物尔后出现的结果,所以不得不借助概率统计的方法进

行预测.在量子力学中,波函数必须采用统计诠释是由波动 粒子两象性所导致

的.波函数所预言的概率分布,只是对粒子测量结果的一种预期
踿踿

(expectation),并
踿

非粒子已经具有那样的分布
踿踿踿踿踿踿踿踿踿踿踿踿

(既成事实
踿踿踿踿

)等待人们去观测它.初学者往往对此有

各种各样的误解.这里就涉及纯态(纯系综)和混合态(混合系综)的概念,将于

2灡2节中讨论.
基于波函数的统计诠释,有人认为,量子力学对事物的描述总是概率性的

(probabilistic).这是一种片面的看法.量子力学中,对于用波函数描述的微观粒

·2·

栙 尽管任何量子体系的实际波函数,总是归一化的,考虑到波函数的要害是描述相对概率分布,量子

力学中并不排除使用一些理想的、不能归一化的波函数,如平面波,毮波包等.详见卷栺.4灡4节.



子,并非对所有物理量的测量结果的预言都是概率性的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.这要看人们测量的是哪一

个力学量.其中对某些力学量的观测结果的预言只能是概率性的,而对另外某些力

学量的观测的预言则可能是决定论性的(deterministic),即只能出现惟一的结果,
概率为1.这里就涉及力学量的本征态

踿踿踿
的概念(1灡1灡2节)和本征态的相干叠加

踿踿踿踿踿踿踿踿
的概

念(1灡1灡3节).这也可以认为是Bohr特别强调的“互补性原理暠(complementarity
principle)的一个重要方面.波函数的统计诠释的更普遍的表述将在1灡1灡3节中

给出.

1灡1灡2暋力学量用算符描述,本征值与本征态,Heisenberg不确定度关系

考虑到波动 粒子两象性,微观粒子的力学量必定有与经典粒子本质上不同的

特征.首先,按照deBroglie关系,p=h/毸,粒子的动量与波长的倒数成比例.波长毸
是表征波动随空间地点变化快慢的量,因此一般说来,“在空间某一点的波长暠的提

法,就没有严格的意义.同样,“微观粒子局域于空间某一点的动量暠的提法,也无严

格的意义.这表现在直接用波函数氉(r)(按照Born的波函数的统计诠释)来计算

动量的平均值时,就不得不引进动量
踿踿

(梯度)算符
踿踿

,即(假设波函数氉已归一化)

暋暋暋暋暋暋暋暋暋暋煀p=曇氉* (r)p
暷

氉(r)d3r,暋暋p
暷

=-i焻h

殼

(1灡1灡3)

可以看出动量平均值煀p是与波函数的梯度
踿踿踿踿踿踿

(而不是与波函数在某点的局域值
踿踿踿踿踿踿踿踿踿踿踿踿踿

)相
踿

联系
踿踿.氉(r)的梯度愈大,就表现为波长愈短,因而动量平均值就愈大,这在物理图像

上是很清楚的.
按动量算符的上述表示式,它的直角坐标分量p毩(毩=x,y,z)与坐标各分量x毩

(毩=x,y,z)满足下列对易关系式:
[x毩,p

暷

毬
]曉x毩p

暷

毬 -p
暷

毬x毩 =i焻h毮毩毬 (1灡1灡4)
这正是 Heisenberg最先提出的粒子的坐标和动量的乘法不对易关系.(1灡1灡4)式
是量子力学最基本的对易关系式

踿踿踿踿踿踿踿踿踿踿踿踿踿
,是波动 粒子两象性的表现
踿踿踿 踿踿踿踿踿踿踿踿.凡有经典对应的力

学量之间的对易关系,均可由它导出.如粒子的角动量l
暷

=r暳p
暷

的分量之间的对

易关系

[l
暷

毩,l
暷

毬
]=i焻h毰毩毬毭l

暷

毭 (1灡1灡5)

毰毩毬毭为Levi灢Civita符号.
波动 粒子两象性的另一个集中表现就是坐标 动量不确定度关系

踿踿 踿踿踿踿踿踿踿踿
(uncertain灢

tyrelation)

殼x毩殼p毬 曒 焻h
2毮毩毬暋(毩,毬=x,y,z) (1灡1灡6)

事实上,对于任何波动
踿踿踿踿

(无论是经典波或概率波
踿踿踿踿踿踿踿踿踿踿

),都可以证明

殼x殼k燁1 (1灡1灡7)
式中k为波数.注意:式(1灡1灡7)还不是

踿踿踿
量子力学中的不确定度关系.但如考虑到微
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观粒子的波动性,按deBroglie关系,p=焻hk(k=2毿/毸).由式(1灡1灡7)即可导出

殼x殼px燁焻h,此即坐标 动量不确定度关系
踿踿 踿踿踿踿踿踿踿踿

,它是微观粒子具有波动性的必然结果
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

不确定度关系概括地指明:考虑到波动 粒子两象性
踿踿踿踿踿 踿踿踿踿踿

,人们就不能全盘套用经典粒
踿踿踿踿踿踿踿踿踿踿踿踿

子的所有概念
踿踿踿踿踿踿

,特别是轨道运动概念
踿踿踿踿踿踿踿踿踿

,来描述微观粒子
踿踿踿踿踿踿踿

,它指明了应用经典粒子运动
踿踿踿踿踿踿踿踿踿踿踿踿

概念来描述微观粒子应受到的限制
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.从形式上讲,当h曻0时,粒子波长毸=h/p曻0,

殼x殼px曻0,波动效应(即量子效应)就可以忽略,而经典力学就可以很好地描述粒

子的运动.在此极限下,粒子的坐标和动量就彼此对易,粒子的轨道运动概念也就

很好地成立,这正是日常生活中使用的概念.
量子力学中,“力学量用算符来描述

踿踿踿踿踿踿踿踿踿
暠的含义是多方面的.除了上面已提到的计

算力学量的平均值
踿踿踿

要用到算符表示外,量子力学有一个基本假定:一个力学量
踿踿踿踿踿

,如

F,在实验观测中的可能取值
踿踿踿踿踿踿踿踿踿踿踿

,就是相应的算符
踿踿踿踿踿F

暷

的本征值
踿踿踿踿

之一,例如Fn,

F
暷

氉n =Fn氉n (1灡1灡8)

氉n 是与Fn 相应的本征态.由于可观测量都为实数(F*
n =Fn),这就要求F

暷

为厄米
踿踿

算符
踿踿

(F
暷

+ =F
暷

).可以证明,对应于不同本征值的本征态彼此正交
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(氉n,氉m)=毮nm (1灡1灡9)

暋暋此外,力学量之间的关系也表现在算符之间的关系上.例如,两个力学量
踿踿踿踿踿A 和

踿B

是否可以同时具有确定测值
踿踿踿踿踿踿踿踿踿踿踿踿

,就取决于相应的算符是否对易
踿踿踿踿踿踿踿踿踿踿踿踿踿.如[A

暷

,B
暷

]=0,则A
暷

与

B
暷

可具有共同本征态,在这种共同本征态下,A 和B 同时具有确定值.反之,若[A
暷

,

B
暷

]曎0,则一般说来
踿踿踿踿

,A与B不能同时具有确定值.可以证明更普遍的不确定度关系

殼A殼B 曒 1
2 [A

暷,B
暷

] (1灡1灡10)

特例是,用坐标与动量算符的基本对易式(1灡1灡4)代入式(1灡1灡10),即可得出不确

定度关系(1灡1灡6)[注].
人们还发现,一个力学量,如F,对应于它的某一个本征值的本征态可能不止

一个,此之谓简并
踿踿

(degeneracy).属于同一本征值的诸本征态,彼此不一定就正交.
但总可以使之正交归一化(例如采用Schmidt程序).本征态的简并往往与算符的

踿踿踿踿踿踿踿踿踿踿踿踿
对称性有关
踿踿踿踿踿

(偶然简并除外).在存在简并的情况下,往往存在另外的力学量,例如

G
暷

,它与F
暷

对易.此时,可以求F
暷

和G
暷

的共同本征态
踿踿踿踿踿

(simultaneouseigenstates),
根据G 的不同的本征值,就有可能把F 的诸简并态确定下来,此时,简并态之间的

正交性就可自动得以保证.
在量子力学中,一个力学量F(不显含t)是否是守恒量

踿踿踿
,就根据它与体系的

Hamilton量 H
暷

是否对易来判断

[注]暋参见本书,卷栺,4灡3灡1节,及该节的注.
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[F
暷

,H
暷

]=0 (1灡1灡11)
这与经典力学中根据Poisson括号{F,H}=0是否成立来判断守恒量相对应.

关于力学量的本征值问题,还有几点值得提到:
(1)量子力学中并非所有力学量的本征值都是量子化

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
(离散
踿踿

)的
踿.对于角动量,

根据它的分量的对易关系,可以证明角动量的本征值只能是焻h的整数或半奇数倍.
对于坐标或动量,本征值是连续的;而对于 Hamilton量,本征值既可能是离散的

(束缚态),也可能是连续的(游离态或散射态).
(2)量子力学对某力学量测值的预言

踿踿踿踿踿踿踿踿踿踿
,既可能是概率性的
踿踿踿踿踿踿踿踿

(probabilistic),也可
踿踿

能是决定论性的
踿踿踿踿踿踿踿

(deterministic),这取决于体系所处状态是否是待测的力学量的

本征态.例如,在力学量F 的本征态氉n 下,测量F 所得结果是完全确切的,即Fn

(概率为1),而测量另外的力学量G,就不一定能得到一个确切的值,一般说来,只
能做概率性的预期,除非氉n 同时也是G 的本征态.

(3)力学量完全集
踿踿踿踿踿踿

概念.一组彼此两两对易的
踿踿踿踿踿踿踿踿踿

,函数独立的力学量
踿踿踿踿踿踿踿踿

,如果它们的
踿踿踿踿踿

共同本征态足以对体系的量子态给予确切的描述
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,则称之为体系的一组对易力学
踿踿踿踿踿踿踿踿踿踿踿踿踿

量完全集
踿踿踿踿

(acompletesetofcommutingobservables,CSCO).对于具有n个自由

度的体系,对易完全集内的力学量的数目不少于自由度数
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.例如,三维粒子的3个

坐标分量(x
暷,y

暷,z
暷)或动量分量(p

暷

x,p
暷

y,p
暷

z),都可以选为力学量完全集.如完全

集中所有力学量又都是守恒量,则称为体系的一组对易守恒量完全集
踿踿踿踿踿踿踿踿

(acomplete
setofcommutingconservedobservables,CSCCO).不同的体系,由于它们的对称

性的差异,守恒量完全集一般也不相同.对于同一个体系,对易守恒量完全集的选

取也可能不止一种.例如,三维自由粒子,(p
暷

x,p
暷

y,p
暷

z),(H
暷

,l
暷

2,l
暷

z)都可以选作守

恒量完全集.对于中心力场V(r)中的粒子,(H
暷

,l
暷

2,l
暷

z),(H
暷

,l
暷

2,l
暷

x),(H
暷

,l
暷

2,

l
暷

y)都可以选为对易守恒量完全集
踿踿踿踿踿踿踿踿.但注意,守恒量完全集内守恒量的数目并不一

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
定等于自由度数
踿踿踿踿踿踿踿.例如,一维自由粒子,动量p

暷 就构成守恒量完全集,而 Hamilton

量 H
暷

=p
暷2/2m 本身并不构成守恒量完全集(由于 H

暷

的本征态是二重简并),但

(H
暷

,P
暷

)则构成一维自由粒子的一组守恒量完全集,P
暷

为空间反射算符.
应用量子力学处理一个具体体系(特别是多自由度体系,或多粒子体系)时,对

易守恒量完全集的选取是十分关键的.对易守恒量完全集的一组量子数,称为好量
踿踿

子数完全集
踿踿踿踿踿.在处理能量本征值(定态)问题时,这一组好量子数可以很方便地用来

标记诸定态(包括能级有简并的情况).而在处理跃迁时,可以用它们来建立相应的

选择规则(selectionrule);在处理散射问题时,则可以根据它们来进行分波.

1灡1灡3暋量子态叠加原理,表象与表象变换

一个体系若处于某力学量,例如F 的本征态氉n[见式(1灡1灡8)],则测量F 所

得结果是完全确切的,即Fn(概率为1).但如体系处于F 的两个本征态的叠加
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氉=C1氉1+C2氉2 (1灡1灡12)
则测量F 所得结果就不是惟一确定的,或者为F1,或者为F2.这就是量子态的叠

踿踿踿踿踿
加原理
踿踿踿.当体系处于某力学量

踿踿踿踿踿踿踿踿踿
(F)的若干个本征态的叠加态时

踿踿踿踿踿踿踿踿踿踿踿踿
,就导致测量
踿踿踿踿踿

(F)结
踿

果的不确定性
踿踿踿踿踿踿

,这完全是一种量子力学效应,是量子力学区别于经典力学的最显著

的,也是最难理解的一个特征,量子态叠加原理
踿踿踿踿踿踿踿

可以认为是波的叠加性与波函数完
踿踿踿踿踿踿踿踿踿踿

全描述一个体系的量子态
踿踿踿踿踿踿踿踿踿踿踿

栙踿两个概念的概括
踿踿踿踿踿踿踿.

当体系处于力学量F 的叠加态(1灡1灡12)时,测量F 得到F1 的概率曍 C1
2,

测得结果为F2 的概率曍 C2
2,C1

2+ C2
2=1表示归一化条件.应当强调,量

子态的整体的相位有不定性,即ei毩(C1氉1+C2氉2)(毩实)与(C1氉1+C2氉2)描述的是

同一个量子态,但叠加态的相对相位却是有物理意义的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.如(C1氉1+ei毩C2氉2)(毩曎0,

实)与(C1氉1+C2氉2)描述的就是不同的量子态.

一般地说,设氉n 是体系的某一组(包含F
暷

在内的)对易力学量完全集
踿踿踿踿踿踿踿踿

的共同

本征态,F
暷

氉n=Fn氉n(n标记一组完备的量子数
踿踿踿踿踿踿踿踿

,假设为离散).按照态叠加原理,体
系的任何一个量子态氉都可以表示成诸本征态{氉n}的线性叠加

氉= 暺
n
Cn氉n (1灡1灡13)

利用氉n 的正交归一性,(氉n,氉m)=毮nm,上式中的叠加系数为

Cn = (氉n,氉) (1灡1灡14)

Cn
2 代表在氉态下测量F 得到Fn 的概率,归一化条件为 暺

n
Cn

2 =1,这就是

波函数的统计诠释的最一般的表述.同样,应该强调,各叠加态的相对相位是有物
踿踿踿踿踿踿踿踿踿踿踿踿

理意义的
踿踿踿踿

,它们并未展现在
踿踿踿踿踿踿踿 Cn

2 中
踿.但在测量其他力学量

踿踿踿踿踿踿踿踿
(不属于此完全集
踿踿踿踿踿踿踿

)时
踿

,
就可能表现出来
踿踿踿踿踿踿踿

(出现干涉现象
踿踿踿踿踿踿

).
一个力学量(如F)的本征态,一般不是另一个力学量(如G)的本征态,除非是

它们(F 和G)的共同本征态.例如,谐振子的基态氉0,是能量最低的本征态,但它不

是坐标(或动量)的本征态.在氉0 态下,测量其能量,所得结果是惟一的,即E0=
焻h氊/2,概率为1,这是量子态的决定论性描述的一面

踿踿踿踿踿踿踿踿踿踿踿踿踿.而测量粒子坐标时,其结果就

不是确定的,而有一个分布,测得粒子位置在x点的概率曍e-毩2x2(毩= m氊/焻h),呈

Gauss分布.这是量子态的概率性描述的一面
踿踿踿踿踿踿踿踿踿踿踿踿.

谐振子处于两个能量本征态的叠加时,如氉=(氉0+氉1)/2,就构成谐振子的

一个非定态
踿踿踿

(nonstationarystate).在此态下,测量其能量时,所得结果就呈现出不
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,A灡Messiah,QuantumMechanics,1,p灡162:“...thewavefunctioncompletelydefinesthedy灢
namicalstateofthesystemunderconsideration.Incontrasttowhatoccursinclassicaltheory,thedynamical
variablesofthesystemconnotingeneralbedefinedateachinstantwithinfiniteprecision.However,ifone
performsthemeasurementofagivendynamicalvariable,theresultsofmeasurementfollowacertainproba灢
bilitylaw,andthelawmustbecompletelydetermineduponspecifyingthewavefunction.暠



定性,即既可能出现E0,也可能出现E1,概率各为1/2.不同能量本征态的叠加所

导致的测量能量结果的不定性,对于多数读者,似乎都可以理解,并未引起很大的

困扰.但量子态叠加原理的深刻内涵,却并不是很容易搞清楚的.例如,量子态叠加
踿踿踿踿踿

原理实质上已隐含了量子态的非定域性
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(nonlocality).在非定态氉中表现出的测

量能量结果的不确定性,是由于氉是不同能量本征态的叠加所导致.而在一般的量

子态氉下,由于它们并非粒子坐标的本征态,而是许多坐标本征态的叠加,就表现

出非定域性.量子态的非定域性是在一篇著名文献———后来被称为 EPR佯谬(见
1灡3节)中首先提出来的.在涉及多粒子体系或多自由度体系时

踿踿踿踿踿踿踿踿踿踿踿踿踿
,普遍存在一种叠
踿踿踿踿踿踿踿

加态
踿踿

,后来被称为纠缠态
踿踿踿踿踿踿踿踿

(entangledstate),它们呈现出的许多性质,与人们日常生

活的经验格格不入,往往引起 人们极大的困惑.例如对不同地域的两个粒子的测

量结果彼此相关联.这在Schr昳dinger猫态中表现最为明显(详细讨论见1灡4节)灡

考虑彼此不对易的两个力学量A
暷

和B
暷

,[A
暷

,B
暷

]曎0,一般说来,它们不能具有

共同本征态.按照上述讨论,量子态的叠加原理就隐含了不确定度关系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,它们都是
踿踿踿踿

微观粒子波动 粒子两象性的表现
踿踿踿踿踿踿 踿踿踿踿踿踿踿踿.例如,粒子的坐标x

暷

与动量p
暷

x,[x
暷,p

暷

x]=i焻h曎
0,x与p

暷

x不能有共同本征态,所以在任何量子态下,它们的测值的不确定度绝不

可能同时为0,而应满足殼x殼px燁焻h/2,这就是 Heisenberg的不确定度关系.
如式(1灡1灡13)所示,体系的任一量子态氉都可以表示成它的某一组力学量完

全集F 的共同本征态氉n 的相干叠加,式中Cn=(氉n,氉),n=1,2,3….可以看出,只
要所有Cn 给定,则量子态氉随之确定.人们就称这一组展开系数(复){Cn}是量子

态氉在F 表象
踿踿

(representation)中的表示.它所包含的信息,除了系数的模方 Cn
2

所示的概率诠释之外,各叠加系数的相对相位
踿踿踿踿踿踿踿踿踿踿

,也是有物理意义的
踿踿踿踿踿踿踿踿

,它们是测量其
踿踿踿踿踿踿

他力学量
踿踿踿踿

(除
踿F 外

踿
)时呈现出的干涉现象的根源
踿踿踿踿踿踿踿踿踿踿踿踿.当然,人们可以选择不同的对易

力学量完全集.每一组对易力学量完全集的共同本征态都可以作为一个表象的一

组正交完备基矢.这就是说,体系的任一量子态都可以采用不同的表象来描述,而
不同的表象之间通过一个幺正变换

踿踿踿踿
相联系,这就是 Dirac、Jordan等所给出的量子

力学理论的最普遍的形式栙.
Dirac还进一步把量子态的描述脱离具体的表象,即把体系的一个量子态氉看

成 Hilbert空间中的一个抽象的矢量栚,记为 氉暤,称为右矢(ket).它在共轭空间中

相应的态矢记为暣氉 ,称为左矢(bra).到此,并未涉及具体表象.如要采用具体表

·7·

栙

栚

P.A.M.Dirac,ThePrinciplesofQuantum Mechanics,4thed.OxfordUniversityPress,Ox灢
ford,1957.

Hilbert空间是一种“normedcomplexvectorspace.暠空间中任何两个矢量(量子态)氉暤和 氄暤,存

在一个标量积(scalerproduct),它可以为复数,满足线性叠加性.Hilbert空间维数可以是有限维,但为了

描述量子体系的某些力学量的本征值是连续谱的情况,Hilbert空间维数可以是无限的,在此情况下,量子

态是不可归一化的.严格言之,一个量子态 氉暤可以用 Hilbert空间中的一个ray来表述,它只涉及矢量的

“指向暠,而不必计及其“长度暠.



象,如采用F 表象,F 的本征态记为 氉n暤,或简记为 n暤,以{n暤}作为基矢所张开

的空间,即F 表象.在此表象中,抽象的态矢 氉暤表示成

氉暤= 暺
n
Cn n暤 (1灡1灡15)

式中Cn=暣n暚氉暤或简记为暣n氉暤,表示态矢 氉暤在基矢 n暤方向的投影(或分量的

值).这一组展开系数{Cn}就足以刻画量子态 氉暤.按式(1灡1灡15)

氉暤=暺
n
Cn n暤= 暺

n

暣n氉n暤

=暺
n

n暤暣n氉暤= 暺
n

n暤暣n暚氉暤= 暺
n
Pn 氉暤 (1灡1灡16)

式(1灡1灡16)中Pn= n暤暣n 是沿基矢方向 n暤的投影算符
踿踿踿踿.满足

P
暷

nP
暷

n曚 =P
暷

n毮nn曚,暋P
暷

+
n =P

暷

n (1灡1灡17)
考虑到 氉暤是任意态,所以

暺
n

n暤暣n =1 (1灡1灡18)

此乃这组基矢{n暤}的完备性
踿踿踿

的表现.
以上假定了F 的本征值是离散的.对于连续谱的情况,求和应换为积分.如一

维粒子的坐标(F=x)表象,x本征值为连续实数值(-曓<x<+曓),本征态记为

x暤,而在坐标表象中量子态 氉暤表示成

氉暤=曇
+曓

-曓
dxx暤暣x氉暤=曇

+曓

-曓
dx氉(x)x暤 (1灡1灡19)

式中氉(x)=暣x氉暤是量子态 氉暤在x表象中的表示,即平常惯用的坐标表象中的

波函数.相应地,坐标表象基矢的完备性表示为

曇dxx暤暣x =1 (1灡1灡20)

但注意,连续谱的本征函数是不能归一化的.为此,Dirac引进毮函数来描述它们的

“归一性暠,
暣x曚x曞暤=毮(x曚-x曞) (1灡1灡21)

对于动量表象,也可作类似的讨论.
量子力学中,力学量用一个厄米算符描述.算符代表对量子态的某种运算.例

如量子态 氉暤经过算符L
暷

的运算后,变成量子态 毤暤

L
暷

氉暤= 毤暤 (1灡1灡22)

在采用一个具体的表象后,算符可表示成一个矩阵.如采用 F 表象(F
暷

n暤=
Fn n暤),上式可化为

暣n L
暷

氉暤= 暣n毤暤

暺
n曚

暣n L
暷

n曚暤暣n曚氉暤= 暣n毤暤 (1灡1灡23)

暣n氉暤和暣n毤暤分别表示量子态 氉暤和 毤暤在F 表象中的表示,可表成列矢(column
vector)形式(令cn=暣n氉暤,bn=暣n毤暤)

·8·



c1

c2

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

汅
,暋

b1

b2

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

汅
(1灡1灡24)

则式(1灡1灡22)可表示为

L11 L12 …

L21 L22 …
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

汅 汅

c1

c2

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

汅
=

b1

b2

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

汅
(1灡1灡25)

式中Lnn曚=暣n L
暷

n曚暤即算符L
暷

在F 表象中的矩阵表示的元素.算符在以自己的

本征态为基矢的表象中,显然为对角矩阵.如,L
暷

=F
暷

,则
Fnn曚 =Fn毮nn曚 (1灡1灡26)

对角元即算符的本征值.算符F
暷

可以表示为

F
暷

=F
暷

暺
n

n暤暣n = 暺
n
Fn n暤暣n = 暺

n
FnP

暷

n (1灡1灡27)

P
暷

n= n暤暣n 是投影算符,这称为算符的谱表示(spectralrepresentation).

1灡1灡4暋量子态随时间的演化,Schr昳dinger方程,定态

以上讨论的量子态,都是指某一时刻t的量子态而言,尚未涉及量子态随时间的演

化.量子力学的另一条基本原理,即量子态随时间的演化遵守下列Schr昳dinger方程

i焻h灥
灥t氉(t)暤=H 氉(t)暤 (1灡1灡28)

H 是给定体系的 Hamilton算符.由于上式是含时间一次导数的方程
踿踿踿踿踿踿踿踿踿踿

,只要体系的
踿踿踿踿踿

初始
踿踿

(t=0)状态
踿踿 氉(0)暤和 Hamilton量 H 给定,原则上可以把以后任何时刻

踿踿踿踿踿踿踿踿踿踿踿踿t的
踿

量子态
踿踿踿 氉(t)暤完全确定下来

踿踿踿踿踿踿
栙~栛 .

到此,尚未涉及具体表象.对于常用的坐标表象,设粒子(质量为m)处于势场

定域势V(r)中,则Schr昳dinger方程(1灡1灡28)表示成

i焻h灥
灥t氉

(r,t)= -焻h2

2m

殼

2+V(r[ ])氉(r,t) (1灡1灡29)

·9·

栙 W.H.Zurek,PhysicsToday,Oct.,1991,p.36~44,“Statesofquantumsystemsevolveaccord灢

ingtothedeterministiclinearSchr昳dingerequation,i焻h 灥
灥t 氉暤=H 氉暤.Thatis,justasinclassicalme灢

chanics,giventheinitialstateofthesystemanditsHamiltonianH,onecancomputethestateatarbitrary
time.Thisdeterministicevolutionof 氉暤hasbeenverifiedincarefullycontrolledexperiments.暠

栚暋J.Maddox,Nature,362 (1993)693,“...theSchr昳dingerequationisperfectlydeterministic
equationexactlycomparabletotheequationofmotionofaclassicalmechanicalsystem,....暠

栛暋P.A.M.Dirac,ThePrinciplesofQuantumMechanics,3rd.ed.1947,27节,p.108,“Whenone
makesanobservationonthedynamicalsystem,thestateofthesystemgetschangedinanunpredictableway,

butinbetweenobservationscausalityapplies,inquantummechanicsasinclassicalmechanics,andthesystem
isgovernedbyequationsofmotionwhichmakethestateatonetimedeterminethestateatalatertime.暠



在一般 情 况 下,式 (1灡1灡28)的 求 解 比 较 困 难.当 H 不 显 含t 的 情 况,
式(1灡1灡28)的解可形式上表示成

氉(t)暤=e-iHt/焻h 氉(0)暤 (1灡1灡30)
若采用能量表象,即以包括 H 在内的一组力学量完全集的本征态 氉n暤为基矢的

表象

H 氉n暤=En 氉n暤 (1灡1灡31)
设

氉(0)暤= 暺
n
Cn 氉n暤 (1灡1灡32)

则按式(1灡1灡30),可得

氉(t)暤=e-iHt/焻h 氉(0)暤=暺
n
Cne-iEnt/焻h 氉n暤 (1灡1灡33)

式中Cn 由初态完全确定
踿踿踿踿踿踿踿

,Cn=暣氉n 氉(0)暤.
如体系初态是某一个能量本征态.例如 氉(0)暤= 氉k暤,即Cn=毮nk,则

氉(t)暤=e-iEkt/焻h 氉k暤 (1灡1灡34)
这种特殊的状态,称为定态

踿踿
(stationarystate).当体系处于定态时,有一系列重要

的特征.首先,测量体系的能量时,所得结果是完全确切的,即与初始时刻的能量相

同(能量守恒),这是体系的时间均匀性的表现.此外,定态还有下列一些特点:粒子

的空间概率分布密度和流密度都不随时间改变,因为

氀(r,t)= 氉(r,t)2 = 氉(r,0)2 =氀(r,0) (1灡1灡35)

j(r,t)=-i焻h
2m

[氉* (r,t)

殼

氉(r,t)-氉(r,t)

殼

氉* (r,t)]

=-i焻h
2m

[氉* (r,0)

殼

氉(r,0)-氉(r,0)

殼

氉* (r,0)]

=j(r,0) (1灡1灡36)
还可以证明,在定态下

踿踿踿踿
,任何力学量
踿踿踿踿踿

(不显含
踿踿踿t,但不一定为守恒量

踿踿踿踿踿踿踿踿
)的平均值和测
踿踿踿踿踿踿

值的概率分布都不随时间改变
踿踿踿踿踿踿踿踿踿踿踿踿踿.

量子力学中,还习惯引进一个含时幺正变换来描述量子态随时间的演化.令

氉(t)暤=U(t,0)氉(0)暤 (1灡1灡37)
代入式(1灡1灡28),得

i焻h灥
灥tU

(t,0)氉(0)暤=HU(t,0)氉(0)暤

由于 氉(0)暤是任意的,所以

i焻h灥
灥tU

(t,0)=HU(t,0) (1灡1灡38)

U(t,0)称为量子态随时间演化的算符.上式的厄米共轭式为

-i焻h灥
灥tU

+ (t,0)=U+ (t,0)H+ (1灡1灡39)
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利用 H+ =H(厄米算符),U+·(1灡1灡38)-(1灡1灡39)·U,可得出

灥
灥t

[U+ (t,0)U(t,0)]=0 (1灡1灡40)

考虑到初条件U(0,0)=1,所以

U+ (t,0)U(t,0)=1 (1灡1灡41)
即U(t,0)为幺正算符,这是概率守恒的表现.

对于 H 不显含t的情况,式(1灡1灡38)的解为

U(t,0)=e-iHt/焻h (1灡1灡42)
相应于式(1灡1灡30)灡

1灡1灡5暋对Bohr互补性原理的理解

通常人们所说的“量子力学的哥本哈根诠释暠(Copenhageninterpretation)的两大

支柱就是 Heisenberg的不确定性原理(uncertaintyprinciple)和Bohr的互补性原理

(complementarityprinciple).它们构成了正统的量子力学理论的物理诠释的基础.哥
本哈根学派的代表人物是Bohr、Heisenberg、Pauli等人.在量子力学基本概念和物理

诠释的长期争论中栙~栞 ,他们坚持Born的波函数的统计诠释,即把微观粒子呈现

出的波动性理解为“概率波暠(probabilitywave),而不同意Schr昳dinger、deBroglie
的“把物质归结为纯粹波动现象暠和“物质波暠的观点,也不赞成 Einstein等人坚持

的经典力学中的决定论性(deterministic)描述的观点(即“上帝并不掷骰子暠).
“在Bohr的著作中,找不到关于互补性概念的明白和严格的定义暠[栙,p.143].“这

不可避免使一些物理学家和哲学家责难他的思想含混和晦涩.暠实际上这有多方面

的因素.Bohr一向以科学上严谨作风著称,他有自己的风格.“在与人交谈时,他的

思想表述清晰而直截了当,颇令人信服.但在他写作时,却更注重词义的细微差异,
逐字推敲.暠此外,量子力学的基本概念与日常生活经验是如此格格不入,要彻底了

解它们是极其困难的,可能还需要更长期的科学实验,人们才能更清楚地理解和表

述它们.最近一些年来量子力学的新进展也说明了这一点栟.
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栟

P.Robertson,TheEarlyYears,TheNielsBohrInstitute,1921灢1930(AkademiskForlag,Copenhagen,

1979);中译本,杨福家,卓益忠,曾谨言,玻尔研究所的早年岁月,1921灢1930.科学出版社,北京,1985,对此有较

详细和真实的评述.
栚暋N.Bohr,AtomicTheoryandtheDescriptionofNature,CambridgeUniversityPress,1922.
栛暋N.Bohr,inAlbert灢Einstein:Philosopher灢Scientist,ed.P.A.Schilpp,LibraryofLivingPhiloso灢

phers,Evanston,1949.
栜暋W.Heisenberg,ThePhysicalPrinciplesofQuantumTheory ,UniversityofChicagoPress,Chica灢

go,1930;中译本,王正行,李绍先,张虞,《量子论的物理原理》,科学出版社,北京,1983.
栞暋我们注意到,Bohr与 Heisenberg的观点,在早期是有所差异的栙 .最初,Heisenberg“不愿意承认波

动概念有什么重要性暠,“波动力学只不过是一个有用的数学工具暠,而Bohr认为“波动概念必须与粒子概念

一道纳入量子理论的基本假设之中暠.
见p灡1所引S.D湽rr,etal.,Nature395(1998)33.



Bohr认为:“波动与粒子描述是两个理想的经典概念
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,每一个概念都有一个有
踿踿踿踿踿踿踿踿踿踿

限的适用范围
踿踿踿踿踿踿.在特定的物理现象的实验探讨中,辐射(radiation)和实物(matter)
均可展现其波动性或粒子性.但这两种理想的描绘中的任何单独一个

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,都不能对所
踿踿踿踿踿

涉及的现象给出完整的说明
踿踿踿踿踿踿踿踿踿踿踿踿.暠换言之,这两种描绘中任何单独一个都是不充分的.
尽管它们彼此不相容,但为了说明所有可能的实验现象,又都是必需的.为了表达

这种彼此不相容又都是必要的逻辑关系,Bohr提出了“互补性
踿踿踿

暠(complementarity)
这个术语.

从近年来量子力学的最新进展来看,除了 Bohr强调过的波动 粒子二象性

(wave灢particleduality)这一对互补性概念之外,互补性原理更深刻的含义还有待

探讨.例如,连续性
踿踿踿

(continuity)与离散性
踿踿踿

(discreteness)在量子力学中是并存的
踿踿踿踿踿踿踿踿踿踿

,两
者缺一不可.例如,体系的能量本征值,对于束缚态是离散的,而对于非束缚态则是

连续的.切不可误认为量子力学中所有力学量都是量子化的.又如概率性
踿踿踿

(proba灢
bilistic)描述与决定论性

踿踿踿踿踿踿踿
(deterministic)描述

踿踿
,在量子力学中也是并存的
踿踿踿踿踿踿踿踿踿踿踿.当体系处

于某力学量的本征态(如能量本征态,即定态)时,对该力学量的测量结果的描述,
是决定论性的,而对其他力学量的测量结果的描述,则一般是概率性的.因此,切不

可误认为量子力学对自然现象的描述都是概率性的.
作者认为,Bohr的互补性原理的深刻内涵,并不是所有的人都已充分认识到.

这表现在关于量子力学基本概念和原理的诠释的长期争论中.作者相信,在人类对

于微观世界认识的进一步发展中,互补性原理的重要性会逐步被人们理解.

1灡2暋密 度 矩 阵

按1灡1节的讨论,一个体系的量子态氉,用 Hilbert空间中的一个矢量(方向)
来描述,记为 氉暤,它不涉及表单问题.体系的一组对易力学量完全集,例如,F 的

共同本征态氉n,F
暷

氉n=Fn氉n,则记为 氉n暤,或简记为 n暤,n代表一组完备的量子数

(设取离散值).以 n暤为基矢的表象,称为F 表象.这一组基矢的完备性表现为

暺
n

n暤暣n = 暺
n
Pn =1 (1灡2灡1)

Pn= n暤暣n 是沿基矢 n暤方向的投影算符,满足

P+
n =Pn,暋PnPn曚 =Pn毮nn曚 (1灡2灡2)

体系的任何一个量子态 氉暤都可用这一组完备基展开

氉暤= 暺
n

n暤暣n氉暤= 暺
n
Pn 氉暤= 暺

n
Cn n暤 (1灡2灡3)

态矢 氉暤经过投影算符Pn= n暤暣n 的运算后,变成Cn n暤,Cn=暣n氉暤描述相应的

分量的大小及相位,即 氉暤在 n暤表象中的表述.

利用投影算符Pn= n暤暣n ,算符F
暷

可以表示成
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F
暷

= 暺
n
Fn n暤暣n (1灡2灡4)

称为F
暷

的谱表示(spectralrepresentation).下面对投影算符概念进行推广,定义

与量子态 氉暤相应的投影算符氀= 氉暤暣氉 ,称为与量子态 氉暤相应的密度算符栙栚.
它可以作为量子态的另一种描述方式.对于纯态

踿踿
(purestate)氉暤,这两种描述方式

是等价的(见1灡2灡1节).但对于不能用一个波函数氉 来描述的混合态
踿踿踿

(mixed
state),就需要用密度算符来描述(其定义见1灡2灡2节).

1灡2灡1暋密度算符与密度矩阵

考虑到随时间的演化,量子态记为 氉(t)暤,设已归一化,暣氉(t)氉(t)暤=1.定义

与 氉(t)暤相应的密度算符

氀(t)= 氉(t)暤暣氉(t) (1灡2灡5)
按此定义,显然

氀+=氀 (1灡2灡6)

氀2 =氀 (1灡2灡7)
如采用一个具体表象(离散),例如F 表象,则与量子态 氉(t)暤相应的密度算

符,可表成如下矩阵形式,称为密度矩阵

氀nn曚(t)=暣n氀(t)n曚暤

=暣n氉(t)暤暣氉(t)n曚暤=Cn(t)C*
n曚 (t)

(1灡2灡8)

其对角元为

氀nn(t)= Cn(t)2 = 暣n氉(t)暤2 曒0 (1灡2灡9)
是 氉暤态下测量F 得到Fn 值的概率,也是投影算符Pn 在 氉暤态下的平均值.由

氉(t)暤的归一化条件,可得密度矩阵的对角元之和为1.

tr氀= 暺
n

Cn(t)2 =1 (1灡2灡10)

密度算符氀还可以表示成

氀= 氉(t)暤暣氉(t)= 暺
nn曚

n暤暣n氉(t)暤暣氉(t)n曚暤暣n曚

=暺
nn曚

Cn(t)C*
n曚 (t)n暤暣n曚 = 暺

nn曚
氀nn曚(t)n暤暣n曚 (1灡2灡11)

从式(1灡2灡8)可以看出,如氀nn曚=0,则Cn=0或Cn曚=0,二者必居其一.而只当Cn 和

Cn曚均不为0时,氀nn曚才不为0.所以,与量子态 氉暤相应的密度矩阵的矩阵元氀nn曚出现

(不为0)时,量子态 氉暤中必含有 n暤和 n曚暤态的成分.氀nn曚的值与 n暤和 n曚暤态在

·31·

栙

栚
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氉暤态中出现的概率和相对相位都有关.如 氉暤就是F
暷

的某一个本征态 k暤,则

氀nn曚=暣nk暤暣kn曚暤=毮nk毮n曚k=毮nn曚毮nk,它是一个对角矩阵,而且对角元中只有一个元

素氀kk不为0(氀kk=1)(见后面的例1)灡
其次,讨论力学量的平均值如何用密度矩阵来计算.在 氉暤态下,力学量G 的

平均值为

暣G暤=暣氉G 氉暤= 暺
nn曚

暣氉n暤暣nG n曚暤暣n曚氉暤

=暺
nn曚

C*
nGnn曚Cn曚 = 暺

nn曚
氀n曚nGnn曚

=暺
n曚

(氀G)n曚n曚 = 暺
n

(G氀)nn

所以
暣G暤=tr(氀G)=tr(G氀) (1灡2灡12)

特例暋对于G=F 情况,Gnn曚=Fn毮nn曚,暣G暤=暣F暤= 暺
n

Cn
2Fn .测量F 时,得

Fn 值的概率为

P(Fn)=tr(Pn氀)=tr(氀Pn)= Cn
2 (1灡2灡13)

式中Pn= n暤暣n ,因为[利用式(1灡2灡1)]

tr(氀Pn)=tr[暺
n曚n曞

Cn曚C*
n曞 n曚暤暣n曞 n暤暣n ]

=tr[暺
n曚
Cn曚C*

n n曚暤暣n ]

=暺
n曚
Cn曚C*

ntr[n曚暤暣n ]= Cn
2 (1灡2灡14)

暋暋最后讨论密度算符氀(t)随时间的演化.这需要借助Schr昳dinger方程

i焻h灥
灥t氉(t)暤=H 氉(t)暤 (1灡2灡15)

由此,可得

d
dt氀

(t)=灥氉(t)暤
灥t

暣氉(t)+ 氉(t)暤灥
灥t

暣氉(t)

=H 氉(t)暤
i焻h

暣氉(t)+ 氉(t)暤暣氉(t) H
-i焻h

=1
i焻h H氀(t)-氀(t)[ ]H

所以栙

d
dt氀

(t)= 1
i焻h

[H,氀(t)] (1灡2灡16)
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如选择一个具体的离散表象,则上式表述成一个矩阵方程.特别是,如选择能
踿

量表象
踿踿踿

,即以 H 本征态 n暤为基矢的表象(H n暤=En n暤,n为一组量子数完全

集),则

d
dt氀nn曚(t)= 1

i焻h
(En -En曚)氀nn曚 (1灡2灡17)

因而

氀nn曚(t)=氀nn曚(0)e-i氊nn曚t

氊nn曚 = (En -En曚)/焻h (1灡2灡18)
即非对角元

踿踿踿踿氀nn曚(t)(n曎n曚)以角频率
踿踿踿踿氊nn曚振荡

踿踿
,而对角元则不随时间变化

踿踿踿踿踿踿踿踿踿踿.
讨论

在坐标表象中,密度算符氀= 氉暤暣氉 的“矩阵元暠可表示成

氀(r,r曚)= 暣r氀r曚暤= 暣r氉暤暣氉r曚暤=氉* (r曚)氉(r) (1灡2灡19)
其“对角元暠为

氀(r,r)=氉* (r)氉(r) (1灡2灡20)
即粒子在坐标空间的概率密度.为以后方便,有时把它记为 W (r)=氉* (r)氉(r)

= 暣r氉暤2.
与此类似,在动量表象中,密度“矩阵暠可表示成

氀(p,p曚)= 暣p氉暤暣氉p曚暤=毤* (p曚)毤(p) (1灡2灡21)
式中毤(p)=暣p氉暤.“对角元暠为

氀(p,p)= 暣p氉暤暣氉p暤=毤* (p)毤(p) (1灡2灡22)
以后记为W(p)=毤* (p)毤(p)= 暣p氉暤2.

思考题1暋对于一个无自旋的粒子,当给定W(r)之后,其量子态是否确定? 当给定W(p)

之后,量子态是否确定? 当W(r)和W(p)都给定后,量子态是否可以确定下来? 试举例以说

明.并对你的回答进一步思考,其更深层次的原因是什么?栙栚 (提示:联系量子态的相位问

题)

思考题2暋考虑如下算符(m 为粒子质量)

K
暷

= 1
2m

[r暤暣rp+pr暤暣r ]= 1
2m

[P(r)p+pP(r)] (1灡2灡23)

求它在量子态 氉暤下的平均值.
答:

暣氉 K
暷

氉暤=-i焻h
2m

[氉* (r)

殼

氉(r)-氉(r)

殼

氉* (r)]=j(r) (1灡2灡24)

即粒子的流密度.
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例1暋(1)求电子自旋氁x=暲1的本征态在 Pauli表象(氁z 表象)中的密度矩阵.(2)进而求

它在氁x 表象中的密度矩阵.

答:(1)在氁z 表象中,基矢记为 朁暤=
æ

è
ç

ö

ø
÷

1
0

, 朂暤=
æ

è
ç

ö

ø
÷

0
1

,分别为氁z=暲1的本征态.在此

表象中,氁x=暲1的本征态记为

曻暤= 1
2

æ

è
ç

ö

ø
÷

1

1
,暋 曽暤= 1

2

暋1

-
æ

è
ç

ö

ø
÷

1
(1灡2灡25)

由此不难求出,氁x=+1和氁x=-1的本征态相应的密度矩阵分别为

氀= 1
2

1暋1

1暋
æ

è
ç

ö

ø
÷

1
,暋氀= 1

2
暋1暋-1

-
æ

è
ç

ö

ø
÷

1 1
(1灡2灡26)

例如,氁x=+1的本征态相应的密度矩阵的矩阵元氀00= 暣朁 曻暤暣曻 朁暤=(1/2)(1/2)=

1/2,等等.上式中对角元氀00=氀11=1/2,表示在氁x=+1(或-1)的本征态下,测量氁z 得氁z=+1
(或氁z=-1)的概率均为1/2.非对角元氀01和氀10不为0,表示在氁x=+1(或-1)态下,测量氁z

时,氁z=暲1的概率都不为0灡事实上

曻暤= 1
2

( 朁暤+ 朂暤), 曽暤= 1
2

( 朁暤- 朂暤) (1灡2灡27)

它们分别是氁z=暲1的本征态的相干叠加(等权重,但相对相位不同!).
(2)氁z 表象曻氁x 表象的幺正变换矩阵为

S=
暣曻 朁暤暋暣曻 朂暤

暣曽 朁暤暋暣曽 朂

æ

è
ç

ö

ø
÷

暤
= 1

2

-1暋暋1

暋1暋-
æ

è
ç

ö

ø
÷

1
(1灡2灡28)

逆变换为

S-1 =
暣朁 曻 暤暋暣朁 曽暤

暣朂 曻 暤暋暣朂 曽

æ

è
ç

ö

ø
÷

暤
= 1

2

-1暋暋1

暋1暋-
æ

è
ç

ö

ø
÷

1
=S+=S (1灡2灡29)

容易验证SS+ =1灡因此,氁x=+1的本征态 曻 暤,在氁x 表象中的密度矩阵为

S 1
2

1暋1
1暋

æ

è
ç

ö

ø
÷

1
S-1 =

1暋0
0暋

æ

è
ç

ö

ø
÷

0
(1灡2灡30)

即只有对角元中的一个元素(氀11=1)不为0灡容易验证,氀2=氀,tr氀=1,氀+ =氀.

例2暋电子自旋s=焻h
2氁沿空间方向n(sin毴cos氄,sin毴sin氄,cos毴)的分量氁·n(采用

Pauli表象)的矩阵表示为

氁·n=
cos毴 sin毴e-i氄

sin毴ei氄 -cos
æ

è
ç

ö

ø
÷

毴
(1灡2灡31)

它的本征态为

氁n =1暤=
cos毴

2e-i氄/2

sin毴
2ei氄/

æ

è

ç
ç
ç

ö

ø

÷
÷
÷2

,暋 氁n =-1暤=
sin毴

2e-i氄/2

-cos毴
2ei氄/

æ

è

ç
ç
ç

ö

ø

÷
÷
÷2

(1灡2灡32)

不难证明它们相应的投影算符分别为
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氀(氁n =1)= 氁n =1暤暣氁n =1 =
cos2 毴

2 sin毴
2cos毴

2e-i氄

sin毴
2cos毴

2ei氄 sin2 毴

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

2

氀(氁n =-1)= 氁n =-1暤暣氁n =-1 =
sin2 毴

2 -sin毴
2cos毴

2e-i氄

-sin毴
2cos毴

2ei氄 cos2 毴

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

2
(1灡2灡33)

当毴=毿/2,氄=0时,上式回到例1式(1灡2灡26)灡不难验证算符

氁·n= 氁n =1暤暣氁n =1 - 氁n =-1暤暣氁n =-1 (1灡2灡34)

可证明,在 氁n=1暤态下,暣氁暤=n,即

暣氁x暤=tr(氀氁x)=sin毴cos氄
暣氁y暤=tr(氀氁y)=sin毴sin氄
暣氁z暤=tr(氀氁z)=cos毴 (1灡2灡35)

例3暋求自旋为焻h/2的粒子的极化矢量.
可以证明,任何2暳2矩阵都可以表示成Pauli矩阵氁x、氁y、氁z 和2暳2单位矩阵的某种线性

叠加.因此,与自旋态 氉暤相应的密度矩阵总可表示成如下形式:

氀=a0I+a·氁 (1灡2灡36)

式中a0 与a待定.上式求迹(求对角元之和),tr氀=2a0=1,所以a0=1/2.上式乘氁i(i=x,y,z),

分别求迹,得tr(氀氁i)= 暣氁i暤=2ai,所以ai=1
2

暣氁i暤,即氁=1
2

暣氁暤.

定义 氉暤态下粒子的极化矢量

P= 暣氁暤= 暣氉氁 氉暤 (1灡2灡37)

则密度矩阵可表示成

氀= 1
2

(I+P·氁) (1灡2灡38)

例如,相应于氁n=1的本征态[见式(1灡2灡32)],利用式(1灡2灡31),可求出

氀(毴,氄)=
cos2 毴

2 sin毴
2cos毴

2e-i氄

sin毴
2cos毴

2ei氄 sin2 毴

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

2
与式(1灡2灡33)相同.

设粒子自旋在空间指向完全无规
踿踿踿踿

(各方向等概率),则密度矩阵可表示成

氀= 1
4毿曇氀(毴,氄)d毟 (1灡2灡39)

利用式(1灡2灡33),可求出

氀= 1
2

1暋0
0暋

æ

è
ç

ö

ø
÷

1
= 1

2I (1灡2灡40)

与式(1灡2灡38)中P=0的情况相同.注意,按式(1灡2灡40),氀2曎氀.这似乎违反了密度矩阵的一般

性质[见式(1灡2灡7)].实则不然,式(1灡2灡7)氀2=氀只对一个纯态成立,而用式(1灡2灡40)描述的态

(粒子已是等概率处于沿任何方向极化的状态),是一个混合态(见1灡2灡2节).
·71·



1灡2灡2暋混合态的密度矩阵

有的实验装置中制备出来的体系,并不处于一个纯态(即并非某一组力学量完

全集的共同本征态).例如,从温度为T 的炉子中蒸发出来的原子,自然光源发出

的非偏振光等.这样制备出来的体系的量子态,不能用单纯的一个波函数来描述
踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

人们对这种状态下的量子体系,能了解到的信息是不完备的.如何去建立一种理论

形式以给出该体系尽可能多的信息? 为此,需要推广上面讨论过的密度算符的

概念.
设 氉i暤(i=1,2,3,…)表示力学量完全集 L 的正交归一的共同本征态,

暺
i

氉i暤暣氉i =1灡设t时刻体系处于 氉k暤态的概率为pk(0曑pk 曑1,暺
k
pk =1),

即处于一系列纯态的某种统计混合态.混合态的密度算符定义如下:

氀= 暺
k
pk 氉k暤暣氉k = 暺

k
pk氀k (1灡2灡41)

式中氀k= 氉k暤暣氉k 是与纯态 氉k暤相应的密度算符.不难证明,这种推广了的密度算

符,除氀2=氀不再成立之外,具有与纯态相应的密度算符相同的如下一些性质[参
阅式(1灡2灡6),(1灡2灡10),(1灡2灡16)]:

氀+=氀 (1灡2灡42)

tr氀=暺
k
pktr氀k = 暺

k
pk =1 (1灡2灡43)

d
dt氀=暺

k
pk

d
dt氀k = 1

i焻h暺
k
pk[H,氀k]

=1
i焻h

[H,暺
k
pk氀k]= 1

i焻h
[H,氀] (1灡2灡44)

而

氀2 =暺
kk曚

pkpk曚 氉k暤暣氉k 氉k曚暤暣氉k曚 = 暺
kk曚

pkpk曚 氉k暤暣氉k曚 毮kk曚

=暺
k
p2

k 氉k暤暣氉k 曑 暺pk 氉k暤暣氉k =氀暋暋(p2
k 曑pk) (1灡2灡45)

上式中的等式只在纯态下才成立.由此可知tr氀2曑1.
在用氀描述的混合态下,力学量的平均值公式形式上也不变[参见式(1灡2灡12)],

例如

暣G暤=暺
k
pk暣氉k G 氉k暤= 暺

k
pktr(氀kG)

=tr 暺
k
pk氀k( )G =tr(氀G) (1灡2灡46)

在以力学量完全集F 的本征态 n暤(Fn暤=Fn n暤)为基矢的表象中,氀表示为如下

密度矩阵:

氀nn曚 =暺
k
pk暣n氉k暤暣氉k n曚暤=暺

k
pkCk

nCk*
n曚 ,
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Ck
n = 暣n氉k暤,Ck*

n曚 = 暣氉k n曚暤 (1灡2灡47)

其对角元为

氀nn = 暺
k
pk Ck

n
2 曒0 (1灡2灡48)

Ck
n

2 是在纯态 氉k暤下测量F 得到Fn 值的概率.氀nn称为在混合态下量子态 n暤的
布居(population),即在混合态下测得体系处于 n暤态的概率.非对角元氀nn曚表征在

氀描述的混合态下,n暤与 n曚暤的相干(coherence).如氀nn曚=0,则表示在此混合态下

n暤与 n曚暤态不相干.

如所取表象F=L,则Ck
n=毮kn,而氀nn曚 = 暺

k
pk毮kn毮kn曚 =pn毮nn曚,氀就是对角矩

阵,对角元氀nn=pn.
如F 为能量表象(力学量完全集 内包含有体系的 不含时 Hamilton 量),

H n暤=En n暤,则

d
dt氀nn曚(t)= 1

i焻h
(En -En曚)氀nn曚(t) (1灡2灡49)

所以

氀nn曚(t)=氀nn曚(0)e-i氊nn曚t,暋氊nn曚 = (En -En曚)/焻h (1灡2灡50)
即非对角元氀nn曚(t)以角频率氊nn曚振荡,而对角元不随时间变化氀nn(t)=氀nn(0)灡

例4暋从高温炉蒸发出的银原子(自旋焻h/2)的自旋指向是完全无规的,即等概率指向空间

各方向,因此其密度矩阵表示为[见式(1灡2灡40)]

氀= 1
2

1暋0
0暋

æ

è
ç

ö

ø
÷

1
= 1

2I (1灡2灡51)

值得提到,通过不同的制备方式得到的混合态的密度矩阵
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,可以相同
踿踿踿踿.例如,制备出的电子有1/2

概率处于自旋沿z方向极化态 æ

è
ç

ö

ø
÷

1
0

,同时有1/2概率处于沿-z方向极化态 æ

è
ç

ö

ø
÷

0
1

,则密度矩阵为

氀= 1
2

1暋0
0暋

æ

è
ç

ö

ø
÷

0
+ 1

2
0暋0
0暋

æ

è
ç

ö

ø
÷

1
= 1

2
1暋0
0暋

æ

è
ç

ö

ø
÷

1
= 1

2I (1灡2灡52)

与式(1灡2灡51)相同.按例3的讨论,处在这种密度矩阵描述的量子态下,粒子自旋沿任何方向的

极化矢量P=暣氁暤=0.
应该强调,初学者由于对波函数的统计诠释的误解,可能把纯态与混合态概念混淆起来,由

此而得出错误的结论.如把处于 氁z=+1暤的本征态

氁z =+1暤=
æ

è
ç

ö

ø
÷

1
0

= 1
2

暋1
2

æ

è
ç

ö

ø
÷

1
1

+ 1
2

暋1

-
æ

è
ç

ö

ø
÷[ ]1

= 1
2

[氁x =1暤+ 氁x =-1暤] (1灡2灡53)

的电子,理解为已有
踿踿 1/2概率处于 氁x =1暤态,同时 已 有

踿 踿 1/2概率处于 氁x = -1暤态(这是

式(1灡2灡52)密度矩阵氀=1
2I所示的混合态).如按此观点,则处于 氁x=+1暤态和 氁x=-1暤态下
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氁x =+1暤= 1
2

æ

è
ç

ö

ø
÷

1
0

+
æ

è
ç

ö

ø
÷[ ]

0
1

= 1
2

[氁z =+1暤+ 氁z =-1暤]

氁x =-1暤= 1
2

æ

è
ç

ö

ø
÷

1
0

-
æ

è
ç

ö

ø
÷[ ]

0
1

= 1
2

[氁z =+1暤- 氁z =-1暤] (1灡2灡54)

的电子,也都已有1/2概率处于 氁z=-1暤态.这样,按式(1灡2灡53)与(1灡2灡54)和上述分析,在

氁z=+1暤态[见式(1灡2灡53)]的电子就有1
2

·1
2+1

2
·1

2= 1
2

概率处于 氁z=-1暤态.这当然

是十分荒谬的.出现此错误结论的原因是对波函数统计诠释的误解.在 氁z=+1暤态下[见式

(1灡2灡53)],可以把它展开成 氁x=+1暤和 氁x=-1暤态的叠加,叠加系数的模方,按波函数的统

计诠释,分别代表测量氁x 得到氁x=+1和氁x=-1的概率的一种预期(expectation),所预言的概

率是潜在
踿踿

的(potential),不能误认为在 氁z=+1暤态下,已经
踿踿

分别有1/2概率处于 氁x=+1暤和

氁x=-1暤态[后一情况正是式(1灡2灡51)所示密度矩阵所示的混合态].
例5暋Bloch球.
在例3中,给出了自旋为1/2的粒子的自旋态的密度矩阵的一般形式

氀(P)= 1
2

(1+氁·P) (1灡2灡55)

式中P=tr(氀氁)=暣氁暤表征体系的极化度(polarization).对于自旋指向空间方向n(sin毴cos氄,sin毴

sin氄,cos毴)的完全极化态(例2),可以证明暣氁暤=n,因此相应的密度矩阵为(P=n,P =1)

氀(n)= 1
2

(1+氁·n) (1灡2灡56)

而对于自旋指向完全无规的自旋态(见例4),P=暣氁暤=0,因而密度矩阵为

氀= 1
2I (1灡2灡57)

它是一个完全不极化的混合态.
在一般情况下,密度矩阵式(1灡2灡55)中

氀(P)= 1
2

1+Pz Px -iPy

Px +iPy 1-P
æ

è
ç

ö

ø
÷

z

(1灡2灡58)

det氀(P)=1
4

(1-P2).考虑到密度矩阵具有非负本征值的特征,det氀曒0,可知0曑 P 曑1,即矢

量P处于半径为 P =1的球(称为 Bloch球)面上或球内部.P 表征极化度,完全极化态

P =1,是一个纯态.部分极化(P <1)以及完全不极化(P=0)的态则为混合态.
例6暋与大热源达到平衡,温度为T 的体系(正则系综),处于非纯态,用密度算符

氀= 1
Ze-毬H (1灡2灡59)

描述,毬=1/kT,k为Boltzmann常量,H 为 Hamilton算符,Z=tr(e-毬H )称为配分函数(partition

function).在能量表象中(基矢 n暤,H n暤=En n暤),密度矩阵为

氀nn曚 = 1
Ze-毬En毮nn曚

Z= 暺
n

e-毬En (1灡2灡60)
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以谐振子为例,En=(n+1
2

)焻h氊,n=0,1,2,…

Z= 暺
n

e-毬(n+1/2)焻h氊 =e-毬焻h氊/2(1-e-毬焻h氊)-1 (1灡2灡61)

谐振子处于En 能级的概率为

P(En)=tr(氀Pn)= 1
Ztr(e-毬H n暤暣n )

=1
Ze-毬Entr(n暤暣n )= 1

Ze-毬En (1灡2灡62)

所以能量平均值为

暣E暤=tr(氀H)= 暺
n
P(En)En = 1

Z暺
n

e-毬EnEn =- 1
Z

灥
灥毬

Z

=- 灥
灥毬

lnZ=焻h氊 1
2 + 1

e毬焻h氊 -( )1
(1灡2灡63)

可以看出,当T曻曓(毬曻0)时,暣E暤曻1
毬

=kT,与经典统计(Boltzmann统计)给出的结果相同.相

反,在低温极限T曻0(毬曻曓)下,暣E暤=焻h氊/2,即所有谐振子在低温极限下,都倾向于布居在基

态上.

1.3暋复 合 体 系

复合体系(compositesystem)是指一个多粒子体系,或含有两个或多个子体系

(subsystem)的复合体系.它们都具有多个自由度
踿踿踿踿踿踿踿.从量子力学理论来讲,对于一

个多自由度体系或多粒子体系,如果只测量与它的一部分自由度相关的可观测量,
测量就是不完全的测量.在此情况下,为了描述子体系的量子态,例如,计算子体

系的某个可观测量的平均值(期待值),就需要引进约化密度矩阵
踿踿踿踿踿踿

(reduceddensity
matrix).

1灡3灡1暋直积态与纠缠态

先讨论两个量子体系A 和B 的量子纯态(purestate),分别用 Hilbert空间

HA 和HB 的矢量|氉暤A 和|氄暤B 描述.复合体系(A+B)的量子态|毞暤AB 是 Hilbert
空间 HA熱HB 的一个矢量.假设|毞暤AB可以表示成|毞暤A与和|氄暤B的直积,即

旤毞暤AB =旤毞暤A 熱旤氄暤B (1.3.1)

则称|氉暤AB为直积态
踿踿踿

(productstate);否则称|毞暤AB为纠缠态
踿踿踿

(entangledstate).
以上讨论可以推广到N 体量子体系的纯态

踿踿.假设 N 体量子体系的量子态可

以表示为

旤毞暤ABC… =旤氉暤A 熱旤氄暤B 熱旤氈暤C 熱 … (1.3.2)
其中

·12·



旤毞暤ABC… 暿 HABC… ,HABC… =HA 熱 HB 熱 HC 熱 …,

旤氉暤A 暿 HA,旤氄暤B 暿 HB,…,旤氈暤C 暿 HC,…
则称|毞暤ABC… 为直积态,否则称为纠缠态.

以上讨论只适用于纯态
踿踿踿踿踿踿踿踿踿踿.混合态

踿踿踿
(mixedstate)的纠缠要复杂得多

踿踿踿踿踿踿踿踿.有兴趣的

读者,可参见文献栙

1灡3灡2暋约化密度矩阵

考虑复合体系(A+B).设{|氉i暤A}构成子体系A 的量子态的一组完全集,

{|氄毺暤B}构成子体系B的量子态的一组完全集,则|氉i暤A熱|氄毺暤B曉|氉i暤A|氄毺暤B(即|氉i暤A
与|氄毺暤B 的直积)构成复合体系(A+B)的量子态的一组完备基(称为直积态表象,或
非耦合表象).复合体系(A+B)的任何一个量子态可以表示成这一组完备基的线性

叠加

旤毞暤AB =毑i毺ai毺旤氉i暤A旤氄毺暤B,毑i毺旤ai毺旤2 =1 (1.3.3)
相应的密度矩阵为

氀AB =旤毞暤ABAB暣毞旤=毑i毺j毻a*
j毻ai毺旤氉i暤A旤氄毺暤B A暣氉i旤B暣氄毺旤 (1.3.4)

对于复合体系(A+B)来讲,这是一个纯态
踿踿.

设QA 是子体系A 的一个可观测量(只依赖于A 的动力学变量).如把A 看成

复合体系(A+B)的子体系,这个可观测量可以表示成Q=QA熱IB,IB 为单位算

符,它只作用于子体系B 的 Hilbert空间.在|毞暤AB态下Q 的平均值可以计算如下

暣Q暤=trAB(氀ABQ)暋暋暋暋暋暋暋暋暋 (1.3.5)
在非耦合表象中,

暣Q暤= AB暣毞旤QA 熱IB旤毞暤AB

=毑j毻a*
j毻A暣氉j旤B暣氄毻旤QA 熱IB毑i毺ai毺旤氉i暤A旤氄毺暤B

=毑ij毺a
*
j毺ai毺Ai毺暣氉j旤QA旤氉i暤A (1.3.6)

它可以表示成[注1]
暣Q暤=trA(氀AQA) (1.3.7)

式中

氀A =毑ij毺ai毺a
*
j毺旤氉i暤AA暣氉j旤=trB(氀AB) (1.3.8)

氀A=trB(氀AB)称为约化密度矩阵
踿踿踿踿踿踿

(reduceddensitymatrix).利用氀A 来计算暣QA暤
时,只需利用下式[注1]

暣QA暤=trA(氀AQA) (1.3.9)

暋暋可以证明,约化密度矩阵氀A=氀
+
A 具有如下性质[注2]:
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(1)氀A 为非负

(2)trA氀A =1 (1灡3灡10)
因此氀A 可以对角化,本征值为非负实数,而且所有本征值之和为1.

一般说来,氀2
A=氀A 并不一定成立

踿踿踿踿踿踿
,除非
踿踿|毞暤AB为一个直积态

踿踿踿踿踿踿.由此可以看出,当
人们面对一个较大体系的子体系(而不顾及其余子体系)时,即使较大体系的量子态

是一个纯态,可以用 Hilbert空间HA熱HB 中的一个矢量来描述,它对于子体系的量

子态的描述,不一定是一个纯态,一般说来,需要用混合态的密度矩阵来描述.

[注1]trB(氀AB)=trB|毞暤ABAB暣毞|=毑毺曚暣氄曚毺|毑ij毺a*
j毻ai毺|氉i暤A|氄毺暤BA暣氉j|A暣氄毻|氄曚毺暤B

=毑ij毺a*
j毺aj毺|氉i暤AA暣氉j|=氀A

此即(1.3.8)式.按此氀A 的形式,

trA(氀AQA)=毑i曚A暣氄i曚旤毑ij毺ai毺a*
j毺旤氉i暤AA暣氉j旤QA旤氄i曚暤A =毑ij毺ai毺a*

j毺A暣氄j旤QA旤氄i暤A = 暣QA暤

此即(1.3.9)式.
[注2]trA(氀A)=毑i曚A暣氄i曚|毑ij毺ai毺a*

j毺|氉i暤AA暣氉j|氉i曚暤A=毑i曚ij毺ai毺a*
j毺毮i曚i毮i曚j=毑i毺|ai毺|2=1

在子体系A 的任何一个量子态|氉暤A 下,氀A 平均值为

暣氀A暤= A暣氉旤氀A旤氉暤A =毑ij毺ai毺a*
j毺A暣氉旤氉i暤A A暣氉j旤氉暤A =毑毺旤毑iai毺A暣氉暚氉i暤A旤2 曒0

暋暋[注3]对于2体复合体系,用密度矩阵来表述,如果氀AB ==氀A熱氀B,则称|氉暤AB 为直积态,否

则称为纠缠态.
推广到多体复合体系,如果氀ABC… =氀A熱氀B熱氀c…则称|氉暤ABC… 为直积态,否则称为纠缠态.

1灡3灡3暋Schmidt分解,vonNeumann熵

以下讨论2体纯态
踿踿

的Schmidt分解栙.设量子体系A 和B 的量子纯态分别用

Hilbert空间 HA 和HB 的矢量|氉暤A和|氉暤B描述.2体复合体系(A+B)的纯态|

氉暤AB是空间HA熱HB 的一个矢量,其一般表述形式为

旤氉暤AB = 暺n毻cn毻旤氉n暤A 熱旤氄毻暤B (1.3.11)

|氉n暤A和|氄毻暤B分别是 Hilbert空间 HA 和HB 中的一组正交归一化基,

A暣氉n旤氉m暤A =毮nm,暣氄毻旤氄毺暤=毮毻毺 (1.3.12)

设作如下局域幺正变换
踿踿踿踿踿踿LUC(localunitarytransformation),使|氄毻暤B曻|氈n暤B

旤氈n暤B =毑毻cn毻旤氄毻暤B (1.3.13)
注意:这个局域幺正变换

踿踿踿踿踿踿
赖与所讨论的态|氉暤AB.设经过此局域幺正变换

踿踿踿踿踿踿
后,|氉暤AB

可以表示为如下形式

旤氉暤AB =毑n旤氉n暤A旤氈n暤B (1.3.14)
此时,
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B暣氈m暚氈n暤B =毑毻c*
m毻cn毻 =pn毮mn(pn 实数) (1.3.15)

不妨让|氈n暤B 归一化,令

旤fn暤B = 1
pn

旤氈n暤B,B暣fn暚fm暤B =毮mn (1.3.16)

而|氉暤AB可以表示为

旤氉暤AB =毑n pn旤氉n暤A旤fn暤B (1.3.17)
令

毸n = pn,暋n=1,2,…,M (1.3.18)
毸n 称为Schmidt系数,M 称为Schmidt数.如 M=1,|氉暤AB为直积态.对于M>1,

|氉暤AB称为纠缠态.此时

氀AB =旤氉暤ABAB暣氉旤=毑mn pnpm旤氉n暤A旤fn暤B B暣fm旤A暣氉m旤 (1.3.19)
而约化密度矩阵为

氀A =trB氀AB = 暺
mn

B
暣氈m旤氈n暤B旤氉n暤A A暣氉m旤

=毑npn旤氉n暤A A暣氉n旤 (1.3.20)

氀B =trA氀AB =毑npn旤fn暤B B暣fn旤 (1.3.21)
可见氀A 与氀B 具有相同的非

踿踿踿踿踿踿0对角元
踿踿踿

,但矩阵的维数可以不同(对角线上的0矩阵

元的个数可以不同),即氀A 与氀B 具有相同的秩
踿

(rank).
表面看来,Schmidt数M 愈大,可能意味“更大的纠缠暠.可以证明,用 M 作为

纠缠度是不太合适的.但可以用{毸n;n=1,2,…,M}构成的另一个函数作为纠缠

度,称为部分熵
踿踿踿

(partialentropy),或称为vonNeumann熵
踿

栙.
2体纯态|氉暤AB的量子纠缠度

踿踿踿E(|氉暤AB)=S(氀A)=S(氀B),S(氀A)定义为

S(氀A)=S(氀B)=-tr(氀Alog氀A)=-tr(氀Blog氀B)

=-毑M
n=1毸nlog毸n (1.3.22)

这里的对数log,是以2为底.对于直积态|氉暤AB=|氉暤A熱|氉暤B,E(|氉暤AB)=0.对于2量

子比特的最大纠缠态(Bell基)中的任何一个态,则氀A=氀B=1
2I

,E=log2=1.对于纠缠

态,局域一定比全局更为混乱,这纯粹是量子特征,用经典概率分布得不出此结果.
N 体纯态的纠缠比

踿踿踿踿踿踿踿2体纯态的纠缠要复杂得多
踿踿踿踿踿踿踿踿踿踿踿

(见P灡22,文献栙).例如,对
于3体纯态,就不能像2体纯态那样进行Schmidt分解.

1灡3灡4暋波函数统计诠释的一种观点

按照量子力学正统理论,波函数可以给出对体系进行各种测量的结果出现的
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概率的预期值.文献栙对此提出了一种看法.他们认为,处理测量问题,应该把测

量装置与待测体系看成一个复合体系.而通常人们只对待测体系的测量结果有兴

趣(而不理会测量装置),此时人们就应该把待测体系看成复合体系的子体系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,用约
踿踿

化密度矩阵去描述测量结果
踿踿踿踿踿踿踿踿踿踿踿踿.

设待测体系(记为A)的一组可观测量完全集F 的共同本征态记为|氉n暤A,相应

的本征值为Fn,

F旤氉n暤A =Fn旤氉n暤A (1灡3灡23)
以{|氉n暤A}为基矢的表象中,待测体系A 的量子态|氉暤A可以表示为

旤氉暤A =毑ncn旤氉n暤A,暋cn = A暣氉n旤氉暤A,暋毑n旤cn旤2 =1 (1.3.24)
按照波函数的统计诠释,|cn|2 表示在|氉暤A 态下测量F 得到Fn 的概率.与|氉暤A相

应的密度矩阵为

氀A =旤氉暤A A暣氉旤=毑nmcnc*
m 旤氉n暤A A暣氉m旤 (1.3.25)

它描述的是一个纯态,它既有对角元pn=|cn|2,也有非对角元cnc*
m ,它刻画纯态的

相干性.
在测量过程中,应该把测量装置(记为B)与待测体系看成一个复合体系.设

测量时,待测体系A 可能处于|氉n暤A态,测量装置B 处于相应的|氉n暤B态,而复合体

系(A+B)的量子态一般可以表示为

旤毞暤AB =毑ncn旤氉n暤A旤氄n暤B (1.3.26)
对于复合体系来讲,这是一个纯态,但一般为纠缠态,相应的密度矩阵为

氀AB =旤毞暤ABAB暣毞旤=毑nmcnc*
m 旤氉n暤A旤氄n暤BA暣氉m旤B暣氄m旤 (1.3.27)

在测量时,通常人们只对待测体系A 的量子态有兴趣,而描述此子体系A 的量子

态应该用如下的约化密度矩阵

氀A =trB(氀AB)=毑lB暣氄l旤氀AB旤氄l暤B

=毑lmncnc*
m B暣氄l旤氄n暤B旤氉n暤A A暣氉m =旤B暣氄m旤氄l暤B

=毑n旤cn旤2旤氉n暤A A暣氉n旤=毑npn氀n (1.3.28)
上式中pn=|cn|2,氀n=|氉n暤A A暣氉n|描述待测体系A 的一个纯态.注意,氀A 的非对角

踿踿踿
元已全部消失
踿踿踿踿踿踿

,只剩下对角元
踿踿踿踿踿踿pn=|cn|2,氀A 描述的是A的一个混合态

踿踿踿.pn 表征在测

量F时,体系A处于F的本征态|氉n暤A 的几率.这就是量子态的统计诠释的含义.
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第2章暋量子力学与经典力学的关系

2灡1暋对 应 原 理

有关对应原理(correspondenceprinciple)的系统阐述,最早见于Bohr1918年

的文章栙,而正式使用对应原理这个词汇最早见于他1920年的文章栚~栜 .对应原

理提出:在大量子数极限情况下
踿踿踿踿踿踿踿踿踿踿

,量子体系的行为将渐近地趋于与经典力学体系相
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

同
踿.然而应该提到,对应原理思想的萌芽,在 Bohr1913年发表的划时代的论

文栞 ———“伟大的三部曲暠(greattrilogy)———中已可以明显看出(见其中第一篇论

文,第3节),尽管文中并未出现对应原理这个词汇栟 .1913年12月,在哥本哈根物

理学会上的报告中,Bohr又特别强调了这个思想的重要性栠 .从Bohr1913年的文

章开始,差不多整个10年中,Bohr的思想对于原子物理学和量子理论的发展有极

深刻的影响.这个时期的量子理论,有人称之为“早期量子论暠(theoldquantum
theory)或称为“对应原理的量子力学暠(thequantum mechanicsofthecorrespon灢
denceprinciple)栟 .它与Planck灢Einstein的关于辐射的量子理论一道,扮演了“A
provisionalquantummechanicsofsimplesystem暠的角色栟 .Bohr的早期量子论为

踿踿踿踿踿踿
经典物理学通往微观世界的新力学的过渡铺设了一座桥梁
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.1925年德国的年轻物

理学家 Heisenberg正是通过Bohr的对应原理这座桥梁,最终建立了微观体系的

新力学———矩阵力学.Heisenberg的矩阵力学的提出,可以认为是Bohr对应原理

的逻辑上发展的结果栟 .
不少原子物理学的教材中,在讲述 Bohr理论时把角动量量子化条件放在

很突出的地位.这可能出自教学法的考虑.但应强调,量子化条件并非 Bohr理

论中最实质性的部分.从历史事实来看,角动量量子化条件并不是 Bohr一人
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的贡献栙.F.Hund认为,Bohr量子论的主要贡献有两点(上页所引文献栟):
(1)光谱学中的Rydberg灢Ritz组合原则

毻=F(n1,…)-F(n2,…) (2灡1灡1)
是Bohr理论中的频率条件(量子跃迁关系式)

h毻=E(n1,…)-E(n2,…) (2灡1灡2)
的表现.

(2)频率

毻= [E(n+氂)-E(n)]/h (2灡1灡3)
当量子数很大时(n烅1,n烅氂),毻将趋于经典特征频率毻(E)的氂倍.

后一点正是对应原理的体现.在Bohr的“伟大三部曲暠的第一篇文章栚第3节

中正是根据这个思想来推导出氢原子能级公式,并在同一节中由此而得出了圆轨

道的角动量量子化条件.
Bohr在后来撰写的综述文章栛栜中是这样来概括他的工作的.他认为他的理

论中有两条最基本的假定:
(1)原子能够而且只能够稳定地存在于与离散的能量对应的一系列状态中,这

些态称为定态
踿踿.因此,体系能量的任何改变,包括吸收或发射电磁辐射,都必须在两

个定态之间以跃迁
踿踿

的方式进行.
(2)在两个定态之间跃迁时,吸收或发射的辐射频率毻是惟一的,其值由

h毻=E曚-E曞(频率条件) (2灡1灡4)
给出.这里h是Planck常量,E曚与E曞是所考虑的两个定态的能量(设E曚>E曞).

换句话说,Bohr理论最核心的思想有两条:一是原子具有能量不连续的定态
踿踿踿踿踿踿踿踿踿踿踿踿

概念
踿踿

;二是两个定态之间的量子跃迁概念和频率条件
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.这两条可以认为是对当时已

有实验事实的理论唯象概括,在尔后发展起来的量子力学理论中仍然被保留了

下来.
当然,只根据这两个假定还不能把原子的离散能量确定下来.Bohr是怎样求

出氢原子能级的呢? 在他的1913年的第一篇文章的第1节中得出了氢原子能级,
在第2节中利用所得到的能级公式和频率条件分析了氢原子和 He+ 的光谱,在第

3节中则基于对应原理的思想来论证他文章第1节中一些做法的正确性.下面简

述一下Bohr的思路.设电子在Coulomb场

V(r)=-毷
r

(2灡1灡5)
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中运动(对类氢离子毷=Ze2).考虑束缚态(E<0),按经典力学,电子轨道是一个椭

圆.设半长轴为a,半短轴为b,焦距c= a2-b2,偏心率e=c/a,则电子能量E 只

依赖于长轴的值为(见本书9灡1节,附录1)

E=-毷/2a (2灡1灡6)
电子轨道的周期T 也只与a(因而只与能量E)有关

T2 =4毿2ma3/毷 (2灡1灡7)

m 为电子质量(约化质量),因此,电子轨道运动频率

毻= 1
T = 1

2毿
毷
ma-3/2 = 1

毿毷
2
m E 3/2 (2灡1灡8)

以上完全是经典力学的结果.现在来考虑如何进行量子化.
Bohr认为,在这些经典轨道中只有某些离散的能量所对应的状态才是稳定

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
的
踿

,而这些离散的能量用正整数n来标记.他假定

E(n)=h毻(E)f(n) (2灡1灡9)

f(n)无量纲.但如何确定f(n)? Bohr提出,当量子数n很大时,量子理论所得结

果应该与经典力学相同.利用

f曚(n)=E曚(n)
h毻(E)+E

h
d
dn

1æ

è
ç

ö

ø
÷

毻

=E曚(n)
h毻(E)- E

h毻2
d毻
dE

·dE
dn

=E曚(n)
h毻(E)1-Edln毻

d
æ

è
ç

ö

ø
÷

E
(2灡1灡10)

考虑电子从n轨道(n烅1)跃迁到相邻的(n-1)轨道,殼n=1,两条轨道的能量差很

小,按式(2灡1灡10),得

殼E=E曚(n)殼n=E曚(n) 暋

=h毻(E)f曚(n) 1-Edln毻
d

æ

è
ç

ö

ø
÷

E
(2灡1灡11)

Bohr认为,在n烅1情况下,既然放出辐射之前和之后的轨道频率之比非常接近于

1,按照电动力学,可以期望放出的辐射的频率与电子轨道运动频率之比也应很接

近于1,即殼E=h毻(E),亦即要求

lim
n曻曓

f曚(n)=1-Edln毻
dE

(2灡1灡12)

特别是,如果经典轨道频率为

毻(E)曍 E 毭 (2灡1灡13)
按式(2灡1灡12),即要求n很大时

f曚(n)=1-毭
因而

f(n)= (1-毭)n+常数 (2灡1灡14)
·82·



对于Coulomb场[见式(2灡1灡8)],毭=3/2.因此,除了一个与n无关的常数之外,能
量E(n)可表示为

E(n)=-n
2h毻(E) (2灡1灡15)

联合式(2灡1灡8),得

E(n)=-2毿2毷2m
n2h2 (2灡1灡16)

对于类氢离子(毷=Ze2),有

E(n)=-2毿2Z2e4m
n2h2 =-Z2e4m

2焻h2n2 (2灡1灡17)

Bohr认为,可以合理地设想此公式对于量子数n小的轨道也适用.这就是氢原子

(类氢离子)的Bohr能级公式,式中n=1,2,3,…,称为主量子数
踿踿踿踿.

既然稳定态的能量是量子化的,可以想到,相应的轨道半径也应是量子化的.
对于氢原子[Z=1,参见式(2灡1灡6)与式(2灡1灡17)],

a= e2

2E =n2焻h2

me2 =n2a0 (2灡1灡18)

式中

a0 =焻h2/me2

称为Bohr半径.类似,稳定轨道的频率也是量子化的,

毻(n)=E(n)/hf(n)=- 2
nhE

(n)=4毿2e4m
n3h3 (2灡1灡19)

设电子轨道为圆形,则其轨道角动量为

J=ma2氊=2毿ma2毻=n焻h,暋n=1,2,3,… (2灡1灡20)
此即角动量量子化条件

踿踿踿踿踿踿踿踿.注意:在Bohr原来的文章中,它是作为一个推论
踿踿

给出的.
从上面讨论可以看出,如要直接利用对应原理思想来求出一个体系的量子化

能量,就需要先找出经典轨道频率对能量的依赖关系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿毻(E).一般说来,这是比较麻

烦的.反之,如直接把角动量量子化条件作为假设,就可以比较简单地求出量子化

的定态能量.这也许是在尔后几年中人们把注意力转向深入研究角动量量子化的

原因之一.
对应原理还可以用来分析更一般的跃迁.设原子从能级E(n)跃迁到能级

E(n-氂),n烅1,n烅氂,放出的辐射频率

[E(n)-E(n-氂)]/h
应为经典轨道频率毻(E)的氂倍,即

氂1
h

dE
dn =氂毻(E)

所以

毻(E)= 1
h

dE
dn

(2灡1灡21)
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在分析力学中,对于一个周期运动
踿踿踿踿

,有下列关系[见本节附录式(2灡1灡35)]:

毻=dE
dJ

(2灡1灡22)

其中

J=曈pdq (2灡1灡23)

称为作用量(action),p 与q 分别为正则动量和正则坐标.可证明J 为绝热不变
踿踿踿踿

量
踿

栙(adiabaticinvariant).比较式(2灡1灡21)与式(2灡1灡22),得 dJ=hdn,再利用

式(2灡1灡23),得

J=曈pdq=nh,暋n=1,2,3,… (2灡1灡24)

此即Sommerfeld等推广了的量子化条件
踿踿踿踿踿

栚栛.但更深入研究发现,借助相空间积分

形式的量子化条件,式(2灡1灡24)所进行的计算,有时会得出荒谬的结果栜,Ehren灢
fest等列举了一些情况来说明这一点栞栟.相反,利用对应原理却可以得出有意义

的结果栠.
在光谱观测中,除了谱线波长

踿踿
(频率
踿踿

)之外,还有一个重要的可观测量,即谱线

的相对强度
踿踿踿踿

,它与相应的跃迁概率成比例.对此问题,量子化条件是完全无能为力

的,但根据对应原理,可以在一定程度上处理此问题.Einstein对此有重要贡献栢.
例如,考虑原子从E(n)能级通过自发辐射跃迁到一条较低能级E(n-氂),按 Ein灢
stein的自发辐射的量子理论,单位时间放出辐射能量为

dE
dt =h毻氂An-氂

n (2灡1灡25)

An-氂
n 为自发辐射系数,毻氂 为辐射频率.如知道了An-氂

n ,就可以计算自发辐射相应的

谱线的相对强度.但如何计算An-氂
n ? 在量子力学提出以前,惟一的办法只能借助

于对应原理.当n烅1,n烅氂时,相应的自发辐射频率为毻氂=氂毻c,即经典轨道频率毻c

的氂倍.以下以电偶极辐射为例.在经典电动力学中,把电偶极矩 P 做 Fourier
展开

P = 暺
+曓

氂=-曓
P氂exp(i2毿氂毻ct) (2灡1灡26)
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见L.D.LandauandE.M.Lifshitz,Mechanics,3rded.,p.154,49节(世界图书出版公司,北京,

1999).
A.Sommerfeld,MenchenerBer.(1915),425,429;(1916),131.
W.Wilson,Phil.Mag.29(1915)795.
见26页文献栟Hund一书.
P.EhrenfestandG.Breit,Proc.Aust.23(1922)989;Z.Phys.9(1922)107.
P.EhrenfestandR.C.Tolman,Phys.Rev.24(1924)287.
Bohr在 G昳ttingen曾经诙谐地说:“Upwiththecorrespondenceprinciple! Downwiththephase灢

integral!暠(见26页文献栟Hund一书.)

A.Einstein,Z.Phys.18(1917)121.



要求P 为实,所以P-氂=P*
氂 .可求出

P
··

=-(2毿毻c)2暺
氂
P氂氂2exp[i2毿氂毻ct]暋暋暋暋

(P
··
)2 = (2毿毻c)4暺

氂氂曚
P氂P氂曚氂2氂曚2exp[i2毿毻c(氂+氂曚)t]

对时间求平均后,只有氂曚=-氂项不为零.所以

P
··

2 = (2毿毻c)4暺
+曓

氂=-曓
P氂

2氂4 (2灡1灡27)

按经典电动力学,这样的偶极振荡体系在单位时间内放射出的辐射能量为

dE
dt = 2

3c2P
··

2 (2灡1灡28)

如局限于讨论频率为毻氂=氂毻c 的辐射,则由式(2灡1灡27)与式(2灡1灡28)可得

dE
dt =4(2毿)4

3c2 (氂毻c)4 P氂
2 (2灡1灡29)

比较式(2灡1灡25)与式(2灡1灡29),注意毻氂=氂毻c,得出自发辐射系数栙

An-氂
n =4(2毿)4

3hc3 毻3
氂 P氂

2 (2灡1灡30)

根据对应原理还可以类似处理受激辐射、受激吸收以及相应的选择定则等问题.
应该提到,除了前面提到的Bohr关于对应原理的表述(在大量子数极限下,

量子物理学将回到经典物理学)外,还有另一种表述,即 Planck的表述
踿踿踿

栚———当
踿

Planck常量
踿踿h曻0时

踿
,量子物理学将回到经典物理学
踿踿踿踿踿踿踿踿踿踿踿踿踿.他的表述是基于如下考虑:

他得出的黑体辐射能量密度公式(Planck公式),当h曻0时,将回到基于经典物理

学的Rayleigh灢Jeans公式灡
Hassoun& Kobe栛 认为,两种表述可以同样使用,“Bothformulationsare

usedconcurrentlyinthesensethatthePlanckconstantgoestozeroandtheap灢
propriatequantumnumbergoestoinfinite,subjecttoaconstraintthattheirprod灢
uctbefixedattheappropriateclassicalaction.暠例如,对于电子的圆轨道运动的角

动量量子化条件,J=n焻h,这里经典的作用量就是角动量J,当淈曻0,就要求n曻曓,
使它们的乘积为J(有限值).

Bohr对应原理的 应用,可参阅文献栜.对 Bohr对应原理 的批评,可参阅

文献栞.
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如把 P氂 2 换为电偶极矩算符(-er)在初态和末态之间的矩阵元的模的平方,就是平常量子力学

教材中给出的自发辐射系数.
M.Planck,VorlesungenuberdieTheoriederWarmestrahlung(Barth,Leipzig,1sted.1906,2nded.,

1913).
G.Q.HassounandD.H.Kobe,Am.J.Phys.57(1989)658灢661.
F.S.Crawford,Am.J.Phys.57(1989)621灢628.
C.Leubner,M.AlberandN.Schupfer,Am.J.Phys.56(1988)1123灢1129.



图2灡1

附录

考虑一维势阱V(x)中粒子的周期运动(见图2灡1),

粒子动量

p(E,x)=暲 2m(E-V(x)),暋a曑x曑b
(2灡1灡31)

E为粒子能量(守恒),a、b为转折点,而p(E,a)=p(E,

b)=0.定义相空间中的积分

J(E)=曈pdx (2灡1灡32)

J(E)称为作用量,曈表示对运动积分一个周期.运动轨道

(包括转折点a,b)与粒子能量有关.把E 作为参数,计算

dJ/dE,即

d
dE曇

b

a
p(E,x)dx=曇

b

a

灥p
灥E

dx+p(E,b)灥b
灥E-p(E,a)灥a

灥E =曇
b

a

灥p
灥E

dx

因此

d
dEJ = d

dE曈pdx=曈灥p
灥E

dx (2灡1灡33)

由式(2灡1灡31)易于看出,灥p/灥E=m/p=1/v,所以

dJ
dE =曈dx

v =曈dt=T (2灡1灡34)

T 为运动周期.设毻为频率,则

毻=dE/dJ (2灡1灡35)

作用量J还可表示成

J=曈pdx=曈2Ekdt=2EkT=2Ek/毻 (2灡1灡36)

上式中,Ek=p2/2m 为粒子动能,Ek 是其平均值.因此

Ek = 1
T曈Ekdt

例1暋一维谐振子,Hamilton量为

H =p2/2m+ 1
2m氊2x2

对给定 H =E,相空间轨道为一椭圆,半轴分别为 2mE 和 2E/m氊2,椭圆面积为毿 2mE·

2E/m氊2 =2毿E/氊,而J=曈pdx正是此椭圆的面积,所以

J=2毿E/氊
显然

dE/dJ=氊/2毿=毻
例2暋粒子在一维“匣子暠(0<x<a)中运动,速率为v,碰到匣壁后则弹性反射.运动频率

毻=v
2a

,能量E=1
2mv2=2ma2毻2,而

·23·



J=曈pdx=2ma毻·2a=4ma2毻

由此得

E=J2/8ma2

因而

dE
dJ = J

4ma2 =毻

例3暋平面转子.转动惯量为I,角动量L=I氊,氊为角频率,能量为E=1
2I氊2,所以

J=曈Ld氄=2毿L=2毿I氊

E=J2/8毿2I

dE
dJ =J/4毿2I= 氊

2毿=毻

还可以证明,作用量
踿踿踿J为绝热不变量

踿踿踿踿踿踿
(详细证明,见Landau& LifshitzMechanics,3rd.ed.,

49节.)

2灡2暋Poisson括号与正则量子化

Poisson括号[定义见书末附录 A灡2,式(A灡2灡10)]最早出现在1809年 Pois灢
son的一篇文章中栙.这篇文章讨论了用分析力学处理天体微扰问题.例如,在其他

行星的影响下,太阳系的一个行星的椭圆轨道参数如何改变的问题.但只在Jacobi
发现在正则变换下

踿踿踿踿踿踿Poisson括号具有不变性
踿踿踿踿踿踿踿

栚之后,Poisson括号的重要性才引起

人们注意.
矩阵力学的建立过程中,Heisenberg摒弃了电子具有连续轨道的概念,代之

以用两个指标来标记的不连续的力学量栛(后来Born等人认识到这就是矩阵栜,它
们的“乘法暠遵守一种不可对易的代数法则.)换言之,从经典力学到矩阵力学的过

踿踿踿踿踿踿踿踿踿踿踿踿
渡
踿

,在于把经典力学中的连续变量
踿踿踿踿踿踿踿踿踿踿踿踿踿

(q,p等
踿

)换成遵守一定代数法则的矩阵
踿踿踿踿踿踿踿踿踿踿踿踿踿.

在 Heisenberg工作的启发下,Dirac认识到Poisson括号的重要性在于栞栟:可
踿
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S.D.Poisson,Journaldel曚EcolePolytechnique8(1809)266.
C.G.J.Jacobi,Vorlesungen湽berDynamik,1842~1843(ReimerBerlin,1866).
W.Heisenberg,Z.Physik33(1925)879.
M.Born,W.HeisenbergandP.Jordan,Z.Physik35(1926)557.

以上两文的英译文,见B.L.vanderWaerden,SourceofQuantum Mechanics,p.261~276,321~385(Dover,

NewYork,1968).
C.Lanczos,ThePoissonbracket.
J.Mehra,Thegoldenageoftheoreticalphysics:P.A.M.Dirac暞sscientificworkfrom1924~1933.

以上两文载于 AspectofQuantum Theory,ed.byA.SalamandE.P.Wigner(CambridgeUniversity
Press,1972).

P.A.M.Dirac,Proc.Roy.Soc.(London)109(1925)642.



以把正则方程建立在
踿踿踿踿踿踿踿踿踿 Poisson括号的形式下而避免用

踿踿踿踿踿踿踿踿踿踿 H 的导数
踿踿踿.他提出保留

踿踿
Poisson括号的形式

踿踿踿踿踿
,但对其定义要重新审定
踿踿踿踿踿踿踿踿踿踿

,即用适当的代数形式的定义来代替
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

经典力学中
踿踿踿踿踿Poisson括号的定义

踿踿踿踿踿
(用 H 的导数表示).他认识到,如果用不对易代

数运算代替导数,则将出现与经典概念根本背离的现象.经过深入分析后,Dirac发

现在量子力学中,经典Poisson括号应代之为对易式栙

{A,B}曻 1
i焻h

(AB-BA)= 1
i焻h

[A,B] (2灡2灡1)

容易证明,经典Poisson括号所满足的代数法则[见附录 A灡2,式(A灡2灡11)],对于

[A,B],也完全适用.
可以看出,在Dirac理论中出现了不对易代数.他认为自然界中存在两种量,

一种是q数(q灢number),它们之间的乘法一般是不对易的,另一种是c 数(c灢
number),它们之间的乘法是对易的.Dirac认识到,为要使理论与实验观测相符,
不可避免要引进q数.按Dirac的理论,经典力学中最基本的力学量———正则坐标

和动量之间的Poisson括号

{qk,pj}=毮kj (2灡2灡2)
应代之为

[qk,pj]=i焻h毮kj (2灡2灡3)
即qi 和pi 是不对易的.式(2灡2灡3)正是量子力学的基本对易式

踿踿踿踿踿踿踿踿踿踿踿.这种办法称为正
踿

则量子化方法
踿踿踿踿踿踿.它在场量子化理论中被广泛使用,与此不同之处在于:场是具有无

踿踿踿踿踿
穷多个自由度的体系
踿踿踿踿踿踿踿踿踿

,在场量子化过程中将出现无穷大
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(发散)困难.(例如,参见

11灡2节、11灡3节关于电磁场的量子化.)

Dirac还发现,量子力学中很多问题可以用代数方法方便地解决.角动量的代

数理论(卷栺,10灡2节)就是一个漂亮的例子.他和Pauli还运用代数方法成功地求
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栙 例如,考虑Poisson括号{AB,CD},
一方面{AB,CD}={AB,C}D+C{AB,D}=A{B,C}D+{A,C}BD+CA{B,D}+C{A,D}B
另一方面{AB,CD}=A{B,CD}+{A,CD}B=AC{B,D}+A{B,C}D+C{A,D}B+{A,C}DB
由此得

(AC-CA){B,D}={A,C}(BD-DB)
要求重新定义Poisson括号,但保持代数关系不变,即

(AC-CA){B,D}Q={A,C}Q(BD-DB)
考虑到A、B、C、D 在Poisson括号中的地位无甚差异,如取

{A,C}Q曍(AC-CA),暋{B,D}Q曍(BD-DB)
则不会出现矛盾,在经典力学中AC-CA=0,在量子力学中,如一般地要求AC-CA=0,即{A,C}Q=0,就
没有什么意义.所以要求AC-CA曎0,这样就出现了“乘法暠的不对易性.再考虑到能够回到经典力学,可以

设想让{A,C}Q曍(AC-CA)/焻h.此时,当回到经典力学,焻h曻0,而AC-CA=0,就不出现矛盾.其次,再考虑

Poisson定理(见附录 A灡2),若A,C为守恒量,则{A,C}也是守恒量.为保证{A,C}的厄米性,在{A,C}Q 定义

中还要乘上一个虚数i,即{A,C}Q=(AC-CA)/i焻h,此时

{A,C}+Q ={A,C}Q



出了氢原子能级公式栙.在Dirac的代数理论中,除了平常的代数运算外,还增加了

厄米共轭(hermilianconjugate)运算.两个量A 与B 乘积的厄米共轭(AB)+ =
B+A+ .一切可观测量F 都要求为自共轭(self灢conjugate),即F+ =F.特别是正则

坐标与动量,要求

q+
k =qk,暋p+

k =pk (2灡2灡4)
可以证明,假设A、B 是q、p的整函数,则(见注1)

lim
焻h曻0

1
i焻h

(AB-BA)= {A,B} (2灡2灡5)

按正则量子化程序,经典力学中的正则方程q·k={qk,H},p
·
k={pk,H},将代

之为

q·k = 1
i焻h

(qkH -Hqk)

p
·
k = 1

i焻h
(pkH -Hpk) (2灡2灡6)

而一般的力学量随时间的演化,遵守下列方程:

dF
dt =灥F

灥t+1
i焻h

(FH -HF) (2灡2灡7)

经典Poisson括号在正则变换下的不变性(Jacobi定理,见书末附录 A灡3),在
量子力学中相应的表述变得十分简单,即所有代数关系在相似变换(similar
transformation)下的不变性.特别是在相似变换S下,

qk 曻Qk =SqkS-1

pk 曻Pk =SpkS-1 (2灡2灡8)

qk、pk 以及一切力学量之间的代数关系在形式上都保持不变.当然,为了保证自共

轭性不改变,要求这些变换满足

S-1 =S+ (2灡2灡9)
即为幺正变换(unitarytransformation).

暋暋[注]暋以一维粒子为例,利用基本对易式,[q,p]=i焻h,不难证明,[qm,p]=mi焻hqm-1,m 为正

整数,即qmp=pqm+mi焻hqm-1.
考虑A=qm,B=pn,m 和n为正整数,则

AB=qmpn=qmppn-1=(pqm+mi焻hqm-1)pn-1=pqmpn-1+mi焻hqm-1pn-1 暋

=p(pqm+mi焻hqm-1)pn-2+mi焻hqm-1pn-1=p2qmpn-2+2mi焻hqm-1pn-1+O(焻h2)

=…=pnqm+nmi焻hqm-1pn-1+O(焻h2)

这样就证明了
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栙 W.Pauli,Zeit.Physik36(1926)336;英译文见 p.33所引 vanderWaerden的书,p.387~415.
P.A.M.Dirac,Proc.Roy.Soc.A110(1926)561.该文中部分内容也可在上书p.417~427中找到.



lim
焻h曻0

1
i焻h

[qm,pn]=nmqm-1pn-1 = {qm,pn} (a)

暋暋其次,考虑A=qkpl,B=qmpn,(k、l、m、n均正整数),不难得出

[qkpl,qmpn]=qm[qk,pn]pl+qk[pl,qm]pn

利用上式(a),得

lim
焻h曻0

1
i焻h

[qkpl,qmpn]=qm{qk,pn}pl+qk{pl,qm}pn

=nkqm+k-1pn+l-1-mlqkpl-1qm-1pn

=nkqm+k-1pm+l-1-mlqk+m-1pl+n-1+O(焻h)

={qkpl,qmpn}

暋暋设A、B为整函数,即可展开为

A = 暺
kl
aklqkpl,暋B= 暺

mn
bmnqmpn

由此不难证明式(2灡2灡5).

附录暋正则量子化程序的一些讨论

在坐标表象中,粒子坐标被看成一个普通的数,而动量则表示成算符.按照上述正则量子化

程序,通常把粒子动量写成

pj =-i焻h 灥
灥qj

(2灡2灡10)

显然,它满足正则对易式

[qk,pj]=i焻h毮kj

但应注意,一般说来,这种算符表示式(2灡2灡10)只在
踿踿 Cartesian坐标系中才正确

踿踿踿踿踿踿踿.对于曲线坐标
踿踿踿踿踿踿

系
踿

,不可一概把动量算符都写成这种形式
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,否则会犯错误.这里还涉及动能和 Hamilton算符的

正确写法的问题.
经典力学中,粒子动能一般表示为

T= 1
2Mv2 = 1

2M(ds/dt)2 (2灡2灡11)

ds为粒子空间轨道曲线的线段元.在常用的直角坐标系中ds2=dx2+dy2+dz2,所以

T= M
2

(x·2 +y·2 +z·2) (2灡2灡12)

正则动量定义为

px =灥T/灥x· = Mx·

py =灥T/灥y· = My·

pz =灥T/灥z· = Mz·

(2灡2灡13)

因而

T= 1
2M

(p2
x +p2

y +p2
z) (2灡2灡14)

按正则量子化程序,p
暷

x、p
暷

y、p
暷

z分别表示成

p
暷

x=-i焻h 灥
灥x

,暋p
暷

y=-i焻h 灥
灥y

,暋p
暷

z=-i焻h 灥
灥z

(2灡2灡15)

而动能算符表示成
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T
暷

= 1
2M

(p
暷2

x+p
暷2

y+p
暷2

z)=-焻h2

2M
灥2

灥x2 + 灥2

灥y2 + 灥2

灥z( )2 (2灡2灡16)

在球坐标系中,ds2=dr2+r2d毴2+r2sin2毴d氄2,所以

T= 1
2M(r·2 +r2毴

·2 +r2sin2毴
·

氄2) (2灡2灡17)

正则动量分别为

pr =灥T/灥r· = Mr·暋暋暋

p毴 =灥T/灥毴
·
= Mr2毴

·

p氄 =灥T/灥氄
· = Mr2sin2毴氄

· (2灡2灡18)

所以

T= 1
2M p2

r + 1
r2p

2
毴 + 1

r2sin2毴p
2( )氄 (2灡2灡19)

在过渡到量子力学时,相应的算符如何表示? 有人误认为,可以作如下替换

pr 曻p
暷

r=-i焻h 灥
灥r

,暋p毴 曻p
暷

毴=-i焻h 灥
灥毴

,暋p氄 曻p
暷

氄=-i焻h 灥
灥氄

(2灡2灡20)

因而动能算符表示成

T
暷

=-焻h2

2M
灥2

灥r2 + 1
r2

灥2

灥毴2 + 1
r2sin2毴

灥2

灥氄( )2 (2灡2灡21)

但这是不正确的.实际上,利用坐标变换关系式

x=rsin毴cos氄,暋y=rsin毴sin氄,暋z=rcos毴 (2灡2灡22)

及逆变换

r= x2 +y2 +z2,暋毴=arctan( x2 +y2/z),暋氄=arctan(y/x) (2灡2灡23)

从T
暷

的直角坐标表示式(2灡2灡16)可以导出

T
暷

=- 焻h
2M

灥2

灥x2 + 灥2

灥y2 + 灥2

灥z( )2 暋

=-焻h2

2M
1
r2

灥
灥rr

2 灥
灥r+ 1

r2sin毴
灥
灥毴sin毴灥

灥毴+ 1
r2sin2毴

灥2

灥氄( )2

=-焻h2

2M
1
r

灥2

灥r2r+ 1
r2sin毴

灥
灥毴sin毴灥

灥毴+ 1
r2sin2毴

灥2

灥氄( )2

=-焻h2

2M
灥2

灥r2 + 2
r

灥
灥r+ 1

r2sin毴
灥
灥毴sin毴灥

灥毴+ 1
r2sin2毴

灥2

灥氄( )2 (2灡2灡24)

这才是正确的结果,它与式(2灡2灡21)不同.

此外,式(2灡2灡20)中所示p
暷

r=-i焻h 灥
灥r

并非厄米算符,正确的结果是

p
暷

r=-i淈 灥
灥r+ 1( )r =-i淈1

r
灥
灥rr=p+

r (2灡2灡25)

下面来证明其厄米性质.

pr 的厄米性质表现在:对于任意平方可积波函数氉,要求(氉,p
暷

r氉)=(p
暷

r氉,氉)=(氉,p
暷

r氉)* ,

即(氉,p
暷

r氉)-(氉,p
暷

r氉)* =0.此式左边积分,得

曇d氂[氉*p
暷

r氉-(p
暷

r氉)*氉]=-i淈曇
2毿

0
d氄曇

毿

0
sin毴d毴曇

曓

0
r2dr 氉* 1

r
灥
灥r

(r氉)+ 1
r

灥
灥rr( )氉

*

[ ]氉

上式中的径向积分为
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曇
曓

0
dr (r氉* )灥

灥r
(r氉)+(r氉)灥

灥r
(r氉)[ ]* =曇

曓

0
dr灥

灥r r氉 2 = r氉 2
曓

0
=0

上式为0的理由是:(a)对于平方可积波函数氉,lim
r曻曓

r氉=0;(b)对于满足下列条件lim
r曻曓

r2V(r)=0

的势函数(通常势场都满足此要求),波函数在r曻0的渐近行为只能是氉曍rl,l=0,1,2,…,才是

物理上允许的,因此lim
r曻0

r氉=0.

式(2灡2灡20)与式(2灡2灡21)错误的原因是:在球坐标系中,各单位矢er、e毴、e氄 都不是常矢量
踿踿踿踿踿踿

,

它们依赖于粒子位置
踿踿踿踿踿踿踿踿踿r而改变

踿踿踿.这与直角坐标系很不相同.在直角坐标系中r=xex+yey+zez,

ex、ey 和ez 为常矢量(与r无关).按梯度算符表示式

殼

=ex
灥
灥x+ey

灥
灥y+ey

灥
灥z

(2灡2灡26)

而p=-i淈

殼

,因而T=p2/2M=-淈2

2M
灥2

灥x2+灥2

灥y2+灥2

灥z( )2 .

在球坐标系中,r=rer

殼

=er
灥
灥r+e毴

1
r

灥
灥毴+e氄

1
rsin毴

灥
灥氄

(2灡2灡27)

但

殼

2曎 灥2

灥r2 + 1
r2

灥2

灥毴2 + 1
r2sin2毴

灥2

灥氄2

正确的结果是[参见式(2灡2灡24)]

殼

2= 灥2

灥r2 + 2
r

灥
灥r+ 1

r2sin毴
灥
灥毴sin毴灥

灥毴+ 1
r2sin2毴

灥2

灥氄2 (2灡2灡28)

式(2灡2灡25)所示p
暷

r的厄米性还可如下看出:-i淈灥
灥r=1

rr·p
暷,由于r和p

暷不对易,-i淈 灥
灥r

是非厄米 算 符.但 可 用 如 下 方 案 使 其 变 成 为 厄 米 算 符,即 换 为 1
2

1
rr·p

暷+p
暷·r( )r =

-i淈
2

1
rr·

殼

+

殼

·r( )r .再利用式(2灡2灡27),

殼

·r
r =

殼

·er = 灥
灥r+e毴·1

r
灥
灥毴er+e氄· 1

rsin毴
灥
灥氄

er

= 灥
灥r+ 2

r暋 因灥
灥毴er =e毴,灥

灥氄
er =sin毴e( )氄

得
1
2

r
r

·p+p·r( )r =-i淈 灥
灥r+ 1( )r =p

暷

r=p
暷+

r

按式(2灡2灡25),可以求出

p
暷2

r=-淈2 灥2

灥r2 + 2
r

灥
灥( )r

(2灡2灡29)

可见动能表示式(2灡2灡24)的前两项正是 p
暷2

r/2M,与经典力学中动能表示式(2灡2灡19)的第一项

对应,可称为径向动能.而T
暷

可表示成

T
暷

= p
暷2

r

2M+ 1
2Mr2l

暷
2 暋

l
暷

2=-淈2 1
sin毴

灥
灥毴sin毴灥

灥毴+ 1
sin2毴

灥2

灥氄( )2

(2灡2灡30)

式(2灡2灡30)右边第二项则表示粒子的角向动能
踿踿踿踿

(转动能).
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对于二维中心力场中粒子的动量和动能算符的表示式也可以类似讨论.此时,通常采用平

面极坐标来处理,在此曲线坐标系中,ds2=d氀2+氀2d氄2,经典粒子的动能表示式为

T= 1
2M ds

d( )t
2

= 1
2M(氀

·2 +氀2氄
·2) (2灡2灡31)

正则动量为

p氀 =灥T/灥氀
· = M氀

·,暋p氄 =灥T/灥氄
· = M氀

2
氄
· (2灡2灡32)

所以

T= 1
2M p2

氀 + 1
氀2p

2( )氄 (2灡2灡33)

在进行量子化时,相应的算符应如何表示? 如与式(2灡2灡20)相似,简单地把

p氀 曻p
暷

氀=-i淈灥
灥氀

,暋p氄 曻p
暷

氄=-i淈灥
灥氄

(2灡2灡34)

并把动能算符表示成[把式(2灡2灡34)代入式(2灡2灡33)]

T
暷

=-淈2

2M
灥2

灥氀2 + 1
氀2

灥2

灥氄( )2 (2灡2灡35)

这也是不正确的.
事实上,从动能算符在Cartesian坐标系中的表示式

T
暷

=-淈2

2M
灥2

灥x2 + 灥2

灥y( )2 (2灡2灡36)

出发,按坐标变换

x=氀cos氄,暋y=氀sin氄 (2灡2灡37)

及逆变换

氀= x2 +y2,暋氄=arctan(y/x) (2灡2灡38)

可以求出

T
暷

=-淈2

2M
灥2

灥x2 + 灥2

灥y( )2 =-淈2

2M
灥2

灥氀2 + 1
氀

灥
灥氀

+ 1
氀2

灥2

灥氄( )2 (2灡2灡39)

这才是T
暷

的正确表示式.它与式(2灡2灡35)并不相同.
式(2灡2灡34)与式(2灡2灡35)错误的原因可如下看出:

首先,-i淈灥
灥氀

并非厄米算符.在极坐标系中

氀=氀e氀
,暋

殼

=e氀
灥
灥氀

+e氄
1
氀

灥
灥氄

(2灡2灡40)

单位矢e氀 和e氄 并非常矢
踿踿踿踿.而(p

暷

=-i淈

殼

)

e氀·p
暷

=-i淈灥
灥氀

暋暋暋暋暋暋

p
暷

·e氀 =-i淈 e氀
灥
灥氀

+e氄
1
氀

灥
灥( )氄

·e氀

=-i淈 灥
灥氀

+e氄·1
氀

灥
灥氄

e( )氀 暋 因灥
灥氄

e氀 =e( )氄

=-i淈 灥
灥氀

+ 1( )氀
经对称化后,得
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1
2

[e氀·p
暷

+p
暷

·e氀]=-i淈 灥
灥氀

+ 1
2( )氀

=-i淈1
氀

灥
灥氀氀 (2灡2灡41)

径向动量算符的正确表示式为

p
暷

氀=-i淈 灥
灥氀

+ 1
2( )氀

=-i淈1
氀

灥
灥氀氀=p

暷+
氀 (2灡2灡42)

它的厄米性可如下证明:对于任意平方可积的波函数氉,可以证明,(氉,p
暷

氀氉)-(氉,p
暷

氀氉)* =0,因
为此式左边为

暋-i淈曇
2毿

0
d氄曇

曓

0
氀d氀 氉* 1

氀
灥
灥氀氀氉-氉

1
氀

灥
灥氀

æ
è
ç

ö
ø
÷氀氉[ ]

*

=-i淈曇
2毿

0
d氄曇

曓

0
d氀 氀氉* 灥

灥氀
(氀氉)- 氀氉

灥
灥氀

(氀氉*[ ])

=-i淈曇
2毿

0
d氄曇

曓

0
d氀

灥
灥氀 氀氉

2

=-i淈曇
2毿

0
d氄 氀氉

2
曓

0
=0 (2灡2灡43)

(因为对于平方可积波函数,lim
氀曻曓

氀氉=0,而对于物理上可接受的波函数lim
氀曻0

氀氉=0.)

动能算符表示式(2灡2灡39)也可如下求出.
利用式(2灡2灡40)

殼

2=

殼

·

殼

= e氀
灥
灥氀

+e氄
1
氀

灥
灥( )氄

· e氀
灥
灥氀

+e氄
1
氀

灥
灥( )氄

暋

= 灥2

灥氀2 +e氀·
灥
灥氀

e氄
1
氀

灥
灥( )氄

+e氄·1
氀

灥
灥氄

e氀
灥
灥( )氀

+e氄·1
氀

灥
灥氄

e氄
1
氀

灥
灥( )氄

考虑到e氀
·e氄=0,灥

灥氀
e氄=0,上式第2项为0,利用 灥

灥氄
e氀=e氄

,第3项化为 1
氀

灥
灥氀

,第4项化为

1
氀2

灥2

灥氄2,所以

T
暷

2 =-淈2

2M

殼

2=-淈2

2M
灥2

灥氀2 + 1
氀

灥
灥氀

+ 1
氀2

灥2

灥氄( )2

即式(2灡2灡39).
如利用式(2灡2灡42),可算出

p
暷2

氀=-淈2 灥
灥氀

+ 1
2( )氀

灥
灥氀

+ 1
2( )氀

=-淈2 灥2

灥氀2 + 1
氀

灥
灥氀

- 1
4氀( )2 (2灡2灡44)

用此表示式代入式(2灡2灡33),并且用-淈2灥2

灥氄2代替p2
氄
,则动能算符似乎可以表示成

T
暷

=-淈2

2M
灥2

灥氀2 + 1
氀

灥
灥氀

+ 1
氀2

灥2

灥氄( )2 + 淈2

8M氀2 (2灡2灡45)

与正确表示式(2灡2灡39)相比,上式中多出一项淈2/8m氀2.但上式可化为

T
暷

= 1
2M p

暷2
氀+

1
氀2 (p

暷

氄-淈/2)(p
暷

氄+淈/2[ ]) (2灡2灡46)

式中p
暷

氀=-i淈 灥
灥氀

+1
2( )氀

,p
暷

氄=-i淈灥
灥氄

.与三维粒子的动能表示式相比[见式(2灡2灡30)],

p
暷

r~p
暷

氀,l2 ~ (p
暷

氄-淈/2)(p
暷

氄+淈/2) (2灡2灡47)

更一般说来,在曲线坐标系(q1,q2,q3,…)中,设线段元ds表示成
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ds2 = 暺
ij
gijdqidqj (2灡2灡48)

gij 为空间的度规张量(metrictensor).令det(gij)=g,gij = 1
g
Gij,Gij 的值是行列式 gij 中元

素gij 的余因式,暺
j
Gijgjk =g毮i

k,而

暺
j
gijgjk =毮i

k (2灡2灡49)

gij称为gij之逆.在此曲线坐标系中,

殼

2= 1
g暺ik

灥
灥qi ggik 灥

灥qk (2灡2灡50)

而

T
暷

=-淈2

2m

殼

2 (2灡2灡51)

这就是在曲线坐标系中动能算符的表示式栙.
例1暋平面极坐标系,ds2=d氀2+氀2d氄2,所以

(gij)=
1 0

0 氀

æ

è
ç

ö

ø
÷

2
暋暋暋

det(gij)=氀2,暋 g=氀
不难求出

(gij)=
1 0

0 氀-

æ

è
ç

ö

ø
÷

2

殼
2= 1

氀
灥
灥氀氀

灥
灥氀

+ 1
氀2

灥2

灥氄2

例2暋球坐标系,ds2=dr2+r2d毴2+r2sin2毴d氄2,

(gij)=

1 0 0

0 r2 0

0 0 r2sin2

æ

è

ç
çç

ö

ø

÷
÷÷

毴

所以det(gij)=r4sin2毴,g=r2sin毴,而

(gij)=

1 0 0

0 r-2 0

0 0 (r2sin2毴)-

æ

è

ç
çç

ö

ø

÷
÷÷

1

殼

2= 1
r2

灥
灥rr

2 灥
灥r+ 1

r2sin毴
灥
灥毴sin毴灥

灥毴+ 1
r2sin2毴

灥2

灥氄2

暋暋注意:即使在Cartesian坐标系中,动量算符的表示式也有不定性
踿踿踿踿踿踿踿踿踿踿踿踿踿

栚.按正则对易关系

[x暷,p
暷

x]=i淈 (2灡2灡52)

在坐标表象中,通常取x暷=x,p
暷

x=-i淈灥
灥x.但如算符表示式换为

X
暷

=x,P
暷

x=-i淈灥
灥x+g(x) (2灡2灡53)
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g(x)为任一函数,显然它们仍满足正则对易式(2灡2灡52).此时,动量
踿踿P

暷

x的本征态不再是平面波
踿踿踿踿踿踿踿踿踿踿

,
因为本征方程

P
暷

x氉曉 -i淈灥
灥x+g(x[ ])氉p(x)=p氉p(x) (2灡2灡54)

的解不再是eipx/淈.试问,物理情况是否因此有所改变? Shankar书中认为,量子力学中的波函数

本身并非直接观测量.人们观测的只是力学量的本征值、观测值的概率分布及平均值.动量算符

表示式的上述改动,相当于基矢(坐标的本征态)作了一个幺正变换

x暤曻 X暤=e-if(x)/淈 x暤 (2灡2灡55)
式中

f(x)=曇
x

dx曚g(x曚),灥f
灥x

=g(x) (2灡2灡56)

显然,在此基矢变换下,坐标算符表示式不变.

x暷 =x曻X
暷

=e-if(x)/淈xeif(x)/淈 =x (2灡2灡57)

但动量算符表示式p
暷

x=-i淈灥
灥x

将变为

P
暷

x=e-if(x)/淈P
暷

xeif(x)/淈 =e-if(x)/淈 -i淈灥
灥( )x eif(x)/淈 =-i淈灥

灥x+g(x) (2灡2灡58)

此即式(2灡2灡53).在此幺正变换下,观测结果不改变.

2灡3暋Schr昳dinger波动力学与经典力学的关系

2灡3灡1暋Schr昳dinger波动方程与Jacobi灢Hamilton方程的关系

设粒子在势场V(r)中运动.含时间的Schr昳dinger方程表示为

i淈灥
灥t氉= -淈2

2m

殼

2+æ

è
ç

ö

ø
÷V 氉 (2灡3灡1)

试把波函数的模与相位分开,令

氉=ReiS/淈 (2灡3灡2)
(R,S为实),代入式(2灡3灡1),经过计算,分别让实部=实部,虚部=虚部,得

灥R
灥t=- 1

2m
(R

殼

2S+2

殼

R·

殼

S)暋暋暋 (2灡3灡3a)

灥S
灥t=- 1

2m
(

殼

S)2+V-淈2

2m

殼

2R[ ]R
(2灡3灡3b)

方程(2灡3灡3)与式(2灡3灡1)完全等价.现分别讨论其物理意义.
首先可证明,式(2灡3灡3a)即概率守恒的微分表示式.利用R 与S,可以把粒子

在空间的概率密度氀和流密度j表示成

氀= 氉 2 =R2暋暋暋暋暋暋暋暋暋暋暋暋 (2灡3灡4)

j= 1
2m

(氉*p氉+c.c.)= 1
2m 氉* 淈

i

殼

氉+æ

è
ç

ö

ø
÷c.c.

= 1
2m R 淈

i

殼

R+R

殼æ

è
ç

ö

ø
÷S +[ ]c.c.=R2

m

殼

S (2灡3灡5)
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容易看出,2R 乘以式(2灡3灡3a),可表示成

灥
灥t氀+

殼

·j=0 (2灡3灡6)

这正是概率守恒
踿踿踿踿

方程.如设想处于同一个氉态的粒子数目很大(系综概念),则氀可

理解为多粒子体系的空间分布密度,而j表示粒子流密度,式(2灡3灡6)即粒子数守

恒方程,或流体力学中的连续性方程(反映质量守恒).流体的速度场分布为

v=j/氀=

殼

S/m (2灡3灡7)
可以看出,速度场为非旋场

踿踿踿踿踿踿踿
,

殼

暳v=0.
其次,可以看出,在经典极限下,式(2灡3灡3b)与经典力学中的Jacobi灢Hamilton

方程相当.因为当淈曻0时,式(2灡3灡3b)中淈2项可略去,则化为

灥S
灥t+

(

殼

S)2
2m +V =0 (2灡3灡8)

S与经典力学中的作用量(action)相当(见书末附录 A灡4).
用式(2灡3灡7)代入式(2灡3灡8),得

灥S
灥t+1

2mv2+V =0 (2灡3灡9)

取梯度,并利用式(2灡3灡7),得

m 灥
灥tv+m(v·

殼

)v+

殼

V =0

再利用流体力学中的常用公式

d
dtv= 灥

灥tv+(v·

殼

)v

得

m d
dtv=-

殼

V (2灡3灡10)

此即经典流体力学中的速度场的运动方程
踿踿踿踿踿踿踿踿

,是 Newton方程在流体力学中的表述
踿踿踿踿踿踿踿踿踿踿踿.

对于定态波函数,

灥R
灥t =0,暋灥S

灥t=-E暋(粒子能量) (2灡3灡11)

式(2灡3灡3a)化为[参见式(2灡3灡6)]

殼

·j=0 (2灡3灡12)
而式(2灡3灡3b)化为

(

殼

S)2
2m -(E-V)= 淈2

2m

殼

2R
R

(2灡3灡13)

当淈曻0时,得
(

殼

S)2
2m =E-V (2灡3灡14)

即不显含时间的作用量满足的Jacobi灢Hamilton方程[见附录 A灡4,式(A灡4灡10)].
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*2灡3灡2暋Schr昳dinger波动方程提出的历史简述

在Planck灢Einstein的光量子论的启发下,L.deBroglie提出栙,与光具有波动 粒子两象性

相类比,实物粒子(m曎0)也应具有波动性,他称之为物质波(matterwave).
这个信息被传到了苏黎士.在联邦工学院和苏黎士大学联合举办的一次学术报告会上,资

深教授P.Debye 建 议栚 E.Schr昳dinger研 究 一 下 deBroglie 的 论 文.在 后 来 一 次 会 议 上,

Schr昳dinger对deBroglie的工作作了一个漂亮而清楚的说明,并提到,根据在一个定态轨道上
踿踿踿踿踿踿踿踿

只能容纳整数个波长的波的要求
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(驻波条件
踿踿踿踿

),就可以导出
踿踿踿踿踿 Bohr和

踿Sommerfeld的量子化法则
踿踿踿踿踿踿.

Debye当即指出,这种做法还很幼稚.作为Sommerfeld的学生,Debye深知,要真正研究波动,必
须建立波动方程

踿踿踿踿.Schr昳dinger认真考虑了这个意见.几个星期之后,他在一次会议上终于提出

了他的波动方程栛.
Schr昳dinger在建立波动力学的过程中,受到了deBroglie思想的启发.对于19世纪爱尔兰

数学家 R.Hamilton已注意到粒子力学与几何光学的相似性,他已有所了解.一方面,在粒子力

学中有一条最小作用原理
踿踿踿踿踿踿

———即自然界中粒子在给定两点之间实际所走的轨道是使作用量
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿S

取最小值
踿踿踿踿

(毮S=0)的轨道(见书末附录 A1).(当时人们称S为 Hamilton主函数,现今,按照Fey灢
nman,已普遍把它称为作用量.)利用最小作用原理,即可导出经典力学的基本方程(Lagrange
方程或 Newton方程等).另一方面,在几何光学中(光被看成由微粒子组成),有一条最短光程

踿踿踿踿
原理
踿踿

(Fermat原理)———光从一点到另一点实际所走路径是需时最短的路径
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.根据Fermat原理,

即可导出几何光学的三条基本定律:(1)在均匀介质中光沿直线传播;(2)反射定律;(3)折射定

律.在19世纪中期,通过Fresnel,Young等人的干涉和衍射实验,人们已认识到光的波动性,波
动光学已经建立,支配波动光学运动的基本规律就是 Huygens原理;人们已了解到,当光波长

踿踿踿踿
趋于零时
踿踿踿踿

(短波极限
踿踿踿踿

),波动光学就回到几何光学
踿踿踿踿踿踿踿踿踿踿踿.

按照deBroglie的观点,与光一样,实物粒子(m曎0)也应具有波动 粒子两象性.试问,支配

实物粒子波动的运动规律应是怎样? 能否从几何光学与波动光学的关系中找到什么借鉴?

Schr昳dinger就是按此思路来建立起他的波动力学的栜.
在波动光学中,设光波用下列函数描述

Z=aei毤 (2灡3灡15)

a是波幅,毤是相位.相位在空间的变化与波长有关.当波长曻0时,干涉和衍射现象随之消失,

而波动光学规律将代之为几何光学.从波动的观点来看“几何光学中光线按照需时最短的路径

行走(Fermat原理)暠.在数学上相当于:“波从一点到另一点的传播过程中,波的相位毤的变化应

尽可能小暠.Schr昳dinger猜想,光波的相位
踿踿踿踿踿毤应与粒子力学中的作用量

踿踿踿踿踿踿踿踿踿踿踿S相当
踿踿

,而描述实物粒子

的波动的函数也许可以近似表示成
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Schr昳dinger,CollectedPapersonWaveMechanics(Chelsea,NewYork,1978);WaveMechanics,GunterLud灢
wig编(Pergamon,Oxford,1968).
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氉=ReiS/淈 (2灡3灡16)
这里S 除以 Planck常数,是出自量纲的考虑(使相位S/淈变成无量纲).Schr昳dinger很了解

Hamilton灢Jacobi方程(见附录 A4)

灥S
灥t+ 1

2m
灥S
灥( )x

2

+V(x)=0 (2灡3灡17)

在稳定情况下,此式表现为能量E守恒,第一项灥S/灥t等于-E,第二项为粒子动能,第三项为粒

子势能.按式(2灡3灡16)的猜想,
灥S
灥x=-i淈

氉
灥氉
灥x

(2灡3灡18)

再考虑到氉可能是复函数
踿踿踿

,所以不妨把 Hamilton灢Jacobi方程改写成

-E+ 1
2m

灥S
灥( )x

* 灥S
灥( )x +V =0 (2灡3灡19)

因此

-E+ 1
2m

i淈
氉*

灥氉*

灥
æ
è
ç

ö
ø
÷

x
-i淈

氉
灥氉
灥

æ
è
ç

ö
ø
÷

x +V =0

或表示成

(V-E)氉*氉+淈2

2m
灥氉*

灥
æ
è
ç

ö
ø
÷

x
灥氉
灥

æ
è
ç

ö
ø
÷

x =0 (2灡3灡20)

试把上式左边表示式记为 M,按照 Schr昳dinger的想法,把 M 看作广义坐标氉、氉* 、灥氉/灥x 和

灥氉*/灥x的Lagrange量,并对下列积分I取极值.

I=曇Mdx=曇(V-E)氉*氉+淈2

2m
灥氉*

灥
æ
è
ç

ö
ø
÷

x
灥氉
灥

æ
è
ç

ö
ø
÷[ ]x

dx (2灡3灡21)

相应的Euler灢Lagrange方程(对氉* 求变分)为

灥I
灥氉* - 灥

灥x
灥I

灥(灥氉*/灥x[ ]) =0 (2灡3灡22)

即可导出

(V-E)氉-淈2

2m
灥2氉
灥x2 =0 (2灡3灡23)

此即不含时的Schr昳dinger方程,亦即粒子在势场V(x)中的能量本征方程.

*2灡3灡3暋力学与光学的相似性

历史上早在19世纪初(1825),Hamilton已经发现经典粒子力学与几何光学的相似性,但未

曾引起人们注意,后来几乎完全被人忘记了.直到20世纪20年代波动力学提出后,才重新引起

人们广泛注意.事实上,deBroglie和Schr昳dinger建立波动力学的过程中,他们对于力学和光学

规律的相似性的深刻理解,起了重要的作用.
由式(2灡3灡7),v=

殼

S/m,可以看出,粒子运动轨道(沿速度v的方向)与等相面

S= 常数 (2灡3灡24)
垂直,速度v方向即等相面的法线方向,S=常数相当于光学中的波面方程,粒子轨道相当于几

何光学中的光线.令

毸- =淈/p=淈/ 2m(E-V(r)) (2灡3灡25)
则Jacobi灢Hamilton方程(2灡3灡14)可改写成

1
淈

殼

( )S
2

= 1
毸-2 (2灡3灡26)
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这与各向同性介质中的几何光学的基本方程

(

殼

毃)2 =n2 (2灡3灡27)

完全相似(S/淈曍毃,1/毸-曍n),式中n是介质的折射系数,毃称为程函(eikonal),式(2灡3灡27)称为

程函方程,它是光(电磁)波动方程在短波极限下的结果(注).毃代表光波的相位,毃=常数表示

等相面方程.对于均匀介质,n=常数,方程(2灡3灡27)的解可表示成

毃=ax+by+cz+d (2灡3灡28)

积分常数a、b、c由边条件确定,毃=常数确定一组平面族,其法线方向余弦为(a暶b暶c)/

a2+b2+c2,即光线的传播方向(均匀介质中光沿直线传播
踿踿踿踿踿踿踿踿踿踿踿

).在非均匀介质中,n(x,y,z)随不

同地点而异,等相面方程毃=常数可以确定一组曲面族,而光线沿与曲面族垂直的曲线传播,即
在非均匀介质中光线会发生偏转
踿踿踿踿踿踿踿踿踿踿踿踿踿踿.在两种介质的界面上

踿踿踿踿踿踿踿踿踿
(n不连续变化

踿踿踿踿踿
),光线将发生折射

踿踿踿踿踿踿踿.
由式(2灡3灡25)可以看出,毸-曻0(短波极限)相当于淈曻0,这正是量子力学过渡到经典力学的

条件.由此可以看出,量子力学与经典力学的关系,跟波动光学和几何光学的关系非常相似.

(注)各向同性介质中,光(电磁)波的波动方程为

殼

2f- 1
u2

灥2

灥t2f=0 (2灡3灡29)

u=c/n,c为真空中光速,f代表电场或磁场的任一分量.对于单色波(角频率为氊),

f(x,y,z,t)=毜(x,y,z)exp(-i氊t) (2灡3灡30)

毜(x,y,z)满足

殼

2毜+k2毜=0 (2灡3灡31)

式中k2=1/毸-2=氊2/u2=氊2n2/c2=n2/毸-2
0,毸-0=1/k0=c/氊=毸0/2毿,毸0=c/v是光在真空中的波

长.试把毜的模与相位分开,令

毜=aexp(ik0毃) (2灡3灡32)

a,毃为实,则

殼

毜=exp(ik0毃)(

殼

a+ik0a

殼

毃)

殼

2毜=exp(ik0毃)[

殼

2a+ik0a

殼

2毃+2ik0

殼

a·

殼

毃-k2
0a(

殼

毃)2] (2灡3灡33)

设毸0 很小(短波极限),即k0 很大,在上式中只保留最后一项,代入式(2灡3灡31),即得

(

殼

毃)2 =n2,暋(n2 =k2/k2
0)

即式(2灡3灡27),此式成立条件为[见式(2灡3灡33)]

殼

2毃 烆k0(

殼

毃)2,暋

殼

a 烆k0 a

殼

毃 ,暋 1
a

殼

2a 烆k2
0(

殼

毃)2 (2灡3灡34)

对于一维情况,即

灥2毃
灥x2 烆k0

灥毃
灥( )x

2
,暋 灥a

灥x 烆k0 a灥毃
灥x

1
a

灥2

灥x2a 烆k2
0

灥毃
灥( )x

2
(2灡3灡35)

但灥毃/灥x曋n,暋k0灥毃/灥x曋nk0=k=1/毸-,上式可化简为

毸-2 灥
灥x

1
毸- = 灥

灥x
1
毸- 烆1,暋 毸-

a
灥a
灥x 烆1

毸-2

a
灥2a
灥x2 烆1 (2灡3灡36)

·64·



上式中第一式表示波长(或折射系数)变化很缓慢,而第二、三式则表示在波长范围内,振幅a的

相对变化很小,即要求波长很短.

*2灡3灡4暋Bohm的量子势观点

1951年,Bohm在探讨波动力学与经典力学的关系时,提出了一种新的观点,即量子势

(quantumpotential)的概念栙.按这种观点,粒子运动的轨道概念仍然有效,而粒子运动遵守与

经典力学中的Jacobi灢Hamilton方程相似的一个方程,但方程中除了粒子受到的外界势场V 之

外,还出现了一个量子势(quantumpotantial).

利用式(2灡3灡4),氀=R2 曒0,可得 R=氀1/2.所以

殼

R= 1
2氀-1/2

殼

氀,暋

殼

2R/R= 1
2氀

殼

2氀-

1
4氀2(

殼

氀)2.这样式(2灡3灡3b)可以改写成

灥S
灥t+ 1

2m
(

殼

S)2 +(V+U)=0暋暋暋暋 (2灡3灡37)

式中

U =-淈2

2m

殼

2R
R =-淈2

4m

殼

2氀
氀

- 1
2

(

殼

氀)2

氀[ ]2 (2灡3灡38)

称为量子势
踿踿踿.显然,当淈曻0时,U曻0,量子势将消失.当然,与粒子所受的经典势V[不依赖于粒子

的量子态氉的,客观的(objective)势]不同,量子势
踿踿踿U 依赖于量子态

踿踿踿踿踿踿氉.处于相同的V 势的粒子,如
量子态氉不同,粒子受到的量子势U 是不同的.与氉一样,U 依赖于外界环境(边界条件).例如,双
缝衍射与单缝衍射两种情况,量子势U 就很不相同,因而粒子所走的轨道以及最后形成的衍射花

纹也就很不相同.特别应该提到,在氀曻0的区域,U曻曓,即粒子不能到达的区域,而这正是氉曻0的

区域.按照波函数的统计诠释,粒子在此区域中的概率曻0,所以两种观点是不矛盾的.
按照Bohm的观点,问题可按下列程序来求解:先求解方程

灥S
灥t+ 1

2m
(

殼

S)2 +V+U =0 (2灡3灡39)

求出S(r),从而求出v(r)=(

殼

S)/m.这样,粒子轨道也就确定了.但求解S(r),需要知道U,它
又依赖于波函数的波幅R,所以要先求出R.但为此又要先知道S.所以最终还是归结于求解联立

方程(2灡3灡3a)与(2灡3灡3b).但最好的办法还是去求解原来的Schr昳dinger方程(2灡3灡1).设已求解出

氉=u+iw暋暋暋暋 (2灡3灡40)
u,w 实,因而可求得

R2 =u2 +w2暋暋暋 (2灡3灡41)

S=淈arctan(w/u) (2灡3灡42)

2灡4暋WKB准经典近似

2灡4灡1暋WKB准经典近似波函数

Wenzel,Kramers和Brillouin栚 分别提出了一种求解Schr昳dinger方程的准经
踿踿
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典近似方法
踿踿踿踿踿.此法主要用来求解一维问题.它成功地处理了势垒穿透

踿踿踿踿
这样一个重要

的实际问题,并为早期量子论中的角动量量子化条件
踿踿踿踿踿踿踿踿

提供了量子力学的根据,指明

了它适用的条件.
考虑粒子在一维势场V(x)中运动,Schr昳dinger方程表示为

-淈2

2m
d2

dx2氉+V(x)氉=E氉 (2灡4灡1)

令

氉(x)=exp[iS(x)/淈] (2灡4灡2)
上式中S(x)为复函数[与2.3节,式(2灡3灡2)比较,那里S为实],代入式(2灡4灡1),
得到S(x)满足的方程

1
2m

dS
d

æ

è
ç

ö

ø
÷

x
2

+淈
i

1
2m

d2S
dx2 =E-V(x) (2灡4灡3)

显然,当淈曻0时(忽略淈项),上式趋于

1
2m

dS
d

æ

è
ç

ö

ø
÷

x
2

=E-V(x) (2灡4灡4)

形式上它与经典力学中的Jacobi灢Hamilton方程相同(见附录 A灡4),S相应于经典

力学中的作用量(但这里S为复).WKB近似的精神在于:把
踿S(x)按

踿淈作幂级数
踿踿踿踿

渐近展开
踿踿踿踿

,然后逐级近似求解
踿踿踿踿踿踿踿踿

,即令

S=S0+淈
iS1+ 淈æ

è
ç

ö

ø
÷

i
2

S2+… (2灡4灡5)

代入式(2灡4灡3),得

1
2mS曚

2
0 +淈

i
1
2m

(S曞0+2S曚0S曚1)+ 1
2m

淈æ

è
ç

ö

ø
÷

i
2
(S曚2

1 +2S曚0S曚2+S曞1)+…

=E-V(x) (2灡4灡6)
比较淈同幂次项,依次得

1
2mS曚

2
0 =E-V(x)暋 (2灡4灡7a)

2S曚0S曚1+S曞0 =0 (2灡4灡7b)

2S曚0S曚2+S曚2
1 +S曞1 =0 (2灡4灡7c)

式(2灡4灡7a)与Jacobi灢Hamilton方程(2灡4灡4)形式相同(但S0 为实).从式(2灡4灡7a)
可求出零级近似解

S0(x)=暲曇
x

pdx暋暋暋暋 (2灡4灡8)

其中

p= 2m(E-V(x)) (2灡4灡9)
在经典极限下,p即粒子动量,S0 为作用量.

用式(2灡4灡8)代入式(2灡4灡7b),得
·84·



S曚1 =-1
2

S曞0

S曚0
=-1

2
p曚
p = (lnp-1/2)曚

积分,得出量子一级修正

S1 =lnp-1/2+常数 (2灡4灡10)
以下分两种情况给出Schr昳dinger方程的准确到

踿踿踿O(淈)近似
踿踿

下的解(一级近似解):
(1)V(x)<E(经典允许区

踿踿踿踿踿
,p(x)为实)

氉(x)= C1

p
exp i

淈曇
x

pdæ

è
ç

ö

ø
÷x +C2

p
exp -i

淈曇
x

pdæ

è
ç

ö

ø
÷x

= C
p
sin 1

淈曇
x

pdx+æ

è
ç

ö

ø
÷毩 (2灡4灡11)

式中C1 与C2(或C与毩)由具体问题的边条件及归一化条件确定.
(2)V(x)>E(经典禁区

踿踿踿踿
,p(x)为纯虚)

令

p=ip =i 2m(V(x)-E)
则

暋氉(x)= C曚1

p
暋 exp +1

淈曇
x

p dæ

è
ç

ö

ø
÷x + C曚2

p
暋 exp -1

淈曇
x

p dæ

è
ç

ö

ø
÷x 暋

(2灡4灡12)
式中C曚1与C曚2也由边条件及归一化条件确定.

讨论暋一级近似解的适用条件:
由式(2灡4灡6)可以看出,一级近似解(2灡4灡11)与(2灡4灡12)成立的条件为

淈 S曞0 烆 S曚2
0 (2灡4灡13a)

2淈 S曚0S曚1 烆 S曚2
0 (2灡4灡13b)

利用式(2灡4灡8)与式(2灡4灡10),式(2灡4灡13a)化为淈 p曚 烆p2,而式(2灡4灡13b)化为

淈 p曚/p 烆 p .概括起来可表示为

淈
p2

dp
dx = 淈 d

dxp
-1 烆1

即

d毸-
dx 烆1 (2灡4灡14)

式中

毸-(x)= 淈
p = 淈

2m[E-V(x)]
(2灡4灡15)

式(2灡4灡14)也可表示为

毸-(x)
2[E-V(x)]

dV
dx 烆1 (2灡4灡16)

由此可看出:
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(1)一级近似解成立的条件要求,势场
踿踿V(x)的变化足够缓慢

踿踿踿踿踿踿踿
,即在粒子的de

Broglie波长范围内,V(x)的变化毸-dV
dx

比粒子的“动能暠[E-V(x)]小得多.

(2)显然,在“转折点
踿踿踿

暠(turningpoint,V(x)=E)附近
踿踿

(即经典允许区与禁区交

界处),p曋0,近似条件
踿踿踿踿

(2灡4灡16)不成立
踿踿踿

,因而一级近似解(2灡4灡11)与(2灡4灡12)不
适用.在转折点邻域中Schr昳dinger的解,需用另法求之(见本节数学附注).

以下用 WKB近似方法分别处理两类问题.

2灡4灡2暋势阱中粒子的准经典束缚态,Bohr灢Sommerfeld量子化条件

设粒子在变化缓慢的势阱V(x)中运动,能量为E.按经典力学观点,粒子将限

制在a曑x曑b范围中运动,V(a)=V(b)=E,a与b为转折点(见图2灡2).

图2灡2

一维规则势阱V(x)中粒子的束缚态是非简并的(卷栺,3灡1节),除了一个无

关紧要的常数因子外,波函数可以取为实.因此,在势阱内[V(x)<E]不太靠近转

折点处的波函数,可以表示成[见式(2灡4灡11)]

氉
·(x)= C

p
sin 1

淈曇
x

a
pdx+æ

è
ç

ö

ø
÷毩 (2灡4灡17)

其中C为归一化常数,毩由边条件确定.为了确定毩,必须知道氉(x)在转折点附近

的行为,但在转折点附近,上述近似解形式失效.在此区域中,我们有办法找出其严

格解(见本节数学附注).根据此严格解,可找出它在离开转折点较远处的渐近行

为,然后与 WKB近似解(2灡4灡17)比较,即可定出毩的值.
首先,根据氉(x)在x曋a邻近的严格解,可得出在a点右侧(x>a,见图2灡2)

离开x=a较远处氉(x)的渐近表示式,与式(2灡4灡17)比较,可得出毩=毿/4[见本节

数学附注,式(2灡4灡55)].因此,势阱中粒子的束缚态的 WKB波函数可表示为

氉(x)= C
p
sin 1

淈曇
x

a
pdx+毿æ

è
ç

ö

ø
÷

4 梾梾
令 C

p
sin毩(x) (2灡4灡18)

其次,根据氉(x)在x~b邻近的严格解,以及它在x=b点左边(x<b,见
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图2灡2)较远处的渐近式,也可求出势阱中的 WKB波函数为

氉(x)= C曚
p
sin 1

淈曇
b

x
pdx+毿æ

è
ç

ö

ø
÷

4 梾梾
令 C曚

p
sin毬(x) (2灡4灡19)

当然,无论从x曋a或从x曋b出发,所得出的势阱中粒子的波函数应该一致.根据

正弦函数的性质,只有当式(2灡4灡18)与式(2灡4灡19)中正弦函数的宗量之和为毿的

整数倍才能满足此要求,即

毩(x)+毬(x)= 1
淈曇

b

a
pdx+毿

2 = (n+1)毿

n=0,1,2,… (2灡4灡20)
代入式(2灡4灡18)和式(2灡4灡19),不难求出C曚=(-1)nC.这样,波函数(2灡4灡18)才
能够与波函数(2灡4灡19)光滑地连接起来.式(2灡4灡20)可改写成

曇
b

a
pdx= (n+1/2)毿淈

亦即

曈pdx= (n+1/2)h,暋n=0,1,2,… (2灡4灡21)

式中曈dx是指对周期运动积分一个周期
踿踿踿踿踿踿踿踿踿踿踿

,此即Bohr灢Sommerfeld量子化条件.注

意,式(2灡4灡21)右侧的最小值为h/2,是原始的 Bohr灢Sommerfeld条件中没有的,
它反映体系运动的“零点能

踿踿踿
暠,纯属量子效应.

在以上讨论中,假定了V(x)是x的缓变化函数.对于方势阱类型的场,这条

件并不完全正确.例如,无限深方势阱(图2灡3)

V(x)=
0, a<x<b
曓, x>b,x<{ a

在x=a、b点,V(x)有无限大跳跃.从物理上来看,粒子不能“渗透暠到经典禁区去,
要求氉(a)=氉(b)=0.在此边条件下,式(2灡4灡18)与式(2灡4灡19)应代之为

氉(x)= C
p
sin 1

淈曇
x

a
pdæ

è
ç

ö

ø
÷x

氉(x)= C曚
p
sin 1

淈曇
b

x
pdæ

è
ç

ö

ø
÷x

(2灡4灡22)

而式(2灡4灡20)应换为

1
淈曇

b

a
pdx=n毿暋暋暋暋暋

即

曈pdx=nh,暋n=1,2,3,… (2灡4灡23)

这正是原始的Bohr灢Sommerfeld条件.对于图2灡4所示的势阱,可得出如下类似的

量子化条件

·15·



曈pdx= n+æ

è
ç

ö

ø
÷

3
4 h,暋n=0,1,2,… (2灡4灡24)

图2灡3

暋
图2灡4

2灡4灡3暋势垒隧穿

假设具有一定能量E 的粒子从左入射,碰到势垒V(x)(图2灡5).设V(x)变化

比较缓慢,而且入射粒子能量E 不太靠近V(x)的峰值,则可以用 WKB近似来处

理粒子穿透势垒的现象.(如转折点a与b很靠近势垒顶部,则不能用此近似.)

图2灡5

按照经典力学,粒子在x=a处会被碰回.而按照量子力学,考虑到粒子的波

动性,粒子有一定的概率透过势垒.当然,在许多情况下,这种概率很小.下面我们

用 WKB近似来计算势垒的穿透概率T,其结果为

T =exp -2
淈曇

b

a
2m(E-V(x))d[ ]x (2灡4灡25)

注意:此公式只当T烆1时才有意义.证明如下:
假设在区域栺(x<a,经典允许区)中 WKB近似波函数表示成

氉(x)= 2
v
sin 1

淈曇
a

x
pdx+毿æ

è
ç

ö

ø
÷

4 暋

= 1
iv

exp i
淈曇

a

x
pdx+i毿æ

è
ç

ö

ø
÷

4 -exp -i
淈曇

a

x
pdx-i毿æ

è
ç

ö

ø
÷[ ]4

(2灡4灡26)

式中p= 2m[E-V(x)],v=p/m 表示入射粒子速度.上式右侧第一项为入射
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波,第二项为反射波.入射波与反射波的强度相同,流密度均为1.显然,只当穿透

概率T烆1时这才是一个好的近似.
在区域栻(a<x<b,经典禁区)中,WKB 波函数取实指数函数形式 [见

式(2灡4灡12)].可以证明,能够把区域栺与区域栻中的波函数(2灡4灡26)光滑地衔接

起来的波函数如下[见本节数学附录,式(2灡4灡62)]:

2
v
sin 1

淈曇
a

x
pdx+毿æ

è
ç

ö

ø
÷偣偢4

1
v
exp -1

淈曇
x

a
p dæ

è
ç

ö

ø
÷x

(x<a) (x>a)
(2灡4灡27)

在x>a区域(经典禁区)中p=i 2m(V(x)-E)=ip 为纯虚数.上式右边还可

改写成

1
v
exp -1

淈曇
b

a
pdæ

è
ç

ö

ø
÷x exp 1

淈曇
x

b
pdæ

è
ç

ö

ø
÷x (2灡4灡28)

除了常数因子exp -1
淈曇

b

a
pdæ

è
ç

ö

ø
÷x 之外,上列波函数形式为

1
v
exp 1

淈曇
x

b
pdæ

è
ç

ö

ø
÷x (2灡4灡29)

此波函数在势垒内部不太靠近转折点a与b的地方是适用的.
可以证明,式(2灡4灡29)所示的波函数延伸到势阱外(x>b,图2灡5区域栿)的连

接公式为[见本节数学附录,式(2灡4灡63)]

1
v
exp 1

淈曇
x

b
pdæ

è
ç

ö

ø
÷偣偢x - 1

v
exp i

淈曇
x

b
pdx+i毿æ

è
ç

ö

ø
÷

4

(x<b) (x>b) (2灡4灡30)

考虑到波函数(2灡4灡28)式前面的常数因子,可得出,在x>b区域中的 WKB波函

数(透射波)为

氉(x)=- 1
v
exp -1

淈曇
b

a
pdæ

è
ç

ö

ø
÷x ·exp i

淈曇
x

b
pdx+i毿æ

è
ç

ö

ø
÷

4
(2灡4灡31)

所以透射流密度为

jt =氀v=v氉 2 =exp -2
淈曇

b

a
pdæ

è
ç

ö

ø
÷x (2灡4灡32)

考虑到入射流密度为1,所以透射系数就是

T =exp -2
淈曇

b

a
pdæ

è
ç

ö

ø
÷x =exp -2

淈曇
b

a
2m(E-V(x))d[ ]x

此即前面给出的势垒透射概率公式(2灡4灡25).
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附录暋WKB波函数的连接公式

在经典允许区中,WKB波函数为振荡函数[见式(2灡4灡11)],在禁区中则为指数函数[见式

(2灡4灡12)].这两个区域中的 WKB波函数如何连接起来呢? 由于 WKB波函数在转折点邻域是

不适用的,从 WKB波函数本身无法找出它们的连接公式.庆幸的是,在转折点邻域可找出

Schr昳dinger方程的严格解.把严格解在离开转折点较远处的渐近行为与 WKB波函数进行比

较,即可找出在转折点两侧的 WKB波函数的连接公式.
现在来求转折点邻域的Schr昳dinger方程的严格解.设在转折点x=a的邻域V(x)变化比

较缓慢(图2灡2),可作 Taylor展开,只保留一次项

V(x)=V(a)+灥V
灥x x=a

·(x-a)=E-F0q (2灡4灡33)

其中

q= (x-a),暋F0 =-灥V
灥x x=a

>0

所以在x曋a邻域,Schr昳dinger方程可表示为

d2

dq2氉+2mF0

淈2 q氉=0 (2灡4灡34)

引进无量纲变量

毼= 2mF0

淈( )2

1/3

q (2灡4灡35)

式(2灡4灡34)化为

d2

d毼2氉+毼氉=0 (2灡4灡36)

在经典允许区(x>a,即q>0或毼>0),令

氉=毼1/2u,暋z= 2
3毼3/2 (2灡4灡37)

则式(2灡4灡36)化为

d2u
dz2 + 1

z
du
dz+ 1-

(1/3)2
z[ ]2 u=0 (2灡4灡38)

此乃1/3阶Bessel方程栙.它的一般解可表示为J1/3与J-1/3的线性叠加.
在经典禁区(x<a,即q<0或毼<0),式(2灡4灡36)化为

d2

d毼 2 - 毼氉=0 (2灡4灡39)

令

氉= 毼 1/2u,暋z= 2
3 毼 3/2 >0 (2灡4灡40)

式(2灡4灡39)化为

·45·
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d2u
dz2 + 1

z
du
dz- 1+

(1/3)2
z[ ]2 u=0 (2灡4灡41)

这是变型(虚宗量)Bessel方程,其一般解为I1/3(z)与 K1/3(z)的线性叠加.但考虑到束缚态边条

件,在经典禁区中只能取 K1/3(z)[因z曻曓时,I1/3(z)是发散的],利用

K1/3(z)曻 毿
2ze-z,暋z曻 曓 (2灡4灡42)

式(2灡4灡41)的束缚解可表示为

氉曍 毼K1/3
2
3 毼 3/( )2 ,暋毼<0 (2灡4灡43)

应当提到,束缚态边条件不仅对毼<0区域的波函数作了限制,考虑到在毼=0点处波函数及其导

数的连续性,它将对毼>0区域的波函数也有所限制,从而对粒子的能量本征值也有所限制.为
此,要利用数学公式

毼
暋

K1/3
2
3 毼 3/( )偣偢2 毿

3
毼 J1/3

2
3毼3/( )2 +J-1/3

2
3毼3/( )[ ]2

(毼<0) (毼>0)
(2灡4灡44)

上式右 边 是 左 侧 函 数 毼
暋

K1/3
2
3 毼 3/( )2 在毼>0 区 域 中 的 解 析 延 拓.下 面 来 讨 论 式

(2灡4灡44)两边的渐近行为.
利用式(2灡4灡42),当 毼 曻曓时,

毼
暋

K1/3
2
3 毼 3/( )2 曻 3毿

2毼1/4exp - 2
3 毼 3/( )2 (2灡4灡45)

利用

z曻 曓 时,暋J毻(z)曻 2
毿zcosz-毻毿

2 - 毿( )4
(2灡4灡46)

可得

1
3

[J1/3(z)+J-1/3(z)]曻 2
毿zsinz+ 毿( )4

(2灡4灡47)

所以,当毼曻曓时,式(2灡4灡44)右边化为

毿
3

毼 J1/3
2
3毼3/( )2 +J-1/3

2
3毼3/( )[ ]2 曻 3毿

毼1/4sin 2
3毼3/2 + 毿( )4

(2灡4灡48)

因此,用渐近行为来表示时,式(2灡4灡44)就化为下列连接公式:

1
毼 1/4exp - 2

3 毼 3/( )偣偢2 2
毼1/4sin

2
3毼3/2 + 毿( )4

(毼<0) (毼>0)
(2灡4灡49)

这是讨论 WKB波函数连接公式时用到的基本数学公式.
下面分别讨论束缚态和势垒隧穿两种情况.

1灡 束缚态

考虑图2灡2灡所示势阱中的粒子束缚态.
在经典禁区(x<a,即q<0或毼<0),满足束缚态边条件的 WKB波函数[见式(2灡4灡12)]为
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氉(x)曍 1
p

暋 exp - 1
淈曇

x

a
pd( )x (2灡4灡50)

其中

p=ip =i 2m(V(x)-E)

在x曋a邻域 曋i -2mF0q= 2mF0 q (2灡4灡51)

曇
x

a
pdx = 2

3 2mF0 q 3/2

所以

氉(x)曍 1
(2mF0 q )1/4exp - 2

3淈 2mF0 q 3/( )2

曍 1
毼 1/4exp - 2

3 毼 3/( )2 (2灡4灡52)

在经典允许区(x>a,即q>0或毼>0)WKB波函数[见式(2灡4灡11)]为

氉(x)曍 1
p
sin 1

淈曇
x

a
pdx+( )毩 (2灡4灡53)

其中

p= 2m(E-V(x))曋 2mF0q
在x曋a邻域,

曇
x

a
pdx= 2

3 2mF0q3/2

利用

毼= 2mF0

淈( )2

1/3

q,暋毼3/2 = 2mF0

淈 q3/2

得

氉(x)曍 1
(2mF0q)1/4sin

2
3

2mF0

淈 q3/2 +
æ

è
ç

ö

ø
÷毩

曍 1
毼 1/4sin

2
3毼3/2 +( )毩 (2灡4灡54)

将x<a区域中的波函数(2灡4灡52)和x>a区域中的(2灡4灡54)与连接公式(2灡4灡49)比较,可看出

WKB波函数(2灡4灡54)中的相位毩=毿/4.这样,我们就得出了在图2灡2所示转折点x=a两侧

WKB波函数的连接公式

1
p

暋 exp - 1
淈曇

x

a
pd( )偣偢x 2

p
sin 1

淈曇
x

a
pdx+ 毿( )4

(经典禁区x<a) (经典允许区x>a)
(2灡4灡55)

2灡 势垒隧穿

先求在进入势垒的转折点x=a(图2灡5)处 WKB波函数的连接公式.在x曋a邻域,

V(x)曋V(a)+灥V
灥x x=a

·(x-a)=E+F0q (2灡4灡56)
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式中E=V(a),q=(x-a),F0=灥V
灥x x=a

>0灡

在经典允许区(x<a,即q<0或毼<0),WKB波函数[见式(2灡4灡11)]为

氉(x)曍 1
p
sin 1

淈曇
a

x
pdx+( )毩 (2灡4灡57)

式中

p= 2m[E-V(x)]= -2mF0q= 2mF0 q (2灡4灡58)

曇
a

x
pdx= 2

3 2mF0 q 3/2

由此得

氉(x)曍 1
(2mF0 q )1/4sin

2
3

2mF0

淈 q 3/2 +
æ

è
ç

ö

ø
÷毩

曍 1
毼 1/4sin

2
3 毼 3/2 +( )毩 (2灡4灡59)

在经典禁区(x>a,即q>0或毼>0),WKB波函数取负指数函数形式

氉(x)曍 1
p

暋 exp - 1
淈曇

x

a
pd( )x (2灡4灡60)

式中(在x曋a邻域)

p=ip =i 2mF0q暋暋暋暋暋暋

曇
x

a
pdx =曇

x

a
p dx=曇

q

0
2mF0qdq= 2

3 2mF0q3/2

所以

氉(x)曍 1
(2mF0q)1/4exp - 2

3
2mF0

淈 q3/æ

è
ç

ö

ø
÷2

曍 1
毼1/4exp - 2

3毼3/( )2 (2灡4灡61)

将x>a区域中的波函数式(2灡4灡59)和x>a区域中的波函数式(2灡4灡61)与连接公式(2灡4灡55)
比较,可知 WKB波函数(2灡4灡59)中的相位应取毩=毿/4.这样,我们就求出了在入射粒子碰到势

垒x=a(图2灡5)两侧的 WKB波函数的连接公式

2
p
sin 1

淈曇
a

x
pdx+ 毿( )偣偢4

1
p

暋 exp - 1
淈曇

x

a
pd( )x

(经典允许区x<a) (经典禁区x>a)
(2灡4灡62)

为求出粒子射出势垒 x=b点(图 2灡5)两侧的 WKB 波函数的连接公式,可借助于式

(2灡4灡55)(把a换为b).不同之处在于:在经典允许区(x>b)只有出射波而无反射波,而根据

x=b点波函数及其导数的连续条件,这将影响到经典禁区(x<b)中的波函数.由此可以证明(见
下),在x=b两侧的 WKB波函数的连接公式为

1
p

暋 exp 1
淈曇

x

b
pd( )偣偢x - 1

p
exp i

淈曇
x

b
pdx+i毿( )4

(经典禁区x<b) (经典允许区x>b)
(2灡4灡63)

证明如下:
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为借助于式(2灡4灡55),可利用卷栺,3灡1节中证明过的一条定理:对于一维粒子,若氉1 与

氉2,是属于同一个能量的两个波函数,则

氉1氉曚2 -氉2氉曚1 = 常数

或表示成

氉
2
2(氉1/氉2)曚= 常数

试把式(2灡4灡55)中的波函数(a点换记为b点)看成氉1,把式(2灡4灡63)中的波函数看成氉2,于是

在经典禁区(x<b)有

氉
2
2(氉1/氉2)= 1

p
exp 2

淈曇
x

b
pd( )x

1
p

暋 exp - 1
淈曇

x

b
pd( )x

1
p

暋 exp 1
淈曇

x

b
pd( )x

= 1
p

exp 2
淈曇

x

b
pd( )x ·exp - 2

淈曇
x

b
pd( )x

=-2/淈 (2灡4灡64)

而在经典允许区(x>b)有

氉
2
2(氉1/氉2)曚= 1

p
exp 2i

淈曇
x

b
pdx+i毿( )2

é

ë

ê
ê
ê

·
exp i

淈曇
x

b
pdx+i毿( )4 -exp -i

淈曇
x

b
pdx-i毿( )4

-iexp i
淈曇

x

b
pdx+i毿( )4

- 1
ip

exp 2i
淈曇

x

b
pdx+i毿( )2

·exp -2i
淈曇

x

b
pdx-i毿( )

ù

û

ú
ú
ú

2

=-2/淈 (2灡4灡65)

这就验证了连接公式(2灡4灡63).

*2灡4灡4暋中心力场中粒子的准经典近似

中心力场V(r)中粒子(无自旋)的能量本征态,通常取为守恒量完全集(H,l2,

lz)的共同本征态,即能量本征函数表示成

氉(r,毴,氄)=Rl(r)Ym
l (毴,氄)= 1

r氈暋l(r)Ym
l (毴,氄)

l=0,1,2,…暋暋暋
m =l,l-1,…,-l (2灡4灡66)

其中描述角度自由度运动的球谐函数 Ym
l ,对各种中心力场是共同的,而描述径向

运动的波函数满足下列方程

氈曞l+
2毺
淈2

[E-V(r)]-l(l+1)
r{ }2 氈暋l =0

暋 氈暋l(0)=0暋 (2灡4灡67)
则依赖于中心力场V(r)的具体形式,E 为能量本征值.上式还可改写成
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氈曞l+
2毺
淈2

[E-Vl(r)]氈暋l =0

Vl(r)=V(r)+淈2

2毺
l(l+1)

r2

(2灡4灡68)

上式Vl(r)右边第二项称为离心势能
踿踿踿踿

,依赖于粒子的角动量l.方程(2灡4灡67)或
(2灡4灡68)的形式,与一维势场V(x)中粒子的能量本征方程相似.因此可套用前面

处理一维运动的 WKB准经典近似方法.但须注意,径向变量r变化范围是(0,

曓),而一维粒子坐标变化范围为(-曓,+曓).这表现在边条件有所不同
踿踿踿踿踿踿踿.

下面分别讨论角度部分和径向部分.

1灡 球谐函数的准经典近似表示式

先考虑角动量m=0的本征态

Y0
l = 2l+1

4毿 Pl(cos毴) (2灡4灡69)

Pl(cos毴)满足Legendre方程

1
sin毴

d
d毴sin毴d

d毴P
æ

è
ç

ö

ø
÷l +l(l+1)Pl =0 (2灡4灡70)

或

d2Pl

d毴2 +cot毴dPl

d毴 +l(l+1)Pl =0

为消去上列方程中的一阶微商项,令

Pl(cos毴)=氈(毴)/ sin毴 (2灡4灡71)
则

氈曞+ l+æ

è
ç

ö

ø
÷

1
2

2

+1
4cot2[ ]毴氈 =0 (2灡4灡72)

与一维运动方程比较,可看出相应的“deBroglie波长暠为

毸(毴)= l+æ

è
ç

ö

ø
÷

1
2

2

+1
4cot2[ ]毴

-1/2
(2灡4灡73)

按准经典近似的要求

d毸
d毴 烆1 (2灡4灡74)

这就要求式(2灡4灡73)右侧第二项(随毴变化)烆第一项.考虑到cot毴在毴曋0和毿附

近趋于曓 当毴曻0时,cot毴曋1
毴

;毴曻毿时,cot毴 曋 1
毿-

æ

è
ç

ö

ø
÷

毴
,所以要求毴不要太靠

踿踿踿踿
近
踿0和毿,并且

l毴烅1,暋(毿-毴)l烅1 (2灡4灡75)
当毴不太靠近0或毿,而且条件(2灡4灡75)满足时,式(2灡4灡72)可以化为
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氈曞+ l+æ

è
ç

ö

ø
÷

1
2

2

氈=0 (2灡4灡76)

其解可表示成

氈=Asin l+æ

è
ç

ö

ø
÷

1
2 毴+[ ]毩 (2灡4灡77)

因而

Pl(cos毴)= A
sin毴

sin l+æ

è
ç

ö

ø
÷

1
2 毴+[ ]毩 (2灡4灡78)

可以证明栙

A = 2/毿l,暋毩=毿/4
即

Pl(cos毴)= 2
毿l

sin l+æ

è
ç

ö

ø
÷

1
2 毴+毿/[ ]4

sin毴

Y0
l(毴)= 1

毿

sin l+æ

è
ç

ö

ø
÷

1
2 毴+毿/[ ]4

sin毴

(2灡4灡79)

适用条件为:毴不太靠近
踿踿踿踿0或毿,而且角动量量子数

踿踿踿踿踿踿l烅1.

2灡 径向波函数的准经典近似

先讨论l=0的径向波函数

氈曞0+
2毺
淈2

[E-V(r)]氈暋0 =0 (2灡4灡80)

·06·

栙 证明:当毴烆1时,cot毴曋 1
毴 .对于l烅1,l(l+1)曋 (l+1/2)2.此时式(2灡4灡70)化为

d2

d毴2Pl+ 1
毴

d
d毴Pl+ l+( )1

2
2
Pl =0

此乃零阶Bessel方程,它在毴曋0邻域有界的解表示为

Pl(cos毴)=J0 l+( )1
2( )毴

利用

Jn(z)曻 2
毿zsin z- n

2毿+毿/( )4 暋(当z曻 曓)

可得

J0 l+( )1
2( )毴

毴l烅
曻
1 2

毿 l+( )1
2 毴

sin l+( )1
2 毴+ 毿[ ]4

曋 2
毿l

sin l+( )1
2 毴+ 毿[ ]4
毴

与式(2灡4灡78)比较(注意,sin毴曋毴),可得

A= 2/毿l,暋毩=毿/4



与一维情况比较,相应的“deBroglie波长暠为

毸-0 = 淈
p = 淈

2毺(E-V(r))
(2灡4灡81)

式中

p= 2毺(E-V(r)) (2灡4灡82)
准经典近似条件

d毸-
dr 烆1暋暋暋 (2灡4灡83)

化为

毺淈
p3

dV
dr 烆1 (2灡4灡84)

在此条件下,满足边条件(2灡4灡67)的径向波函数氈暋0(r)的准经典近似式可表示为

暋氈暋0(r)曍 C
p
sin曇

r

0

pdr
淈 暋 (2灡4灡85)

对于l曎0情况,Vl(r)中还包含有离心势.在r曻0区域中,离心势能远比一般

的规则势能V(r)还重要.此时,粒子总能~离心势能,即p2

2毺
曍淈2l(l+1)/(2毺r2),

p曍l淈/r,暋毸- = 淈
p 曍 r

l
,暋d毸-

dr曍 1
l 烆1 (2灡4灡86)

所以要求l烅1.当l较小时,在r曋0邻域准经典近似失效.
为借助于一维粒子的 WKB近似波函数来写出径向波函数的准经典近似式,

试把离心势写成淈2s2/(2毺r2)的形式,然后根据波函数在r曻曓的渐近行为来确定

s.为此,先考虑自由粒子[即忽略V(r)的影响].此时,WKB近似波函数为

暋氈暋l(r)= C
p
sin曇

r

r0

pdr
淈

+毿æ

è
ç

ö

ø
÷

4
(2灡4灡87)

式中

p= 2毺(E-淈2s2/2毺r2) (2灡4灡88)
r0 为转折点,由E=淈2s2/2毺r

2
0=p2/2毺=淈2k2/2毺 确定,即r0=s/k.当r曻曓时,

积分栙

1
淈曇

r

r0
pdr曻 kr-s毿æ

è
ç

ö

ø
÷

2
与自由粒子的l分波波函数的渐近行为的相位(见卷栺,13灡4节)相比,可得
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栙 1
淈曇

r

r0
pdr=曇

r

r0
k2-s2/r2dr=曇

x

x0

x2-s2

x dx

= x2-s2-sarccos x( )[ ]s
x

x0
暋(x=kr,x0 =kr0 =s)

x曻
曻

曓
x-s毿( )2



kr-s毿
2 + 毿

4 = kr-l毿æ

è
ç

ö

ø
÷

2
因此

s=l+1/2 (2灡4灡89)

在此基础上,再把位势V(r)的影响考虑进去,可求得径向波函数氈暋l(r)的准经典近

似表示式

暋氈暋l(r)= C
pr

sin 1
淈曇

r

r0
prdr+毿æ

è
ç

ö

ø
÷

4 暋 (2灡4灡90)

式中pr 为“径向动量暠,

pr = 2毺 E-V(r)-淈2(l+1/2)2
2毺r[ ]2

r0 = (l+1/2)/k,暋k= 2毺E/淈2

(2灡4灡91)

例暋利用径向波函数的准经典近似表示式(2灡4灡90),可求出各分波的散射相移毮l 的准经典

近似值.按式(2灡4灡90)和(2灡4灡91),在势场V(r)作用下粒子的l分波的相位为

曇
r

r0
dr k2 -

(l+1/2)2
r2 -2毺V(r)

淈2 + 毿
4

而对于自由粒子,则为

曇
r

r0
dr k2 -

(l+1/2)2
r2 + 毿

4
当r曻曓时,两者之差即V(r)作用产生的相移毮l.当l烅1时,r0=s/k=(l+1/2)/k也很大,而在

[r0,曓]范围中V(r)很小,可以做如下展开:

k2 -
(l+1/2)2

r2 -
2毺V(r)

淈[ ]2

1/2

暋

曋 k2 -
(l+1/2)2

r[ ]2

1/2

{· 1- 毺V(r)

淈2 k2 -
(l+1/2)2

r[ ] }
2

= k2 -
(l+1/2)2

r2 - 毺V(r)

淈2 k2 -
(l+1/2)2

r2

因此,在准经典近似下,

毮l 曋- 毺
淈2曇

r

r0

V(r)dr

k2 -
(l+1/2)2

r2

(2灡4灡92)

暋暋栙暋Z.Q.MaandB.W.Xu,Europhys.Lett.69(2005)685.

*2灡4灡5暋严格的量子化条件

最近,文献栙给出了一维势阱V(x)中束缚粒子的严格的量子化条件,简述如
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下.按Schr昳dinger方程(2灡4灡1),即

d2氉
dx2 =-2m

淈2 [E-V(x)]氉(x) (2灡4灡93)

V(x)为连续(图2灡2)或分段连续函数,x=a、b为两个转折点.令氉(x)的对数微

商为栙

毤(x)= 1
氉(x)

d氉(x)
dx

(2灡4灡94)

容易证明毤(x)满足Ricatti方程(一阶非线性微分方程)

d毤(x)
dx =-2m

淈2 [E-V(x)]-毤(x)2 (2灡4灡95)

在经典允许区[E>V(x)],即a曑x曑b,毤(x)随x单调下降;随x增大而跨过氉(x)
的某一节点时,毤(x)将从-曓跃变为+曓,然后再下降.令

tan毴(x)=k(x)/毤(x),暋k(x)= 2m[E-V(x)]/淈 (2灡4灡96)

毴(x)=arctan[k(x)/毤(x)]+n毿
式中arctan毬表示反正切函数的主值,-毿/2<arctan毬曑毿/2,在经典允许区,每当x
跨过毤(x)的一个节点,n增加1.由此可得

曇
b

a

d毴(x)
dx dx=N毿-lim

x曻a+
arctank

(x)
毤(a)+lim

x曻b-
arctank

(x)
毤(b) (2灡4灡97)

N 为毤(x)的节点数.如V(x)在转折点x=a和x=b连续,则上式右侧后两项为

0.由式(2灡4灡95)与式(2灡4灡96)可得,在经典允许区(a曑x曑b)

d毴(x)
dx =k(x)-毤(x)dk(x)

dx
· d毤(x)

d[ ]x
-1

(2灡4灡98)

上式积分后,得[p(x)=淈k(x)为经典粒子动量]

曇
b

a
p(x)dx=N毿淈+曇

b

a
毤(x)dp(x)

dx
· d毤(x)

d[ ]x
-1

(2灡4灡99)

此即得出的严格的量子化条件.
对于三维球对称势V(r)中的粒子,令氉(r)=r-1氈暋l(r)Ym

l (毴,氄)[见 式

(2灡4灡66)],则径向方程为[见式(2灡4灡67)]

d2氈暋l(r)
dr2 = -灥m

淈2 [E-V(r)]+l(l+1)
r{ }2 氈暋l(r) (2灡4灡100)

它与式(2灡4灡93)相似.类似可以得出球对称中心势V(r)中的粒子束缚态的严格量

子化条件[p(r)=淈k(r)]

曇
rb

ra
p(r)dr=N毿淈+曇

rb

ra
毤(r)dp(r)

dr
· d毤(r)

d[ ]r
-1

(2灡4灡101)

式(2灡4灡99)与式(2灡4灡101)中,右侧第一项来自波函数的节点的贡献,第二项
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称为量子修正,它不依赖于波函数的节点数.该文指出:对于严格可解体系,利用此

严格量子化规则可以计算所有的束缚能级,而基态波函数可以从求解 Ricatti方程

得出.对于一维方势阱(无限深或有限深,对称或不对称)、一维谐振势等,计算所得

束缚能级,与用 WKB近似得出的结果一致.该文中还计算了一些较为复杂的一维

势阱的束缚能级,有兴趣的读者可参阅该文.

2灡5暋Wigner函数,量子态的测量与制备

在经典力学中,一个粒子的运动状态,用它在每一时刻的坐标和动量,即相空

间中的一个点来描述.在量子力学中,由于波动 粒子两象性,一个体系的量子态,
用 Hilbert空间中的一个矢量(方向)来描述,记为右矢 氉暤,而在一个具体的表象

中,则用态矢 氉暤在各基矢方向的分量来刻画.如选用一个连续表象,则量子态表

示成一个波函数(复).例如,在坐标表象中,量子态 氉暤表示成暣x氉暤=氉(x).量子

态包含了体系的全部信息.
在量子力学中,单个

踿踿
(individual)粒子

踿踿
(或体系
踿踿踿

)的量子态是不能观测的
踿踿踿踿踿踿踿踿踿踿

,即在

原则上不能用实验来测定,但对于在同样实验条件下制备出来的粒子(或体系)所
构成的系综

踿踿
(ensemble)而言,量子态的测量则是有意义的

踿踿踿踿踿踿踿踿踿踿踿踿
栙栚.近年来,量子态测量

的实验工作,已取得一些重要进展栛.现今已进行的测量量子态的实验工作,是测

量与波函数或密度矩阵等价的 Wigner函数栜,它是定义于相空间中的一个实函数

[见式(2灡5灡1)],它具有准概率分布函数
踿踿踿踿踿踿踿

的性质.但 Wigner函数并非粒子坐标和

动量的联合测量分布,因为这是违反 Heisenberg的不确定度关系 的.特别是

Wigner函数既可以取正值
踿踿踿踿踿踿

,也可以取负值
踿踿踿踿踿踿

,后者正是非经典性质的反映.此外,在
量子态的制备以及量子工程(quantumengineering)(或称波函数工程)等领域也取

得相当的进展栞.
与量子态 氉暤或密度算符氀= 氉暤暣氉 相应的 Wigner函数定义如下:(为表述

简单,下面以一维粒子为例.多维粒子或更复杂的体系的 Wigner函数,也可类似

定义)
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W(x,p)= 1
2毿焻h曇

+曓

-曓
氉* x+x曚æ

è
ç

ö

ø
÷

2 氉x-x曚æ

è
ç

ö

ø
÷

2 eipx曚/焻hdx曚

=1
毿焻h曇

+曓

-曓
暣x-x曚氀x+x曚暤ei2px曚/焻hdx曚

=1
毿焻h曇

+曓

-曓
暣x-x曚氉暤暣氉x+x曚暤ei2px曚/焻hdx

=1
毿焻h曇

+曓

-曓
氉* (x+x曚)氉(x-x曚)ei2px曚/焻hdx (2灡5灡1)

W(x,p)也可以表示成动量空间的波函数的积分(注1)

W(x,p)= 1
2毿焻h曇

+曓

-曓
暣p-p曚氀p+p曚暤e-i2xp曚/焻hdp曚

=1
毿焻h曇

+曓

-曓
暣p-p曚氉暤暣氉p+p曚暤e-i2xp曚/焻hdp曚

=1
毿焻h曇

+曓

-曓
毤* (p+p曚)毤(p-p曚)e-i2xp曚/焻hdp曚

= 1
2毿焻h曇

+曓

-曓
毤* p+p曚æ

è
ç

ö

ø
÷

2 毤p-p曚æ

è
ç

ö

ø
÷

2 e-ixp曚/焻hdp曚 (2灡5灡2)

式中毤(p-p曚)=暣p-p曚氉暤.

(注1)暋式(2灡5灡1)作Fourier变换,得

W(x,p)=1
毿焻h

1
2毿焻h曇曇曇dx曚dp曚dp曞e-i(x+x曚)p曚/焻h毤* (p曚)ei(x-x曚)p曞/焻h毤(p曞)ei2px曚/焻h

=1
毿焻h曇曇dp曚dp曞毮(2p-p曚-p曞)e-i(p曚-p曞)x/焻h毤* (p曚)毤(p曞)

令p曚=u+v,p曞=u-v,则p曚+p曞=2u,p曚-p曞=2v,灥(p曚,p曞)
灥(u,v) =2,dp曚dp曞=2dudv,得

W(x,p)=1
毿焻h曇曇dudv毮(p-u)e-i2vx/焻h毤* (u+v)毤(u-v)

=1
毿焻h曇dve-i2vx/焻h毤* (p+v)毤(p-v)

把v换成p曚,即式(2灡5灡2).

1灡 Wigner函数的性质

(1)W(x,p)为相空间中的实函数

W * (x,p)=W(x,p) (2灡5灡3)
在式(2灡5灡1)中令x曚=-x曞,即可证明上式.

(2)W(x,p)具有准概率分布
踿踿踿踿踿

的含义,即(注2)

曇dpW(x,p)=氉* (x)氉(x) (2灡5灡4)

曇dxW(x,p)=毤* (p)毤(p) (2灡5灡5)
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氉* (x)氉(x)和毤* (p)毤(p)是大家熟知的粒子在坐标空间和动量空间的概率分布

密度.

(注2)暋把式(2灡5灡1)代入式(2灡5灡4),利用曇dpei2x曚p/焻h =2毿焻h毮(2x曚)=毿焻h毮(x曚),得

曇W(x,p)dp=曇dx曚氉* (x+x曚)氉(x-x曚)毮(x曚)=氉* (x)氉(x)

类似可证明式(2灡5灡5).
(3)对于只与坐标有关

踿踿踿踿踿踿
的力学量f(x)[如势能V(x)]的平均值,可用W(x,p)

计算如下(注3)

f(x)=曇曇dxdpW(x,p)f(x)=曇氉* (x)f(x)氉(x)dx (2灡5灡6)

这与直接用坐标表象中的波函数氉(x)来计算f(x)的平均值公式一致.

(注3)暋利用式(2灡5灡1),

f(x)=曇曇dxdpW(x,p)f(x)= 1
毿焻h曇曇曇dxdpdx曚氉* (x+x曚)氉(x-x曚)ei2px曚/焻hf(x)

=曇曇dxdx曚氉* (x+x曚)氉(x-x曚)毮(x曚)f(x)=曇dx氉* (x)f(x)氉(x)

此即式(2灡5灡6).类似可以证明式(2灡5灡7)、(2灡5灡8).
对于只与动量有关

踿踿踿踿踿踿
的力学量g(p)(如动能T=p2/2m),平均值也可类似计算

如下:

g(p)=曇曇dxdpW(x,p)g(p)=曇毤* (p)g(p)毤(p)dp

=曇氉* (x)g -i焻h 灥
灥

æ

è
ç

ö

ø
÷

x氉(x)dx (2灡5灡7)

这与用波函数氉(x)或毤(p)计算g(p)平均值的公式一致.
不难证明,对于如下形式f(x)+g(p)的力学量[例如 H=p2/2m+V(x)],平

均值也可计算如下:

f(x)+g(p)=曇曇dxdpW(x,p)[f(x)+g(p)]

=曇氉* (x)f(x)+g -i焻h 灥
灥

æ

è
ç

ö

ø
÷[ ]x 氉(x)dx

=曇毤* (p)fi焻h 灥
灥

æ

è
ç

ö

ø
÷

p +g(p[ ])毤(p)dp

(2灡5灡8)

(4)一般说来,W(x,p)既可取正值
踿踿踿踿踿

,也可取负值
踿踿踿踿踿

,所以不能像经典物理中那样,
把W(x,p)看成粒子在同一时刻坐标取x、动量取p的概率密度(这种描述是违反不

确定度关系的).然而可以证明,对于准经典态
踿踿踿踿踿踿

(quasi灢classicalstate),W(x,p)曒0.
图2灡6给出了一维谐振子的较低两个能量本征态的 Wigner函数.其中基态

波函数(Gauss波包)相应的 Wigner函数为(取自然单位m=焻h=氊=1)
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W0(x,p)= 1
毿e-(x2+p2) 曒0 (2灡5灡9)

具有相空间中的旋转不变性.对于激发态,则W(x,p)可正可负,呈现明显的非经

典特征.还可以看出,W0(x,p)在x=p=0点出现高峰,W1(x,p)则有一峰一谷.
对于最理想的准经典态———谐振子相干态,W(x,p)图形与W0(x,p)相似,但

随时间演化,其高峰位置在相空间做圆周运动.

图2灡6暋谐振子能量本征态的 Wigner函数

2灡 Wigner函数随时间的演化

利用Schr昳dinger方程

i焻h灥
灥t氉

(x,t)= -焻h2

2m
灥2

灥x2 +V(x[ ])氉(x,t) (2灡5灡10)

不难证明,W(x,p,t)满足(注4)

灥W
灥t =-p

m
灥W
灥x +灥V

灥x
灥W
灥p +暺

毸(奇)

焻hæ
è
ç

ö

ø
÷

2i
毸-1 1

毸!
灥毸V
灥x

æ

è
ç

ö

ø
÷

毸
灥毸W
灥p

æ

è
ç

ö

ø
÷

毸

=-p
m

灥W
灥x +灥V

灥x
灥W
灥p + 焻hæ

è
ç

ö

ø
÷

2i
2 1
3!

灥3V
灥x

æ

è
ç

ö

ø
÷

3
灥3W
灥p

æ

è
ç

ö

ø
÷

3 +… (2灡5灡11)

当 O(焻h2)项可以忽略(或灥毸V/灥x毸=0,对毸曒3)情况

灥W
灥t =-p

m
灥W
灥x +灥V

灥x
灥W
灥p

(2灡5灡12)

与经典统计物理中Liouville定理形式上相同(注5).
灥Wc

灥t =-p
m

灥Wc

灥x +灥V
灥x

灥Wc

灥p
(2灡5灡13)
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(注4)暋为方便,把W(x,p)的定义式(2灡5灡1)改写成

W(x,p)= 1
毿焻h曇

+曓

-曓
dy氉* (x+y)氉(x-y)ei2py/焻h

利用Schr昳dinger方程(为简单起见,波函数中的时间变量t未明显写出),可得出

灥W
灥t =1

毿焻h曇
+曓

-曓
dy i焻h

2m -灥2氉* (x+y)
灥x2 氉(x-y)+氉* (x+y)灥

2氉(x-y)
灥x[ ]{ 2

+ i
焻h

[V(x+y)-V(x-y)]氉* (x+y)氉(x-y })ei2py/焻h

=1
毿焻h曇

+曓

-曓
dy i焻h

灥m -灥2氉* (x+y)
灥y2 ·氉(x-y)+氉* (x+y)灥

2氉(x-y)
灥y[ ]{ 2

+ i
焻h

[V(x+y)-V(x-y)]氉* (x+y)氉(x-y })ei2py/焻h

上式中第一项分部积分后,可以化为

- p
m曇

+曓

-曓
dy 氉(x-y)灥氉

* (x+y)
灥y -氉* (x+y)灥氉(x-y)

灥{ }y ei2py/焻h

=- p
m曇

+曓

-曓
dy 氉(x-y)灥氉

* (x+y)
灥x +氉* (x+y)灥氉(x-y)

灥{ }x ei2py/焻h

=- p
m

灥
灥x曇

+曓

-曓
dy氉* (x+y)氉(x-y)ei2py/焻h =- p

m毿焻h 灥
灥xW(x,p)

第二项计算,可利用V(x+y)和V(x-y)的 Taylor展开

V(x+y)-V(x-y)=2暺
毸(奇)

y毸

毸!
灥毸V(x)

灥x毸

于是第二项化为

2i
焻h暺

毸(奇)

1
毸!

灥毸V(x)
灥x毸

1
毿焻h曇

+曓

-曓
dyy毸氉* (x+y)氉(x-y)ei2py/焻h

=2i
焻h暺

毸(奇)

1
毸!

灥毸V(x)
灥x毸

灥毸

灥p毸
1
毿焻h曇

+曓

-曓
dy氉* (x+y)氉(x-y)ei2py/焻h· 2i

焻( )h
-毸

=暺
毸(奇)

焻h( )2i
毸-1 1

毸!
灥毸V(x)

灥x毸
灥毸

灥p毸W(x,p)

于是式(2灡5灡11)得证.
(注5)暋按经典正则系综分布

Wc(x,p)曍e-毬E ,毬=1/kT,E=p2/2m+V(x)

k为Boltzmann常量.利用Liouville定理,dWc/dt=0,而

dWc

dt = 灥Wc

灥( )x
dx
dt+ 灥Wc

灥( )p
dp
dt+灥Wc

灥t

=v灥Wc

灥x -灥V
灥x

灥Wc

灥p +灥Wc

灥t
所以

灥Wc

灥t =- p
m

灥Wc

灥x +灥V
灥x

灥Wc

灥p
式(2灡5灡13)得证.
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*2灡6暋谐振子的相干态

*2灡6灡1暋Schr昳dinger的谐振子相干态

相干态的研究最早要追溯到Schr昳dinger1926年的工作栙栚.他发现谐振子存

在这样一种状态,它展现出的运动性质与经典谐振子很相似.在此状态下,谐振子

的能量平均值(零点能除外)与经典振子能量相同,而坐标和动量的平均值(即波包

中心的位置和动量)随时间的振荡也与经典振子完全相同,并且波包不扩散
踿踿踿踿踿

,坐标
踿踿

与动量的不确定度之积取极小值
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,殼x殼p=淈/2.Schr昳dinger最初研究这个问题的

意图是想探讨量子力学与经典力学更深刻的联系.他在给Planck的信中栛提到:他
的目的是要找寻局限于空间一个小区域中的不扩散的波包

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,它在任意长的时间内
踿踿踿踿踿踿踿踿踿

的运动与经典粒子完全相同
踿踿踿踿踿踿踿踿踿踿踿踿.对于谐振子,这种状态他已找到了,就是后来人们称

之为相干态(coherentstate)的一种特殊状态.他还写道:“Ibelievethatitisonlya
questionofcomputationalskilltoaccompanishthesamethingfortheelectronin
thehydrogenatom.Thetransitionfrom microscopiccharacteristicoscillationsto
themacroscopic‘orbit暞ofclassicalmechanicswillbeclearlyvisible.暠然而,在类

氢原子中可以描述 Kepler轨道运动的永不扩散的波包,迄今尚未找到.但近年来,
随制备Rydberg态(高主量子数n的能态)实验工作的突破,这方面的工作已取得

可观的进展栜.
在20世纪60年代,相干态概念被广泛应用于量子光学等领域.Glauber栞(首

先提出“相干态暠这个名词),Klauder等栟广泛地应用相干态来处理光场的相干性

和光子统计学.在Dirac的经典辐射场的量子化理论中,空窖(cavity)中的电磁辐

射场往往表示成简正模式(normalmodes)的叠加,辐射场被看成无穷多个谐振子

组成的体系,而辐射场的状态就用谐振子能量本征态上的光子数填布情况来描述,
称为occupationphotonnumberrepresentation(简称numberrepresentation).但
后来发现这种表象不大适合于描述辐射场的涉及相位和振幅变量的现象,而用相

干态来描述却比较方便.相干态本身是无穷多个光子数本征态的一种特殊的相干

叠加,易于展现光子之间的合作行为(cooperativebehavior).尽管相干态已经有如
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S.HowardandS.K.Ray,Am.J.Phys.55(1987)1109,Coherentstatesofaharmonicoscillator.
K.Pizibram,LettersonWaveMechanics,ed.London:Vision,1967,10.
例如,参阅 M Nauenberg,StroudC,YeazellJ.ScientificAmerican,1994,p.24.
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此广泛的应用,在一般量子力学教材中却较少提到.系统的介绍往往只能从一些专

著栙中去找寻.下面为量子力学的读者给出相干态的初步介绍.

设处于谐振子势V(x)=1
2m氊2x2 中的粒子的初始时刻(t=0)状态为

氉(x,0)=氉0(x-x0)=毿-1/4L-1/2e-(x-x0
)2/2L2 (2灡6灡1)

L= 淈/m氊(自然长度)
其空间波形与谐振子基态波函数氉0(x)相同,但波包中心不在谐振势的平衡点

(x=0),而在x=x0 点.从经典力学观点来看,粒子将围绕平衡点振动.从量子力

学来看,这个态不可能是一个定态
踿踿踿踿踿踿踿踿

(处于定态的粒子,其空间分布概率密度不随时

间改变).事实上,它既不再是基态,也不是任何一个能量本征态,而是无限多个能
踿踿踿踿踿

量本征态按一定的权重的相干叠加
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,即

氉(x,0)= 暺
曓

n=0
Cn氉n(x) (2灡6灡2)

氉n(x)即En=(n+1/2)淈氊的能量本征态,

氉n(x)=Nne-毼
2/2Hn(毼),Nn = [L 毿·2n·n!]-1/2,毼=x/L

可以证明[注1]

Cn = (氉n(x),氉(x,0))=毼n
0·e-毼

2
0/4/ 2n·n!

毼0 =x0/L
(2灡6灡3)

暋暋[注1] Cn =曇
+曓

-曓
氉

*
n (x)氉(x,0)dx= Nn

L毿1/4曇
+曓

-曓
d毼e-毼2/2Hn(毼)e-(毼-毼0)2/2

利用 Hermite多项式的生成函数

e-s2+2s毼 = 暺
曓

n=0

Hn(毼)
n! sn

可求出

曇
+曓

-曓
d毼e-s2+2s毼-(毼2-毼0毼+毼

2
0)/2 = 暺

曓

n=0

sn

n!曇
+曓

-曓
d毼Hn(毼)e-(毼2-毼0毼+毼

2
0/2)

上式左边直接积分,容易得出为

左边=exp[(s+毼0/2)2 -s2 -毼2
0/2]·曇

+曓

-曓
d毼e-[毼-(s+毼0)/2]2

= 毿exp[毼0s-毼2
0/4]= 毿e-毼20/4暺

曓

n=0

(毼0s)n
n!

与右边比较,求出积分

曇
+曓

-曓
d毼Hn(毼)e-(毼2-毼0毼+毼

2
0/2) = 毿毼n

0e-毼20/4

由此,可求出 Cn=毼n
0e-毼20/4/ 2n·n!
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按式(2灡5灡2)、(2灡5灡3)及En=(n+1/2)淈氊,可得出t时刻的波函数(注2)

氉(x,t)= 暺
曓

n=0

e-毼
2
0/4毼n

0

2n·n!
·氉n(x)e-(n+1/2)氊t 暋

= 1
[毿L]1/2

exp -1
2

(毼-毼0cos氊t)[ 2

-i 1
2氊t+毼0毼sin氊t-1

4毼
2
0sin2氊æ

è
ç

ö

ø
÷ ]t (2灡6灡4)

因此

氉(x,t)2 = 1
毿L

exp[-(x-x0cos氊t)2/L2] (2灡6灡5)

与

氉(x,0)2 = 1
毿L

exp[-(x-x0)2/L2] (2灡6灡6)

相比,可见 氉(x,t)2 是一个围绕x=0点振荡的Gauss波包,且保持波形不变
踿踿踿踿

(波包

不扩散).波包中心位置在xc=x(t)=x0cos氊t处,与经典振子(初位置在x=x0 处)的
振动规律完全相同.考虑到谐振子相干态在演化过程中不扩散,保持为与基态相同的

Gauss波包.而对于基态,已证明殼x殼p=淈/2(最小不确定度关系).因此,对于相干

态,此最小不确定度关系将保持不变.所以相干态是一个最理想的准经典态
踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

[注2]暋更简单的计算方法是用代数方法,即用平移算符D(x0)作用于基态波函数氉0(x)而
得出,

氉0(x-x0)=D(x0)氉0(x)= 暣x D(x0)0暤 (2灡6灡7)

D(x0)=e-ix0p暷x/淈

式中p
暷

x=-i淈灥
灥x.p

暷

x可以用谐振子升降算符a+ 和a表示为

p
暷

x=i m淈氊
2

(a+-a) (2灡6灡8)

于是D(x0)=e毩(a+ -a),毩= m氊
2淈x0=x0/2L=毼0/2(无量纲).利用代数恒等式[见本节附录,

式(2灡5灡67)]

eA+B =eAeBe-C/2 =eBeAeC/2

式中C=[A,B],并假定[A,C]=[B,C]=0.利用[a,a+ ]=1,可得

e毩(a+-a) 0暤=e-毩2/2·e毩a+ ·e-毩a 0暤 暋

=e-毩2/2e毩a+
0暤 (因a 0暤=0)

=e-毩2/2暺
曓

n=0

毩n

n!(a
+)n 0暤

=e-毩2/2暺
曓

n=0

毩n

n!
n暤,n暤=

(a+)n

n!
0暤 (2灡6灡9)
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所以

暣x D(x0)0暤= 暺
曓

n=0
Cn氉n(x),暋Cn =e-毼20/4 毼n

0

2n·n!
与式(2灡5灡3)一致.

[注3]暋式(2灡6灡4)中氉(x,t)可以写成

氉(x,t)=e-i氊t/2暺
曓

n=0

e-毼20/4毼n
0

2n·n!
Nn·e-毼2/2Hn(毼)e-in氊t 暋

=exp -i氊t
2 -毼2

2 -毼2
0( )4

·毩1/2

毿1/4·暺
曓

n=0

1
n!Hn(毼) 1

2毼0e-i氊( )t
n

而

暺
曓

n=0

1
n!Hn(毼) 1

2毼0e-i氊( )t
n

=exp - 1
2毼0e-i氊( )t

2

+ 1
2

1
2毼0e-i氊( )t[ ]毼

=exp - 1
4毼2

0e-2i氊t +e-i氊t毼0( )毼

所以

氉(x,t)= 1
L毿1/4

·exp -i氊t
2 -毼2

2 -毼2
0

4
(1+e2i氊t)+毼0毼e-i氊[ ]t 暋

= 1
L毿1/4

exp -毼2

2 - 1
2毼2

0cos2氊t+毼0毼cos氊t-i氊t
2 +毼0毼sin氊t- 1

4毼2
0sin2氊( )[ ]t

= 1
L毿1/4

exp - 1
2

(毼-毼0cot氊t)2 -i氊t
2 +毼0毼sin氊t- 1

4毼2
0sin2氊( )[ ]t

*2灡6灡2暋湮没算符的本征态

按式(2灡6灡9),谐振子的相干态可以表示成

毩暤=e毩(a+-a) 0暤=e-毩2/2暺
曓

n=0

毩n

n!
n暤 (2灡6灡10)

可以证明毩暤是谐振子湮没算符a的本征态,本征值为毩,

a毩暤=毩毩暤 (2灡6灡11)

暋暋[证1]

考虑到谐振子 Hamilton量 H=(a+a+1/2)淈氊,显然[a,H]曎0,所以a的本征态一般不可

能是H 的本征态(基态 0暤除外),而只能是由许多能量本征态叠加而成的非定态.再考虑到

an暤= nn-1暤,可以断定a的本征态只能是无限多个能量本征态的叠加.令

毩暤= 暺
曓

n=0
Cn(毩)n暤

则

a毩暤= 暺
n=0

Cn(毩)an暤= 暺
n=0

Cn(毩)nn-1暤=毩毩暤=毩暺
n=0

Cn(毩)n暤
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左乘暣m-1 ,得Cm m=毩Cm-1,(m曒1).由此利用递推关系,可得

Cn = 毩
n
Cn-1 = … = 毩n

n!
·C0

再考虑归一化条件 暺
n=0

Cn
2 = C0

2暺
n=0

毩 2n

n! = C0
2e旤毩旤2 =1,得 C0 =e-旤毩旤2/2,取C0 为

实,得

Cn = 毩n

n!
e-旤毩旤2/2

此即式(2灡6灡10).
[证2]

利用[a,a+ ]=1,a可表示为a= 灥
灥a+ ,因而[a,e毩(a+ -a)]=毩e毩(a+ -a),作用于 0暤上,注意到

a 0暤=0,得
[a,e毩(a+-a)]0暤=ae毩(a+-a) 0暤=毩e毩(a+-a) 0暤

这就是式(2灡6灡11),a毩暤=毩毩暤.

考虑到a并非厄米算符,它的本征值毩不一定是实数.因此相干态的表示式

(2灡6灡11)中的毩可以取复数
踿踿踿踿踿.可以看成是原来定义的相干态毩=x0/2L(实)在复毩

平面上的解析延拓.这样,我们不妨把式(2灡6灡11)所示相干态表示成更普遍的形式

毩暤=e毩a+-毩*a 0暤 (2灡6灡12)

事实上,利用本节附录中恒等式(2灡6灡62),可得

毩暤=e毩a+-毩*a 0暤 暋
=e-旤毩旤2e毩a+

e-毩*a 0暤

=e-旤毩旤2·e毩a+
0暤

不难验证毩暤是归一化的,因为

暣0e毩*ae毩a+
0暤= 暣0e毩a+

e毩*ae旤毩旤2 0暤=e旤毩旤2

练习1暋在谐振子的能量本征态 n暤下,证明

煀x=0,p=0 暋暋

x2 = n+( )1
2

淈
m氊 = n+( )1

2 L2

L= 淈/m氊(长度自然单位)

p2 = n+( )1
2 m氊淈= n+( )1

2 淈2/L2

殼x= [(x-煀x)2]1/2 = n+1/2L

殼p= [(p-p)2]1/2 = n+1/2淈/L
殼x·殼p= (n+1/2)淈

·37·



暋暋练习2暋在谐振子相干态毩暤之下,证明(令 N
暷

=a+a)

N = 毩 2,N2 = 毩 4 + 毩 2 暋

殼N = [(N-N)2]1/2 = 毩 ,殼N/N =1/毩

H = (N+1/2)淈氊 = (毩 2 +1/2)淈氊 =E
H2 = (N2 +N+1/4)淈2氊2 = (毩 4 +2毩 2 +1/4)淈2氊2 =E2

殼E= [E2 -E2]1/2 = 毩淈氊
殼E/E= 毩 /(毩 2 +1/2)曋1/毩 ,(毩 烅1)

随 毩 增大,殼N/N 与 殼E/E愈小.
练习3暋利用

x= 淈
2m氊

(a++a),p=i m氊淈
2

(a+-a)

x2 = 淈
2m氊

[(a+)2 +a2 +2a+a+1]

p2 = 1
2m氊淈[2a+a-1-a2 -(a+)2]

证明,在相干态毩暤下,

煀x= 2淈
m氊Re毩,暋p= 2m氊淈Im毩 暋

x2 = 淈
2m氊

[(毩* )2 +毩2 +2毩*毩+1]= 淈
2m氊

[1+(毩+毩* )2]

p2 = 1
2m氊淈[2毩*毩+1-毩2 -(毩* )2]= 1

2m氊淈[1-(毩-毩* )2]

殼x= [x2 -煀x2]1/2 = 淈
2m氊

殼p= [p2 -p2]1/2 = m氊淈/2

殼x·殼p=淈/2

*2灡6灡3暋相干态的一般性质

以下把相干态式(2灡6灡12)改记为(考虑到毩可以取复数,把毩曻z)

z暤=ez毩+-z*a 0暤=D(z)0暤 (2灡6灡13)
定义于复z平面上,是湮没算符a的本征态,

az暤=zz暤暋暋暋暋

z暤=e-旤z旤2暺
n=0

zn

n!
n暤 (2灡6灡14)

容易证明D(z)具有如下性质:

D(z)D(z曚)=D(z+z曚)exp[(zz曚* -z*z曚)/2] (2灡6灡15)

D(-z)=D-1(z)=D+ (z)暋(即D+ (z)D(z)=1) (2灡6灡16)

D-1(z)aD(z)=a+z (2灡6灡17)
相干态具有下列性质灡
·47·



(1)完备性关系

1
毿曇z暤暣z d2z=1 (2灡6灡18)

证明如下:

曇z暤暣z d2z= 暺
nm

n暤暣m
n!m!曇znz*me-旤z旤2d2z

式中d2z= z dz d氄,是复z平面上的面积元

曇z暤暣z d2z= 暺
n,m

n暤暣m
n!m!曇

曓

0
z n+m+1e-旤z旤2dz曇

2毿

0
ei(n-m)氄d氄

=2毿暺
n

n暤暣n
n!曇

曓

0
z 2n+1e-旤z旤2dz

=毿暺
n

n暤暣n =毿

因此,任一量子态氉暤可以用相干态展开

氉暤= 1
毿曇z暤暣z氉暤d2z (2灡6灡19)

此之谓相干态表象
踿踿踿踿踿.

(2)非正交性

利用式(2灡5灡14),可得

暣zz曚暤=e-( z 2+ z曚 2)/2暺
n,m

z*nz曚m

n!m!
暣nm暤

=e-( z 2+ z曚 2)/2暺
n

(z*z曚)n

n!

=e-1
2( z 2+ z曚 2)+z*z曚 (2灡6灡20)

因而

暣zz曚暤2 =e-( z 2+ z曚 2-z*z曚-zz曚* )=e- z-z曚 2 (2灡6灡21)
即 暣zz曚暤2曎0,z暤与z曚暤不正交.只当 z-z曚 烅1时,两个相干态z暤与z曚暤才近

似正交.

(3)超完备性

容易证明,z暤是线性不独立的.设m 为任意非零整数,

暋曇zmz暤d2z= 暺
n

n暤
n!曇

曓

0
z n+m+1e-旤z旤2/2dz曇

2毿

0
ei(n+m)氄d氄=0暋

(2灡6灡22)
(因对于任意n值,对 z 的积分总是有界的).
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利用式(2灡6灡18)与式(2灡6灡20),任何一个相干态z曚暤都可以展开成

z曚暤= 1
毿曇z暤暣zz曚暤d2z= 1

毿曇z暤e-旤z旤2- z曚 2+z*z曚d2z (2灡6灡23)

所以称相干态{z暤}(z复)是超完备的
踿踿踿踿.{z暤}的一个子集就可能构成一组完备基.

例如,{z0暤}(z0 实)就构成一组完备基.又例如,z =r(固定值),z=rei氄,{z暤}=
{rei氄暤}也构成一组完备基.理由如下:考虑积分(m 为非负整数)

曇
2毿

0
z暤e-im氄d氄暋(z=rei氄) 暋

=e-r2/2暺
n

n暤rn

n!曇
2毿

0
ei(n-m)氄d氄=2毿rme-r2/2 m暤/ m! (2灡6灡24)

所以

m暤= (2毿)-1r-mer2/2曇
2毿

0
z暤e-im氄d氄暋(z=rei氄) (2灡6灡25)

这说明{z暤|z|=r}的子集合已足以描述谐振子的所有能量本征态 m暤(m 为非负整

数).而谐振子的任一量子态均可用{m暤}(m 为0及正整数)展开,因而也可以用

{z暤|z|=r}展开.
作用于谐振子的 Hilbert空间的任意算符 A,也可以在相干态表象中表示

如下:

A = 1
毿2犽z暤暣z Az曚暤暣z曚 d2zd2z曚 (2灡6灡26)

但由于相干 态 基 是 超 完 备 的,A 的 矩 阵 表 示 暣z A z曚暤不 是 惟 一 的.利 用 式

(2灡5灡14),暣z Az曚暤可以用它在能量(声子数)表象中的矩阵元暣n A n曚暤表示

出来.

暣z Az曚暤=e-(旤z旤2+ z曚 2)/2暺
n,n曚

暣n An曚暤
n!n曚!

z*nz曚n曚 (2灡6灡27)

利用暣n An曚暤可以构造一个算符的整函数(entirefunction)

A(z* ,z曚)= 暺
n,n曚

n!n曚!暣n An曚暤z
*nz曚n曚

n!n曚! (2灡6灡28)

因而

暣z Az曚暤=A(z* ,z曚)e-(旤z旤2+ z曚 2)/2 (2灡6灡29)
所以A(z* ,z曚)可称为算符A 的相干态表象,也可称之为暣n A n曚暤的生成函数

(generatingfunction).
A(z* ,z曚)可以由它的对角元A(z* ,z)导出,这是相干态基是超完备的表现.

理由如下,考虑对角元

暣z Az暤=A(z* ,z)e-旤z旤2 暋

= 暺
n,n曚

n!n曚!暣n An曚暤z
*nzn曚

n!n曚!e
-旤z旤2 (2灡6灡30)
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与暣z Az暤的 Taylor展开比较,可知

n!n曚!暣n An曚暤= 灥
灥z

æ

è
ç

ö

ø
÷

*

n 灥
灥

æ

è
ç

ö

ø
÷

z
n曚
,暣z Az暤e旤z旤2

z=0
(2灡6灡31)

即暣n An曚暤可以由对角元A(z* ,z)导出,因而暣z Az曚暤可以由暣z Az暤导出.

*2灡6灡4暋谐振子的压缩相干态栙栚

对谐振子的产生和湮没算符做一个幺正变换,定义算符b和b+ ,

b+=毸a++毻a暋暋(毸,毻为实参数)

b=毸a+毻a+

毸2-毻2 =1 (2灡6灡32)

不难证明b与b+ 满足与a、a+ 相同的正则对易式

[b,b+]= [a,a+]=1 (2灡6灡33)

湮没算符b的本征态记为 毬暤,满足

b毬暤=毬毬暤 (2灡6灡34)

b的本征态 毬暤,称为压缩相干态(squeezedcohrentstate).它具有不同于相干态的

一些性质.可以证明,在此本征态下,尽管最小不确定度关系 殼x殼p=淈/2仍然成

立,但(见[注4])

殼x= 淈
2m氊 毸-毻 ,暋殼p= m氊淈

2 毸+毻 (2灡6灡35)

依赖于参数毸和毻(其中只有一个独立)的取值.这与相干态下 殼x= 淈/2m氊,

殼p= m氊淈/2取固定值不同.因此可以调剂参数毸和毻(毸2-毻2=1)的值,使殼x或

殼p变得很小(相应殼p或殼x变大).这在量子光学和光通信中有重要应用.

[注4]暋采用谐振子自然单位(淈=m=氊=1)

x= 1
2

(a++a),暋p= i
2

(a+-a) (2灡6灡36)

利用变换式(2灡6灡32)之逆表示式

a+=毸b+-毻b,暋a=毸b-毻b+ (2灡6灡37)

可得

x= 1
2

(毸-毻)(b++b)暋暋暋暋暋

p= i
2

(毸+毻)(b+-b)
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x2 = 1
2

(毸-毻)2(b+2 +b2 +2b+b+1)

p2 =- 1
2

(毸+毻)2(b+2 +b2 -2b+b-1) (2灡6灡38)

从而可求出它们在 毬暤态下)的平均值

煀x= 1
2

(毸-毻)(毬* +毬)

p= i
2

(毸+毻)(毬* -毬)

x2 = 1
2

(毸-毻)2(毬*2 +毬2 +2毬*毬+1)

= 1
2

(毸-毻)2[1+(毬+毬* )2]

p2 = 1
2

(毸+毻)2[1-(毬* +毬)2]

(2灡6灡39)

所以

殼x= (x2 -煀x2)1/2 = 毸-毻 / 2 (2灡6灡40)

殼p= (p2 -p2)1/2 = 毸+毻 / 2 (2灡6灡41)

添上自然单位,即得式(2灡6灡35).

压缩相干态还可以推广到毸和毻为复数的情况,算符b和b+ 定义为

b=毸a+毻a+

b+=毸*a++毻*a,毸 2- 毻 2 =1
(2灡6灡42)

显然[b,b+ ]=(毸 2- 毻 2)[a,a+ ]=[a,a+ ]=1.压缩相干态自然定义为湮没算

符b的本征态(参阅式(2灡6灡34))

b毬暤=毬毬暤 (2灡6灡43)
类似于谐振子的声子湮没和产生算符的定义(自然单位)

a= 1
2
(x+ip),暋a+= 1

2
(x-ip) (2灡6灡44)

及其逆变换

x= 1
2
(a++a),暋p= i

2
(a+-a) (2灡6灡45)

不妨令

b= 1
2
(X+iP),暋b+= 1

2
(X-iP) (2灡6灡46)

其逆变换为

X = 1
2
(b++b),暋P = i

2
(b+-b) (2灡6灡47)

用式(2灡6灡42)代入式(2灡6灡47),得出(x,p)曻(X,P)的正则变换关系
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X = (毸1+毻1)x-(毸2-毻2)p
P = (毸2+毻2)x+(毸1-毻1)p

(2灡6灡48)

式中毸1=Re毸,暋毸2=Im毸,暋毻1=Re毻,暋毻2=Im毻.

*2灡6灡5暋谐振子相干态与Schr昳dinger猫态的 Wigner函数

利用(自然单位淈=氊=m=1)

a= (x+ip)/ 2,暋a+= (x-ip)/ 2 (2灡6灡49)
相干态毩暤可以表示成

毩暤=e-旤毩旤2/2e毩a+
0暤=e-旤毩旤2/2e毩(x-ip)/2 0暤

=e-旤毩旤2/2-毩2/4e毩x/2e-i毩p/2 0暤 (2灡6灡50)
用式(2灡6灡1)(取自然单位.L=1),有暣(x-x曚)0暤=毿-1/4exp[-(x-x曚)2/2],可
求得

暣x-x曚毩暤= 1
毿1/4exp - 毩 2

2 -毩2

2-1
2

(x-x曚)2+ 2毩(x-x曚[ ])

暣毩x+x曚暤= 1
毿1/4exp - 毩 2

2 -毩*2

2 -1
2

(x+x曚)2- 2毩* (x+x曚[ ])

由此可以计算出相干态相应的 Wigner函数

W毩(x,p)= 1
毿曇dx曚e2ipx曚暣x-x曚毩暤暣毩x+x曚暤 暋

= 1
毿exp - x-毩+毩*

æ

è
ç

ö

ø
÷

2

2

- p-毩-毩*
æ

è
ç

ö

ø
÷

i2
é

ë
êê

ù

û
úú

2

= 1
毿exp[-(x- 2Re毩)2-(p- 2Im毩)2] (2灡6灡51)

一个具体的 Wigner函数图形,毩=(1+i)/2,绘于图2灡7中.

相干态暣x毩暤是一个不扩散的Gauss波包,波包中心xc(t)=x0cos氊t(x0= 2毩),
围绕平衡点(x=0)振荡,角频率为氊.相应的 Wigner函数在相空间中的形状是一个

二维Gauss波包,中心位置在(2Re毩(t),2Im毩(t)),即(Rexc(t),ImxC(t)).这里

xC(t)=x0ei氊t.令a(t)= 2Re毩(t)=x0cos氊t,b(t)= 2Im毩(t)=x0sin氊t.可以看出

a2(t)+b2(t)=x2
0 (2灡6灡52)

是相空间中一个圆轨道(自然单位),而

W毩(x,p,t)= 1
毿exp[-(x-a(t))2-(p-b(t))2] (2灡6灡53)

不难验证,W毩(x,p,t)满足与经典Liouville方程相同形式的方程(见1灡4节)

灥W
灥t =-p灥W

灥x +灥V
灥x

灥W
灥p

(2灡6灡54)

这与谐振子势灥3V/灥x3=0有关.
·97·



W毩(x,p);毩=1/2+i1/2

图2灡7

附录暋一些常用的代数式

[1曘]设[A,B]=C,则
[A,Bn]=nCBn-1 (2灡6灡55)

证

[A,Bn]= [A,B]Bn-1 +B[A,Bn-1]=CBn-1 +B[A,Bn-1] (a)

把n曻n-1,则有

[A,Bn-1]=CBn-2 +B[A,Bn-2]

代入式(a)右端,得
[A,Bn]=2CBn-1 +B2[A,Bn-2]= … =nCBn-1

推论暋设f(B)可展开成B的幂级数,则

[A,f(B)]=Cdf
dB

(2灡6灡56)

特例,
(1)[A,e毸B]=毸Ce毸B (2灡6灡57)
(2)利用Bose子产生与湮没算符对易式[a,a昄]=1,可得

[a,f(a,a昄)]= 灥f
灥a昄

[a昄,f(a,a昄)]=-灥f
灥a

(2灡6灡58)

(3)[a,e毸a昄-毸*a]=毸e毸a昄-毸*a (2灡6灡59)

所以

ae毸a昄-毸*a 0暤=毸e毸a昄-毸*a 0暤
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令

毸暤=e毸a昄-毸*a 0暤 (2灡6灡60)

则

a毸暤=毸毸暤

即毸暤=e毸a昄-毸*a 0暤是湮没算符a的本征态,本征值为毸,一般为复数,毸暤即相干态.
(4)令 N=a昄a,利用[a,a昄]=1.容易证明

[N,a昄]=a昄,暋[N,a]=-a
利用式(2灡6灡59),可得

[N,am]=-mam,暋[N,a昄m]=ma昄m

即

Nam =amN -mam,暋Na昄m =a昄mN +ma昄m

由此可以证明

a昄mam =N(N-1)…(N-m+1)

ama昄m = (N+1)(N+2)…(N+m) (2灡6灡61)

理由如下:

a昄mam =a昄m-1Nam-1 = [Na昄m-1 -(m-1)a昄m-1]am-1

=Na昄m-1am-1 -(m-1)a昄m-1am-1

= (N-m+1)a昄m-1am-1

= (N-m+1)(N-m+2)a昄m-2am-2

= … = (N-m+1)(N-m+2)…(N-1)N
暋[2曘]设[A,B]=C,而且[C,A]=0,[C,B]=0,则

eA+B =eAeBe-C/2 =eBeAeC/2 (2灡6灡62)

暋暋证暋令

f(毸)=e毸Ae毸B 暋(毸参数)

显然f(0)=1,f(1)=eA·eB.不难求出

df
d毸

=e毸A(A+B)e毸B

按式(2灡6灡57),有Ae毸B =e毸B(A+毸C),因而

df
d毸

=e毸A ·e毸B(A+B+毸C)=f(毸)(A+B+毸C)

df/f= (A+B+毸C)d毸
对毸积分,考虑到C与A 和B 对易,得

lnf(毸)-lnf(0)= (A+B)毸+ 1
2C毸2

所以

f(毸)=f(0)e(A+B)毸+1
2C毸2 =e(A+B)毸+1

2C毸2

右乘e-1
2C毸2,得

e毸(A+B) =e毸Ae毸Be-1
2毸2C
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让B炣A(互换),则有

e毸(A+B) =e毸Be毸Ae
1
2毸2C

令毸=1,即得式(2灡6灡62).

暋暋特例

(1)e毸a昄-毸*a=e毸a昄
e-毸*ae- 毸 2/2 (2灡6灡63)

(2)eA+B=eAeBe-[A,B]/2=eBeAe-[B,A]/2=eBeAe[A,B]/2,所以

eAeB =eBeAe[A,B] (2灡6灡64)

暋暋[3曘] eABe-A=B+[A,B]+1
2![A,[A,B]]+1

3![A,[A,[A,B]]]+… (2灡6灡65)

证

令暋f(毸)=e毸ABe-毸A 显然f(0)=B,f(1)=eABe-A.对毸求导

df
d毸

=e毸A(AB-BA)e-毸A =e毸A[A,B]e-毸A 暋

d2f
d毸2 =e毸A(A[A,B]-[A,B]A)e-毸A =e毸A[A,[A,B]]e-毸A (2灡6灡66)

……

利用 Taylor展开,

f(1)=f(0)+暺
曓

n=1

1
n!

dnf
d毸( )n

毸=0
=B+[A,B]+ 1

2![A,[A,B]]+…

此即式(2灡6灡65).
推论

e毸ABne-毸A = (e毸ABe-毸A)n暋暋暋暋 (2灡6灡67)

e毸Af(B)e-毸A =f(e毸ABe-毸A) (2灡6灡68)

特例

e毸aa昄e-毸a =a昄+毸,e毸a昄
ae-毸a昄

=a-毸 (2灡6灡69)

e毸af(a,a昄)e-毸a =f(a,a昄+毸) (2灡6灡70)

e毸a昄
f(a,a昄)e-毸a昄

=f(a-毸,a昄) (2灡6灡71)

令

D(毸)=e毸a昄-毸*a=e毸a昄
e-毸*ae- 毸 2/2 (2灡6灡72)

则

D(毸)D(毺)=e毸a昄
e-毸*a·e毺a昄

e-毺*ae-( 毸 2+ 毺 2)/2 =e(毸+毺)a昄e-(毸*+毺* )ae-( 毸 2+ 毺 2)/2

D(毸+毺)=e(毸+毺)a昄e-(毸*+毺* )ae-( 毸+毺 2)/2

所以

D(毸)D(毺)=D(毸+毺)e
1
2

(毸毺*+毸*毺) (2灡6灡73)

利用D(0)=1,可得D(毸)D(-毸)=1,即D(毸)-1=D(-毸).定义为D昄(毸)

D昄(毸)=D(-毸)=e-毸a昄+毸*a (2灡6灡74)

容易验证暋D昄(毸)D(毸)=1.因此,令毸暤=D(毸)0暤,则

D昄(毸)毸暤= 0暤暋暋暋暋暋

D昄(毸)aD(毸)=a+毸 (2灡6灡75)
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D昄(毸)a昄D(毸)=a昄+毸* (2灡6灡76)

D昄(毸)f(a,a昄)D(毸)=f(a+毸,a昄+毸* ) (2灡6灡77)

*2灡7暋Rydberg波包,波形的演化与恢复

按照Bohr的对应原理,在大量子数极限下,量子体系的行为将渐近地趋于与

经典力学体系相同.原子或分子中的量子数很大的束缚态(如氢原子中主量子数n
>100的态),常称为Rydberg态.对于其他体系中的大量子数的束缚态,习惯上也

称为Rydberg态.以氢原子为例,处于能量(角动量)本征态氉nlm 上的电子,径向坐

标r的平均值为

焻r = 1
2

[3n2-l(l+1)]a (2灡7灡1)

a=淈2/mee2=5灡29暳10-2nm~1/20nm,a为Bohr半径.对于“圆轨道暠(nr=0,l=

n-1,径向波函数无节点),焻r = n2+næ

è
ç

ö

ø
÷

2 a曋n2a,(n烅1).对于n曒100的Rydberg

态,焻r 燁104a~0灡5毺m.已经接近于宏观线度.此外,Rydberg能级一般较窄,因而

寿命较长,处于Rydberg态的原子(称为Rydberg原子)具有一定的稳定性.因此,

Rydberg态适合用来研究微观世界和宏观世界的联系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,或者量子力学与经典力学
踿踿踿踿踿踿踿踿踿

的关系
踿踿踿.

应该注意,处于定态下的量子体系,在空间概率分布是不随时间变化的.所
以与经典粒子的轨道运动对应的量子态

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,绝不是一个简单的定态
踿踿踿踿踿踿踿踿踿踿

,而只能是由若
踿踿踿踿踿踿

干定态的相干叠加所构成的非定态
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.为了摹拟经典粒子的轨道运动,它们应该是

一个在空间运动的较窄的局域波包(localizedwave灢packet).由许多 Rydberg态相

干叠加形成的波包,称为 Rydberg波包.我们还注意到,波包一般是要扩散的
踿踿踿踿踿踿踿踿踿.这

在Ehrenfest定理(卷栺,5灡2节)中已讨论过了.上节讨论的谐振子的相干态,是
一种最理想的接近于经典谐振子的波包,是由无穷多个定态按一定的权重

(Poisson分布)相干叠加所形成的一个不扩散的波包,具有最小的不确定度

(殼x殼p=淈/2),波包中心的运动规律与经典谐振子完全相同.Schr昳dinger曾经企

图从理论上找寻氢原子中的电子沿经典 Kepler椭圆轨道运动的不扩散的波包,
但始终未能成功.

近年来,由于短脉冲激光技术的进展栙,已可能在实验室中制备和检测各种体
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栙 特别是可调染料激光技术的进展,可提供高强度并在很宽波段内连续可调的单色光,利用它可以

把原子激发到各 Rydberg态上去,使在实验上研究 Rydberg态成为可能.染料激光是从有机染料(液态或

固态)发出的激光.它的可调谐性质是由于有机分子的基态和第一激发态各振动子能级间存在很多可能

的跃迁.有一些染料可以在几乎连续的几百 痄的波段内发出荧光.应用时,可根据需要,选用某一波长的
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系(原子、分子、半导体量子阱等)中电子的由许多定态相干叠加所形成的局域

波包栙.这种波包的演化和动力学,是目前物理和化学很多领域都很感兴趣的

课题.例如,用短脉冲激光照射处于基态的原子,电子会从基态激发到量子数

n很大的一系列相邻的能级上去,形成 Rydberg波包.n集中在其平均值 焻n 附

近,有一个宽度氁,焻n取决于脉冲激光的平均频率,而氁则与激光脉冲持续的时

间氂成反比,氁曍1/氂(按不确定度关系,氂殼E~淈/2,即氂殼氊~1/2,氁~殼氊即脉冲

角频率的宽度).
以下假定局域波包的成分(包各种定态n的成分)是 Gauss分布(这只是为了

计算方便,并不影响下面得出的定性结论).即

Cn
2 = 1

2毿氁2
e-(n-焻n)2/2氁2 (2灡7灡2)

1/ 2毿氁2 是归一化因子 暺
曓

n=1
Cn

2 =( )1 .考虑到n局限在焻n附近,不妨把定态能量

En 做 Taylor展开

En =E焻n +(n-焻n)E曚焻n + 1
2!(n-焻n)2E曞焻n + 1

3!(n-焻n)3E熓焻n +… (2灡7灡3)

定义如下几个时间尺度(取淈=1)

Tcl =2毿/E曚焻n ,暋Trev =2毿/1
2 E曞焻n ,暋Tsr =2毿/1

3! E熓焻n (2灡7灡4)

对于通常感兴趣的一些体系,往往Tcl烆Trev烆Tsr.这样,时刻t的波函数可表示成

(保留较低幂次项)

氉(r,t)= 暺
n
Cn氉n(r)exp -2毿i

(n-焻n)t
Tcl

+
(n-焻n)2t

Trev
+

(n-焻n)3t
T[ ]{ }sr

(2灡7灡5)

Tcl称为经典周期.在Rydberg波包形成后的短时间内(约几个周期),波包能够近

似保持为周期运动(周期Tcl).随时间的流逝,组成波包的各定态的相位差将导致

波包坍塌(collapse).但经历一段时间后,波包形状还可能恢复或部分恢复.Trev称

为恢复(revival)时间,而Tsr称为超恢复(superrevival)时间.这几个特征时间的长

短依赖于能级En 随量子数n 的变化规律以及波包的构成.以下以几个常见体系来

说明.

谐振子

能级En=(n+1/2),n=1,2,…(取自然单位淈=m=氊=1).所以E曚n=1,E曞n

=E熓n=…=0,因而Tcl=2毿(单位,氊-1),即经典自然振荡频率,Trev=曓,Tsr=曓.
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谐振子的局域波包的演化图像特别简单,它总是以自然周期2毿/氊演化,即经过一

周期2毿/氊后,波包将完全恢复原状,见图2灡8.这种简单的演化规律是均匀能谱分
踿踿踿踿踿

布的
踿踿

后果,而更深层次的根源是谐振子在相空间中
踿踿踿踿

(采用自然单位)的旋转不变
踿踿踿踿踿

性
踿

栙,H=1
2

(x2+p2).我们注意到图2灡8所示 Rydberg波包的构成,Cn
2 呈

Gauss分布(焻n=15,氁=1灡5).波形是不断变化的
踿踿踿踿踿踿踿踿

,尽管在经历一个周期Tcl之后,波
形将完全复原,它与相干态毩暤不同(见上节),后者是由无限多个定态相干叠加而

踿踿踿踿踿踿踿踿踿踿踿踿
成
踿

,而且

Cn
2 =e-毩2/2·毩2n/n! (2灡7灡6)

是Poisson分布
踿踿.相干态波包的波形始终保持不变

踿踿踿踿踿踿踿踿
,比Rydberg波包的演化规律更

为简单.

图2灡8暋谐振子波包 氉(x,t)2(未归一化)的演化图像

焻n=15,氁=1灡5,横坐标x采用自然单位(毩-1= 淈/m氊),

波包演化周期氂=Tcl=2毿/氊.

(a)t=0;(b)t=Tcl/4;(c)t=Tcl/2;(d)t= 3
4Tcl

除了谐振子之外的其他体系,由于能级分布不均匀
踿踿踿踿踿踿踿

,局域波包的各叠加态的相

位随时间演化的频率并无简单的比例关系,波形的变化就比较复杂.一般说来,只
在较短时间内(t~几个Tcl),波包近似作周期演化.当时间稍长,各叠加态的相消
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(destructive)干涉,会导致波包坍塌.但时间更长后,波形又可能恢复,或部分恢

复.无限深方势阱和平面转子是其中较为简单的例子.

无限深方势阱

无限深方势阱中粒子能级En=n2毿2/2,n=1,2,3,…[取自然单位淈=m=a
(势阱宽度)=1].所以Tcl=2毿/焻n,Trev=4/毿=2焻nTcl,Tsr=曓.图2灡10给出了Ryd灢
berg波包(焻n=15,氁=1灡5)的演化图像,Trev=30Tcl.可以看出,经历一个Tcl后,波
包形状大致恢复原状,但未完全恢复.这与谐振子 Rydberg波包不尽相同,后者在

经历一个Tcl后,波形完全复原(比较图2灡8与2灡9).对于无限深方势阱,在t=Trev

时才完全恢复原来波形(见后面讨论及图2灡11).

图2灡9暋无限深方势阱中 Rydberg波包(焻n=15,氁=1灡5)的演化

自然单位,淈=m=a=1,图中横坐标(自然单位)0曑x曑1,

波函数 氉(x,t)2 未归一化.
(a)t=0;(b)t=Tcl/4;(c)t=Tcl/2;(d)t=3Tcl/4;(e)t=Tcl
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图2灡10暋平面转子的 Rydberg波包(焻n=15,氁=1灡5)的演化,转角氄用弧度单位

氉(氄,t) 2 未归一化,Tcl=2毿/焻n(单位氊-1=淈/I),Trev=2焻nTcl=30Tcl.

(a)t=0;(b)t=Tcl/2;(c)t=Tcl;(d)t= 1
4Trev;(e)t= 1

3Trev;(f)t= 1
2Trev

平面转子

Hamilton量 H=L
暷

2

2I
(I为转动惯量),(取淈=I=1自然单位)能级为En=n2/2

(n=0,暲1,暲2,…),是二重简并(n=0除外).所以Tcl=2毿/焻n(自然单位氊-1=

淈/I),Trev=2焻nTcl,Tsr=曓.图2灡10给出了 Rydberg波包(n=15,氁=1灡5)的演化.
与无限深方势阱相似,在经历第一个Tcl后,波形大致恢复[比较图2灡11(a)和(c)].

在经历1
2Trev后,波形更接近于原来形状[比较图2灡10(f)和(b)].在t=Trev时,波

形将完全恢复(与t=0时相同).见后面讨论及图2灡11.
对于无限深方势阱和平面转子,En曍n2;E熓n以及更高阶导数都为0,Rydberg

波包经过t=Trev=2焻nTcl后,如焻n为整数
踿踿踿

,则波包可以完全恢复原状
踿踿踿踿踿踿踿踿踿踿.对于更复杂的

体系,E熓n曎0,Rydberg波包就难以完全恢复原状.例如,氢原子,En=-1/2n2(自
·78·



然单位),E焻n=焻n-3,Tcl=2毿焻n3,Trev=4毿
3焻n4=2

3焻nTcl,Tsr=毿焻n5=1
2焻n2Tcl.由于En 对

n 的高阶导数不严格为0,它的Rydberg波包就难以完全恢复原状.氢原子的Ryd灢
berg波包的复杂性还来自它不是一维运动

踿踿踿踿踿踿.一般中心力场V(r)中的经典粒子的轨

道运动是平面运动,但轨道不一定闭合
踿踿踿踿踿踿踿

(见第8章).而对氢原子[V(r)曍-1/r],
其束缚运动轨道是 Kepler椭圆.它的能级还具有l简并,所以 Rydberg波包有多

种形式.
为描述波包的演化,常用自动关联函数(autocorrelationfunction),即重叠积

分A(t)=(氉(r,t),氉(r,0))来描述.A(t)2 表示氉(r,t)中还包含初态氉(r,0)的
分量.对于Rydberg波包

A(t)2 = 暺
n

Cn
2e-iEnt/淈 2 (2灡7灡7)

图2灡11给出了几个例子.
图2灡11(a)是自由粒子的 Gauss波包的演化.波包由许多动量(能量)本征态

(平面波)叠加而成,

毤(p)2 = 1
2毿氁2

e-(p-p0)2/2氁2 (2灡7灡8)

p0=10,氁=2灡5(自然单位).可以看出,自由粒子(无束缚态)的 Gauss波包的自动

关联 A(t)2 从 A(0)2=1开始,逐步衰减,最后 A(曓)2=0.波包扩散到全空

间,它不是周期运动.
图2灡11(b)是谐振子的Rydberg波包.波包演化是严格的周期运动,氂=Tcl=

2毿(氊-1,自然单位).显然A(k氂)=1(k=0,1,2,…).
图2灡11(c)是无限深方势阱中的 Rydberg波包.焻n=15,氁=1灡5,Tcl=2毿/焻n=

0灡42(自然单位),Trev=2焻nTcl=1灡27.可以看出,当t=1
4Trev=0灡32,1

2Trev=0灡64,

3
4Trev=0灡95时,波包部分恢复(A(t)2 取极大值),而当t=Trev=1灡27时,波包

完全恢复,A(Trev)2=1.由于Tsr=曓,波包无超恢复现象.
图2灡11(d)是氢原子的圆轨道上的 Rydberg波包.焻n=120,氁=2灡5,Tcl=2毿焻n3

(原子单位)=0灡263ns,Trev=2
3焻nTcl=21灡0ns,Tsr=1

2焻n2Tcl=1890ns.可以看出,

t=1
2Trev时,A(t)2 出现一个峰值.在t=Trev时,称为满恢复(fullrevival),但这

还不是完全恢复(此时 A(t)2 仍小于1).这是氢原子的能谱结构所决定的.还可

以看到,在t曋1
18Tsr=105ns,1

12Tsr=158ns,1
6Tsr=316ns等还出现 A(t)2 的一

系列峰值.
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图2灡11暋局域波包的自动关联函数 A(t)2

(a)自由粒子;(b)谐振子;(c)无限深方势阱;

(d)氢原子的圆轨道上的 Rydberg波包(焻n=120,氁=2灡5).
本图取自p.84所引Bluhm等的文献

附录暋二维各向同性谐振子的相干态,能量和角动量结构

中心力场中的经典粒子,由于角动量守恒,其运动轨道必处于一平面内,平面的法线方向即

角动量的方向.但一般说来,轨道是不闭合的.经典力学中有一条著名定理———Bertrand定理

(见8灡1节).它说:仅当中心力为平方反比力或 Hooke力时,粒子的所有束缚运动的轨道才是闭

合的.
对于一维谐振子,Schr昳dinger已找到了它的不扩散的波包,即相干态,其波包中心的运动

与经典谐振子完全一样.他相信,找寻氢原子的 Kepler椭圆轨道上的不扩散的波包,只是计算

上的困难,但他始终未能成功.按上面的分析,这个困难与氢原子的能级结构特性(En曍-1/n2,
非均匀)密切相关.对于氢原子的 Rydberg态(例如,n>100),相邻能级的间距

殼En =En+1 -En = 1
2

1
n2 - 1

(n+1)[ ]2

= 1
2n2[1-(1+1/n)-2]曋1/n3 (2灡7灡9)

对于 Rydberg波包,其构成能级接近于均匀,殼En曋1/焻n3,因此有可能构成与经典 Kepler轨道运

动相应的波包.当然,要像一维谐振子相干态那样的不扩散的波包,是找不到的.
我们注意到,中心力场中的经典粒子是平面运动.为简单起见,不妨考虑二维各向同性谐振

子的运动,它的经典运动轨道一般也是椭圆(特殊情况下退化为圆或直线).可以想到,二维各向
踿踿踿踿

同性谐振子的相干态应为沿椭圆轨道传播的不扩散的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿 Gauss波包

踿踿
,其运动规律也与经典粒子相
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同.下面我们来分析这种二维不扩散 Gauss波包的角动量和能量结构,并与相应的经典粒子运

动比较.
按2灡6灡1节,设沿x方向运动的谐振子的初态为氉(x,0)=氉0(x-x0).令毼=x/L,毼0=

x0/L,L= 淈/M氊(自然长度),则t时刻的相干态为[见2灡6节,式(2灡6灡8)]

氉(毼,t)= 1
毿1/4L1/2exp -i氊t

2 - 1
2毼2 - 1

4毼2
0(1+e2i氊t)+毼0毼e-i氊[ ]t

氉(毼,t)2 = 1
毿L

exp[-(毼-毼0cos氊t)2] (2灡7灡10)

其波形不变,波包中心在毼=毼0cos氊t处,运动规律与经典谐振子完全相同.
与此类似,设y方向的谐振子的相干态比x 方向落后相位毿/2,则(令毲=y/L,毲0=y0/L)

氉(y,t)= 1
毿1/4L1/2exp -i(氊t-毿/2)

2 - 1
2毲2 - 1

4毲2
0(1-e2i氊t)+i毲0毲e-i氊[ ]t (2灡7灡11)

波包中心在毲=毲0cos(氊t-毿/2).因此,二维各向同性谐振子的相干态可以表示成

氉(毼,毲,t)= 1
毿L

exp -i氊t+i毿
4 - 1

2
(毼2 +毲2)- 1

4毼2
0(1+e2i氊t[ )

- 1
4毲

2
0(1-e2i氊t)-(毼毼0 +i毲0毲)e-i氊 ]t (2灡7灡12)

它的初态(t=0)可以记为(略去不关紧要的常数相因子ei毿/4)

氉c(毼,毲)= 1
毿L

exp - 1
2毼2

0 - 1
2

(毼2 +毲2)+(毼0毼+i毲0毲[ ]) (2灡7灡13)

它是一个非定态,是无穷多个定态的一种相干叠加.

为研究它的角动量结构和能量结构,可以用守恒量完全集(H
暷

,l
暷

z)的共同本征态来展开,

展开系数的模方不依赖于时间.二维各向同性谐振子的(H
暷

,l
暷

z)的归一化共同本征态和本征值

分别为(参见卷栺,6灡6灡2节)

氉nm (氀,氄)= n!
毿(n+ m )[ ]!

1/2

eim氄氀 m e-氀2/2L m
n (氀2)

氀= x2 +y2/L= 毼2 +毲2,暋n,m =0,1,2,…
(2灡7灡14)

E=EN = (N+1)淈氊,暋N =2n+ m =0,1,2,… (2灡7灡15)

L m
n 为广义Laguerre多项式栙,它是一个特殊的合流超几何函数,

L毺
n(z)= 殻(n+毺+1)

n!殻(毺+1)·F(-n,毺+1,z) (2灡7灡16)

是z的n次多项式,毺是不等于负整数的任意实数或复数.式(2灡7灡13)氉c 按氉nm 展开的系数为

Cnm =曇
2毿

0
d氄曇

曓

0
氀d氀氉c(毼,毲)氉*

nm (氀,氄) (2灡7灡17)

以下分两种情况来讨论.

1)毼0=毲0(圆轨道)

用式(2灡7灡13)、(2灡7灡14)代入式(2灡7灡17),经过计算[注],可得

·09·
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Cnm =
毼m

0e-毼20 2 1
m!

毮n
æ
è
ç

ö
ø
÷0 , m 曒0

0, m <
{

0

(2灡7灡18)

可见与经典圆轨道运动相应的只能是n=0(即圆轨道,径向波函数无节点),这是意料中的事.

m曒0表示圆轨道运动为逆时针方向(y 轴方向运动比x 轴方向运动落后 毿/2相位).利用式

(2灡7灡18)可以求出沿圆轨道运动的相干态波包的角动量结构和能量结构.首先,按式(2灡7灡18)

煆m = 暺
曓

m=0
m毼2m

0 e-毼20 1
m! =毼2

0 (2灡7灡19)

所以角动量的平均值为

lz = 煆m淈=毼2
0淈= M氊x2

0 = MR2氊 (2灡7灡20)

R=x0=y0 表示波包中心运动的圆轨道的半径.可见lz 与经典圆轨道运动的角动量相同(MvR

=M氊R2).其次,能量平均值(注意,n=0,N= m )

H = (煆m+1)淈氊 = (毼2
0 +1)淈氊 = MR2氊+淈氊 (2灡7灡21)

除去零点能
踿踿踿踿踿淈氊之外,此能量正好是经典粒子圆轨道运动的能量(动能+势能).

如y轴方向的相干态的相位比x 方向超前毿/2,则式(2灡7灡18)中,仅当m曑0时Cnm 才不为

零.这相当于顺时针的圆轨道运动.

2)毼0曎毲0(椭圆轨道)

令

A = (毼0 -毲0)/2,暋B= (毼0 +毲0)/2 (2灡7灡22)

经过较复杂的计算(注2),可以求出

Cnm =

(-1)n 1
n!(n+m)!

e-1
2毼20eABAnBn+m,暋m 曒0

(-1)n 1
n!(n-m)!

e-1
2毼20eABBnAn-m,暋m <

ì

î

í

ï
ï

ïï 0
(2灡7灡23)

这样,可以分别定义

煆m(m 曒0)= 暺
m曒0
n 暋

Cnm
2m,暋煆m(m <0)= 暺

m<0
n 暋

Cnm
2m

焻n(m 曒0)= 暺
m曒0
n 暋

Cnm
2n,暋焻n(m <0)= 暺

m<0
n 暋

Cnm
2n

(2灡7灡24)

例如,

焻n(m 曒0)=e-毼20e2AB暺
n

A2nB2n

n! 暺
m曒0

B2m

(n-m)! 暋

=e-毼20e2AB A2

1!(e
B2

-1)+2·A4

2! eB2
-1-B2

1( )[ !

+3·A6

3! eB2
-1-B3

1! -B4

2( )! + ]…

=A2e-毼20+A2+2AB+B2
-e-毼20+2AB A2

1! +2A4

2! 1+B2

1( )[ !

+3A6

3! 1+B2

1! +B4

2( )! + ]… (2灡7灡25)

而
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(n-m)(m <0)=e-毼20+2AB A2

1! +2A4

2! +3A6

3! +…+B2

1! 2A4

2! +3A6

3! +( )[ …

+B4

2! 3A6

3! +4A8

4! +( )… + ]… (2灡7灡26)

可见式(2灡7灡26)与式 (2灡7灡25)右 边 第 二 项 是 相 同 的,只 是 求 和 的 顺 序 不 同.所 以 [利 用 式

(2灡7灡22),A+B=毼0]

焻n(m 曒0)+(n-m)(m <0)=A2e-毼20+A2+2AB+B2
=A2 (2灡7灡27)

类似可以求出

焻n(m <0)+(n+m)(m 曒0)=B2 (2灡7灡28)

式(2灡7灡27)暲式(2灡7灡28),分别给出

2焻n+ m =A2 +B2 (2灡7灡29)

煆m =B2 -A2 (2灡7灡30)

所以角动量的平均值为

lz = 煆m淈= (B2 -A2)淈=毼0毲0淈=x0y0M氊 (2灡7灡31)

与经典椭圆轨道(半长轴与半短轴分别为x0 和y0)的角动量相同.其次,能量平均值为

H = (2n+ m +1)淈氊 = (A2 +B2)淈氊+淈氊

= 1
2

(毼2
0 +毲2

0)淈氊+淈氊 = 1
2

(x2
0 +y2

0)M氊2 +淈氊 (2灡7灡32)

也与经典椭圆轨道上的谐振子的能量相同(零点能除外).

[注1]暋毼0=毲0(圆轨道)

Cnm =犽氀d氀d氄
1
毿
exp - 1

2毼2
0 - 1

2
(毼2 +毲2)+毼0(毼+i毲[ ])

· n!
毿(n+ m )[ ]!

1/2

e-im氄氀 m e-氀2/2L m
n (氀2) (2灡7灡33)

利用毼2+毲2=氀2,毼+i毲=氀ei氄,及积分公式

曇
2毿

0
d氄e毼0氀e

i氄e-im氄 =
2毿(毼0氀)m/m!, m 曒0

0, m <{ 0
(2灡7灡34)

可得

Cnm = n!
(n+ m )[ ]!

1/2

e-毼20/22毼m
0

m!曇
曓

0
d氀氀2 m +1e-氀2L m

n (氀2) (2灡7灡35)

利用Laguerre多项式的积分公式栙

2曇
曓

0
dxx2毸+1e-x2L毺

n(x2)= (-)n殻(毸+1)
毸-毺æ

è
ç

ö

ø
÷

n
(2灡7灡36)

可见式(2灡7灡35)中的积分,只当n=0时才不为零.所以

Cnm =e-毼20 2 1
m( )!

3/2

2毼m
0

1
2m!毮n[ ]0 ,(m 曒0)

·29·
栙 王竹溪,郭敦仁灡特殊函数概论灡北京:科学出版社,1979灡361~367.



=
毼m

0e-毼20 2 1
m!

毮n
æ
è
ç

ö
ø
÷0 , m 曒0

0, m <
{

0

(2灡7灡37)

暋暋[注2]暋毼0曎毲0(椭圆轨道)

Cnm = 1
毿

n!
(n+ m )[ ]!

1/2

e-毼20/2犽d氀d氄exp[毼0毼+i毲0毲]

·e-im氄氀 m +1e-氀2L m
n (氀2) (2灡7灡38)

利用积分公式

曇
2毿

0
d氄exp[毼0毼+毲0毲]e-im氄 =

2毿暺
曓

k=0

(A氀)k(B氀)k+m

k!(k+m)!
,暋m 曒0

2毿暺
曓

k=0

(A氀)k-m(B氀)k

(k-m)!k!
,暋m <

ì

î

í

ï
ï

ï
ï 0

(2灡7灡39)

可以计算出式(2灡7灡23).

习暋暋题

2灡1暋试根据量子化条件曈pdx= n+( )3
4 h,n=0,1,2,…,求下列势阱中粒子的束缚

能级.

(a) V(x)=
1
2m氊2x2 ,暋x曒0

曓 ,暋x<
{

0

图2灡12

答:En = (2n+3/2)淈氊,n=0,1,2,…

(b) V(x)=
gx,暋x>0,(g>0)

曓,暋x<{ 0

答:En = 1
2

(9毿2g2淈2/m)1/3 n+( )3
4

2/3
,n=0,1,

2,…

2灡2暋 在准 经 典 近 似 下,计 算 粒 子 对 下 列 势 垒

(图2灡12)的透射系数,粒子能量E<0.

V(x)=
-V0,暋x<0(V0 >0)

-Fx,暋x>{ 0
这是在强电场作用下,电子穿透金属表面的简化模型.

答:透射系数T=exp -4
3 2m E 3/2/淈( )F .

2灡3暋同上题,但计及电象势,此时

V(x)=
-V0, x<0

-Fx-e2/4x, x>{ 0
计算电子穿透金属表面的透射系数.

答:透射系数T=exp -4
3

2m
淈F E 3/2氄(毸[ ]) ,

·39·



图2灡13

毸= e2F/4 E 2,暋氄(毸)= 3
2曇

毼2

毼1
1-毼-毸2/毼d毼

毼1和毼2 是 方 程 1-毼-毸2/毼=0 的 两 个 根,毼1,2 = 1
2

(1熀

1-4毸2).
2灡4暋放射性原子核毩衰变时,毩粒子受到的势场可近似表

示为(图2灡13)

V(r)=
-V0, r<R
毩/r, r>{ R

式中毩=2Ze2,Z 是子核的质子数,R 是“核半径暠.求毩粒子穿

透此Coulomb势垒的系数.

答:T=exp -2毩
淈

2毺
E arccos ER

毩 - ER
毩 1-ER( )[ ]{ }毩

式中毺为约化质量.

2灡5暋用 WKB近似计算粒子对下列势垒的透射系数.

V(x)=
V0(1-x2/a2), x <a(V0 >0)

0, x >{ a
设粒子能量E<V0,质量为m.

答:T=exp -毿毩
淈 1-E

V( )0
2mV[ ]0

2灡6暋对于无自旋的粒子,将波函数写成氉=氀ei氄,其中氀、氄为实函数,氀曒0.求概率流密度

的表示式,并在准经典近似下导出量子化条件.

答: j=淈
m氀

殼

氄暋暋暋暋暋

曈p·dr=nh,暋n=1,2,3,…

暋暋其中

p=淈

殼

氄暋暋暋暋暋暋

2灡7暋质量为m 的粒子在势阱V(x)中运动.其能级由量子化条件

曇
x2

x1
2m[E-V(x)]dx= n+( )1

2 毿淈,暋n=0,1,2,…

确定,x1 与x2 为转折点,由V(x1)=V(x2)=E 定出.试用此量子化条件和 Hellmann灢Feynman
定理(卷栺,6灡5节)证明,对于任何一个准经典束缚态氉n,动能平均值与能量本征值En 有下列

关系:

暣T暤n = 1
2 n+( )1

2
灥En

灥n

2灡8暋质量为m 的粒子在势场V(x)=毸 x 毻 中运动,毸,毻>0.证明在准经典近似下,粒子能

级En 可表示成如下形式:

En =A(毻)n+( )1
2

2毻/(毻+2)

·毸2/(毻+2)· 淈2

2( )m
毻/(毻+2)

式中A(毻)无量纲,是毻的函数.
·49·



2灡9暋质量为m 的粒子,在势阱V(x)=毸 x 毻 中运动,其中毸,毻>0.试根据量子化条件

曇
x2

x1
2m[E-V(x)]dx= n+( )1

2 毿淈,暋n=0,1,2,…

V(x1)=V(x2)=E,求粒子能级.

答:En=
毿毻殻 3

2+1( )毻

殻 1( )

é

ë

ê
ê
ê

ù

û

ú
ú
ú毻

n+( )1
2

2毻/(毻+2)
·毸2/(毻+2) 淈2

2( )m
毻/(毻+2)

暋暋其形式与第8题结果相同.
对毻=1,得

En = 3毿
4 n+( )[ ]1

2
2/3

· 毸2淈2

2( )m
1/3

,暋n=0,1,2,…

对毻=2,令毸=1
2m氊2,得En= n+( )1

2 淈氊,暋n=0,1,2,…

2灡10暋将一维运动粒子的量子化条件推广,用以处理中心力场中粒子的s态(l=0).设

V(r)=毸r毻,其中毸,毻>0,求s能级公式.讨论毻=1、2的结果.
答:s态的量子化条件表示为

曇
rc

0
2毺(E-V(r))dr= n+( )3

4 毿淈,暋n=0,1,2,…

暋暋n是s能级的编号数,即径向量子数,V(rc)=E,rc 为转折点.

En =
毿2毻殻 3

2 + 1( )毻

殻 1( )毻

n+( )
é

ë

ê
ê
ê

ù

û

ú
ú
ú

3
4

2毻/(毻+2)

·毸2/(毻+2)· 淈2

2( )毺

毻/(毻+2)

n=0,1,2,…

特例1暋谐振子(毻=2),令毸=1
2毺氊2,得出s态能级的 WKB近似解

En = 2n+( )3
2 淈氊,暋n=0,1,2,…

精确解为

E= 2nr+l+( )3
2 淈氊,暋nr,l=0,1,2,…

而对s态(l=0),与 WKB近似解相同.

特例2暋线性中心势(毻=1),s态能级 En= 毸2淈2

2( )毺

1/3
·xn,暋xn 为 Airy函数的零点,即

J1/3
2
3x3/( )2 +J-1/3

2
3x3/( )2 =0之根.

2灡11暋同上题,求准经典近似下能级的公式(不局限于s态).

答:Enrl= 毿2毻nr+
l
2+( )3

4

殻 3
2+1( )毻

殻 1( )

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïï毻

2毻/(毻+2)

·毸2/(毻+2)· 淈2

2( )毺

毻/(毻+2)

nr,l=0,1,2,…

特例3暋谐振子(毻=2),令毸=1
2毺氊2,得E= 2nr+l+( )3

2 淈氊,与严格解相同.
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2灡12暋质量为毺的粒子在吸引中心势

V(r)=毸r毻,暋毸<0,暋-2<毻<0
中运动.试在准经典近似下求出束缚能级的量子化条件,并求出能级公式.

答:量子化条件表示为

曇
rc

0
2毺(E-V(r))dr= nr+2l+毻+3

2(毻+2[ ]) 毿淈,暋nr =0,1,2,…

暋暋束缚能级公式为(E<0)

Enrl =- 毸 2/(毻+2) 淈2

2( )毺

毻/(毻+2)

毿毻 2nr+2l+毻+3
毻+( )2

·
殻 1- 1( )毻

殻 - 1
2 - 1( )

é

ë

ê
ê
ê

ù

û

ú
ú
ú毻

2毻/(毻+2)

毸<0,暋-2<毻<0,暋nr、l=0,1,2,…

特例暋氢原子V(r)=-e2/r,毻=-1,毸=-e2,给出

Enrl =- 毺e4

2淈2(nr+l+1)2

与严格解一致.
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第3章暋量子力学新进展简介

3灡1暋EPR佯谬与纠缠态

暋暋“纠缠暠一词首先见于1935年Schr昳dinger的一篇文献栙.同年稍早,A.Ein灢
stein,B.Podolsky& N.Rosen的文献栚讨论了2自由粒子体系(无自旋)的纠缠

态.20世纪50年代,D.Bohm 提出隐变量(hiddenvariable)栛概念,并在他的书

中,以自旋为淈/2的粒子组成的2粒子体系的自旋单态为例,讨论了EPR佯谬.
在尔后长达几十年中,以 Einstein,Schr昳dinger等为首的一方,与以 Bohr,Heis灢
enberg等为首的另一方,展开了激烈的论争.但论争局限于认识论或哲学的

踿踿踿踿踿踿踿踿踿踿踿踿
范畴
踿踿.

20世纪60年代中期,J.Bell栜 基于局域隐变量
踿踿踿踿踿

(localhiddenvariable)理论,
分析了EPR佯谬的Bohm 形式.即分析两个粒子的自旋分别沿3个不同方向a,
b,c的分量关联的平均值,即暣(氁1·a)(氁2·b)暤,暣(氁1·b)(氁2·c)暤,暣(氁·c)(氁2

·a)暤之间的关联,得出了著名的Bell不等式.后来,J.F.Clauser,etal.栞分析了

两个粒子的自旋分别沿4个不同方向的分量的关联,得出了类似于Bell不等式的

不等式,即CHSH 不等式,它比Bell不等式更适用于与实验比较.之后的几十年

间,所有实验观测的结果都与量子力学的预期一致
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而与
踿踿CHSH 不等式矛盾

踿踿踿踿踿
栟(参

见3.2.2节).现今人们已普遍认同,自然界存在非局域关联
踿踿踿踿踿踿踿踿踿踿

(non灢localcorrela灢
tion),但人们对其本质的理解还不很明朗栠.(参见3.5.4节)

3.1.1暋EPR佯谬

EPR佯谬一文[2]讨论了一维2自由粒子(无自旋)的如下纠缠态

毮(x1-x2-a)= 1
2毿淈曇

+曓

-曓
dpexp[ip(x1-x2-a)淈] (3.1.1)

对量子力学的正统诠释(Copenhagen诠释)提出挑战.此量子态可以看成是两个粒
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栙

栚

栛

栜

栞

栟

栠

E.Schr昳dinger,Naturwissenschaften23(1935)807,823,844.[Schr昳dinger猫态佯谬]

A.Einstein,B.Podolsky,N.Rosen,Phys.Rev.47(1935)777.[EPR佯谬]

D.Bohm,QuantumTheory.NewYork,Prentice灢Hall,1951.[EPR佯谬的Bohm形式]

J.Bell,Physics1(1964)195.
J.F.Clauser,M.A.Horne,A.Shimony,& R.A.Holt,Phys.Rev.Lett.23(1969)880.
A.Aspect,Nature398(1999)189.
N.Gisin,Science326(2009)1357.



子的动量(p1,p2)的共同本征态(simultaneouseigenstate)的相干叠加栙,

毮(x1-x2-a)=曇
+曓

-曓
dp氉p(x2)up(x1) (3.1.2)

其中up(x1)=eipx1/淈是粒子1的动量本征态[本征值p],氉p(x2)=e-ip(x2-a)/淈是粒子

2的动量本征态[本征值-p],(-曓<p<+曓).如果测量粒子1的动量的测值为

p,则粒子2的动量测量结果一定是(-p),两者之间有确切的关联,即使两个粒子

相距a很大.这就是纠缠态所展示的非局域性
踿踿踿踿

(non灢locality).Einstein认为,当两

个粒子相距很大的情况下(例如,a曻曓),粒子1的测量结果不会影响到对于粒子

2的同时测量结果,否则就要乞求于离奇的超距作用
踿踿踿踿踿踿踿

(spookyactionatadistance),
这是违反相对论教义的(信息传递不能超过光速

踿踿踿踿踿踿踿踿踿踿
).据此,Einstein对量子力学的正

统诠释提出批评.认为量子力学理论是不完备的
踿踿踿踿踿踿踿踿踿踿踿.

按照量子力学理论,不难看出栙 ,量子态(3.1.1)除了是2自由粒子的相对坐

标x=x1-x2 的本征态(本征值x=a)以外,它还是两粒子的总动量P=p1+p2

的本征态(P=0),即量子态(3.1.1)是(x,P)的共同本征态,|x=a,P=0暤.前面已

经提到,(p1,p2)也构成一维2粒子(无自旋)体系的一组可观测量完全集.所以,
(3.1.2)式实质上就是(x,P)的共同本征态,|x=a,P=0暤按照(p1,p2)的共同本

征态来展开[注1].
但值得注意,量子态(3.1.1)实质上是两个自由粒子的毮波包,是一个非定态

踿踿踿
,

它将在瞬间扩散到全空间.假设体系在初始时刻(t=0)处于量子态(3.1.1),则在t
>0以后,

氉(t>0)= 1
2毿淈曇

+曓

-曓

dp曚expip曚(x1-x2-a)
淈 -ip曚2

[ ]淈

=1
2

m
淈毿texp

im(x1-x2-a)
4淈t -i毿[ ]4

(3灡1灡3)

所以

旤氉(t>0)旤2 = m
4毿淈t

(3灡1灡4)

这样的毮波包不便于在实验上进行操控.后期的有关 EPR 佯谬的争论,大多在

Bohm形式[注2]下进行.
[注1]

尽管[p1,P]=[p2,P]=0,但[p1,x]曎0,[p2,x]曎0,(x,P)的本征态不可能是(p1,p2)的
本征态,而是(p1,p2)共同本征态的相干叠加.例如,在(x1,x2)表象中

暣x1,x2旤x=a,P=b暤= 1
2淈毿曇dp曚e-ip曚a/淈氉-p曚+b/2(x2)·up曚(x1) (3灡1灡5)

式中

·89·
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up曚+b/2(x1)= 1
2淈毿

exp[i(p曚+b/2)x1/淈

氉-p曚+b/2(x1)= 1
2淈毿

exp[-i(p曚-b/2)x2/淈

分别是p1 和p2 的本征态,本征值分别为p1=p曚+b/2,p2=-p曚+b/2.
与此类似,(x1,x2)也构成一组CSCO,所以暣x1,x2|x=a,P=b暤也可以做如下展开

暣x1,x2旤x=a,P=b暤= 1
2淈毿

expib(x1 +x2)
2[ ]淈 曇dx曚毮(x2 -x曚+a)毮(x1 -x曚)

(3灡1灡6)

上式中,毮(x1-x曚)是x1 的本征态(x1=x曚),毮(x2-x曚+a)是x2 的本征态(x2=x曚-a).
还可以证明,(X,p)也构成一维自由二粒子体系的一组 CSCO,X=(x1+x2)/2是质心坐

标,p =(p1-p2)/2是相对动量.(X,p)的共同本征态不可能是(x1,x2)或(p1,p2)的共同本征

态,而只能是它们的共同本征态的相干叠加.例如

暣x1,x2旤X =a,p=b暤

= 1
2毿淈

expib(x1 -x2)[ ]淈 毮 x1 -x2( )2

= 1
2毿淈

expib(x1 -x2)[ ]淈 曇dx曚2毮(x2 -x曚-2a)毮(x1 -x曚)暋暋暋暋暋 (3灡1灡7)

暣p1,p2旤X =a,p=b暤

= 1
2毿淈

exp -ia(p1 +p2)[ ]淈 毮 p1 -p2

2 -( )b

= 1
2毿淈

exp -ia(p1 +p2)[ ]淈 曇dx曚2毮(p2 -p曚+2b)毮(p1 -p曚) (3灡1灡8)

暋暋[注2]EPR佯谬的Bohm 形式(图3.1)

20世纪50年代,D.Bohm 对自旋为淈/2的2粒子体系的自旋单态进行了分析(见3灡1灡2
节)

旤氉暤12 = 1
2

[旤朁暤1旤朂暤2 -旤朂暤1旤朁暤2] (3灡1灡9)

式中|朁暤和|朂暤表示粒子
踿踿踿踿1的自旋

踿踿踿z分量sz=暲淈/2的态.自旋单态是|朁暤1|朂暤2 和|朂暤1|朁暤2
两个态的相干叠加.处于自旋单态的2粒子体系的总自旋S=0,其z方向量Sz=0,是各向同性

的.在自旋单态下,两个粒子的自旋的z分量的共同测量结果是彼此关联的,如图3.1所示.按

照量子力学理论,如对粒子1的自旋z分量进行测量,如测得到结果为s1z=+淈/2(或-淈/2,几

率各为1/2),则粒子2的自旋z分量的测值必为s2z=-淈/2(或+淈/2)两者之间有确切的关联.
这就是纠缠的概念.Einstein认为,既然两个粒子已互相远离,粒子1的测量结果不会影响到粒

子2的测量结果,这就是EPR佯谬的Bohm形式(见图3.1).
[注3]Einstein对量子力学理论正统诠释的主要反对论点

(1)针对波函数的统计诠释
踿踿踿踿踿踿踿踿

,Einstein有一句名言:“IdonotthinkGodplaysdice暠栙.Einstein
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图3.1暋取自C.D.Cantrell& M.O.Scully,PhysicsReports,43(1978)499.
设t=0时刻,经过光分裂,两个粒子沿相反方向运动,互相分离.在光分裂过程中,未引进角动量

来干扰体系的自旋态,所以在过程中总角动量守恒,保持S=0.在光分裂发生足够长时间后

(t>T),两个粒子已互相远离,彼此已无相互作用.按照EPR的观点,对于粒子1的测量结果

应该不会影响到对于粒子2的测量结果.此外,自旋单态(3灡1灡9)是各向同性的,所以对于自旋

沿任何方向的分量的测量(例如x方向,见图3.1,下半部分)都有类似的非局域关联

认为:“可以相信
踿踿踿踿

,量子理论及其
踿踿踿踿踿踿Copenhagen诠释是可能的

踿踿踿踿踿踿
,是没有矛盾的
踿踿踿踿踿踿.然而它与我的直觉背

踿踿踿踿踿踿踿踿踿
道而驰
踿踿踿

,我不能放弃找寻一个更完整的概念的研究
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.暠.在 Einstein看来,“物理实在是受不依赖于

踿踿踿踿踿踿踿踿踿踿
人而存在的因果律所支配
踿踿踿踿踿踿踿踿踿踿踿

,物理学的目的就是去发现这些规律
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.用概率语言表达的物理理论

踿踿踿踿踿踿踿踿踿踿踿踿
,不能
踿踿

对自然现象做出完全决定论的描述
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,在最好的情况下
踿踿踿踿踿踿踿

,也只能是物理学发展进程中的一个暂时的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

权宜之计
踿踿踿踿

暠.Einstein认为,“量子理论的统计性不能对物理现象提供一个完备的和协调的描述
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

暠.
尽管量子力学非常成功地用以描述分子,原子,和原子核的结构,以及电子在固态物体中的运动

等,Einstein反对“宏观客体会遵守量子力学规律,并与光子与电子一样,具有同样的不确定性暠.
他相信进一步发展会展现一个更深刻的理论,在这个理论中,原子尺度上的事件可以被确切地预

言,而不只是几率.物理学会重新回到人们所熟悉的经典理论的因果性描述栙.
(2)针对量子力学中出现的 “非局域关联

踿踿踿踿踿
暠,他认为乞求超距离作用是违反相对论教义的

(信息传递不能超光速
踿踿踿踿踿踿踿踿踿

).
(3)关于“物理实在性

踿踿踿踿踿
暠(physicalreality),Einstein有一句名言:“Iliketothinkthatthe

moonisthereevenIdon暞tlookatit.暠栚.
关于物理实在性的确切含义,N.Gisin有一个重要的提醒,见3灡2灡1节,[注2].
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栙

栚

玻尔研究所的早年岁月,(1921灢1930),杨福家,卓益忠,曾谨言译,北京,科学出版社,1985,pp.144,146.
E.Mooij,NaturePhysics6(2010)401.



3灡1灡2暋2电子纠缠态,Bell基

在卷I,9.4节中,讨论了2电子体系的自旋耦合.2电子的自旋之和记为S=
s1+s2,

S2 =s2
1+s2

2+2s1·s2 = 1
2淈2(3+氁1·氁2) (3灡1灡10)

(S2,Sz)的共同本征态记为|S,M暤,S2 的本征值为S(S+1)淈2,S=0,1,Sz 的本征

值为M淈(M曑S),

旤0,0暤= 1
2
[旤朁暤1旤朂暤2-旤朂暤1旤朁暤2]

旤1,0暤= 1
2
[旤朁暤1旤朂暤2+旤朂暤1旤朁暤2]

旤1,1暤=旤朁暤1旤朁暤2
旤1,-1暤=旤朂暤1旤朂暤2 (3灡1灡11)

其中|S=1,M=1,0,-1|称为自旋三重态(tripletstate),|S=0,M=0暤称为自旋

单态(singletstate).|1,暲1暤为直积态,而|0,0暤和|1,0暤为纠缠态.这不足为奇,因
为尽管S2 为2体自旋算符,而Sz 为单体自旋算符.

如果希望所有的共同本征态都是纠缠态,就是选择由
踿踿踿2体自旋算符构成的对

踿踿踿踿踿踿踿踿踿
易力学量完全集的共同本征态
踿踿踿踿踿踿踿踿踿踿踿踿踿.不难证明:对于2电子体系

(氁1x氁2x)(氁1y氁2y)(氁1z氁2z)=-1

(氁1x氁2y)(氁1y氁2z)(氁1z氁2x)=-1

(氁1x氁2z)(氁1z氁2y)(氁1y氁2x)=-1

(3灡1灡12)

上式中氁i毩为Pauli矩阵,i=1,2,3,毩=x,y,z.以上各式中,任何一式的左侧的3个

2体自旋算符中任何两个,都构成体系的一组对易力学量完全集
踿踿踿踿踿踿踿踿

(CSCO),它们的

共同本征态就是Bell基,[表3.1].

表3.1暋Bell基

Bell基 氁1x氁2x 氁1y氁2y 氁1z氁2z

|毤+暤12= 1
2

[|朁暤1|朁暤2+|朂暤1|朂暤2] +1 -1 +1

|毤-暤12= 1
2

[|朁暤1|朁暤2-|朂暤1|朂暤2] -1 +1 +1

|氉+暤12= 1
2

[|朁暤1|朂暤2+|朂暤1|朁暤2] +1 +1 -1

|氉-暤12= 1
2

[|朁暤1|朂暤2-|朂暤1|朁暤2] -1 -1 -1
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还可以证明
(氁1x氁2y)(氁1y氁2x)(氁1z氁2z)=+1
(氁1y氁2z)(氁1z氁2y)(氁1x氁2x)=+1
(氁1z氁2x)(氁1x氁2z)(氁1y氁2y)=-1

(3灡1灡13)

上列各式中,任何一式的左侧的3个2体自旋算符中任何两个,都构成体系的一组

CSCO,它们的共同本征态,都是纠缠态.表3.2中所列是(氁1x氁2y)与(氁1y氁2x)的共同

本征态,也是(氁1z氁2z)的本征态.

表3.2暋(氁1x氁2y)与(氁1y氁2x)的共同本征态与本征值

共同本征态 氁1x氁2y 氁1y氁2x 氁1z氁2z

1
2

[|朁暤1|朁暤2+i|朂暤1|朂暤2] +1 -1 +1

1
2

[|朁暤1|朁暤2-i|朂暤1|朂暤2] -1 +1 +1

1
2

[|朁暤1|朂暤2+i|朂暤1|朁暤2] +1 +1 -1

1
2

[|朁暤1|朂暤2-i|朂暤1|朁暤2] -1 -1 -1

[注4]表3.1和3.2中的所有2电子态都是纠缠态,而且是两项直积态的等权重的相干叠

加,这是由于选择了Pauli表象,即(氁1z氁2z)表象.如果选择其他表象,则可能含有4项.例如,利用

单电子态的氁z与氁x表象的基矢之间的关系,

旤朁暤= 1
2

[旤曻暤+旤曽暤],暋旤朂暤= 1
2

[旤曻暤-旤曽暤] (3灡1灡14)

这里|曻暤和|曽暤分别表示氁x=暲1的本征态,则在(氁1x,氁2x)表象中,则下列各直积态应表示为

旤朁暤1旤朁暤2 = 1
2

[旤曻暤旤曻暤+旤曻暤旤曽暤+旤曽暤旤曻暤+旤曽暤旤曽暤]

旤朂暤1旤朂暤2 = 1
2

[旤曻暤旤曻暤-旤曻暤旤曽暤-旤曽暤旤曻暤+旤曽暤旤曽暤]

而纠缠态|氉- 暤=|0,0暤则表示为

旤氉-暤= 1
2

[旤朁暤1旤朂暤2 -旤朂暤1旤朁暤2]

= 1
2

[旤曻暤旤曻暤+旤曻暤旤曽暤+旤曽暤旤曻暤+旤曽暤旤曽暤]

暋暋不难验证,表3.1和3.2中所有的2电子态的单粒子约化密度矩阵均为

氀1 =氀2 = 1
2

1 0æ

è
ç

ö

ø
÷

0 1
(3灡1灡15)

即矩阵的
踿踿踿

秩(rank)r=2,所以总可以找到合适的非耦合表象,把它们表示为只含2项直积态的

相干叠加,这种表象可称为优选表象
踿踿踿踿

栙.在任何非耦合表象中都不能表示为直积态的形式的量
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
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子纯态
踿踿踿

,称为纠缠态
踿踿踿踿踿.一个量子纯态是否为纠缠态

踿踿踿踿踿踿踿踿踿踿踿踿
,不依赖于所取表象
踿踿踿踿踿踿踿踿..对于直积态,单体约化

密度矩阵的秩为r=1.

图3.2暋将9个二体自旋算符氁1毩氁2毬(简记为毩毬,毩,毬=x,y,z)有规律地放在9个小方

块中,构成一个3暳3的大方块,即图3.2(a)的粗线所围成的大方块.把此大方块向

左,右,上,下4个方向延拓,就构成图3.2(a).图中所示沿暲45曘方向,各有3条线.分
别把各条线上的3个二体自旋算符相乘,将分别等于暲1,这就构成(3.13)式和

(3.12)式,这可能是SU2熱SU2 对称性的反映.图3.2(a)与图3.2(b)在形式上相似.
后者就是中国古典文献《易经》中的九宫图.图3.2(b)的用粗线所围成的九宫图中,每
一行(列)中的3个数相加的和是15,两个对角线的3个数相加分别也是1

练习1暋设a与b 为空间任意两个方向的单位矢量,计算在自旋单态 氉- 暤12= 1
2

[|朁暤1

|朂暤2-|朂暤1|朁暤2],证明(氁1·a)(氁2·b)的平均值为

暣(氁1·a)(氁2·b)暤= 12暣氉- (氁1·a)(氁2·b)氉-暤12 =-(a·b) (3灡1灡16)

暋暋提示暋利用(氁1+氁2)氉- 暤12=0,以及(氁·a)(氁·b)=a·b+i氁·a暳b.

3灡1灡3暋光子的偏振态与双光子纠缠态

光子是电磁场量子,自旋为1,静质量为0,因而无静止参考系.自旋指向总是

与光子运动方向垂直.这表现为经典电磁波为横波,即电场与磁场方向与波传播方

向垂直(以下取传播方向为z轴,即波矢沿z轴方向).习惯上取电场方向为偏振方

向.任何偏振态均可分解两个互相垂直的线偏振态,例如,水平方向(x)和垂直方

向(y)的线偏振态,记为 x暤和 y暤(图3灡3).绕z轴旋转毴角后,
x暤曻 x(毴)暤=cos毴x暤+sin毴y暤 (3灡1灡17)

y暤曻 y(毴)暤=-sin毴x暤+cos毴y暤 (3灡1灡18)
或表示成

x(毴)暤

y(毴
æ

è
ç

ö

ø
÷

)暤=
cos毴 sin毴
-sin毴 cos

æ

è
ç

ö

ø
÷

毴
x暤

y
æ

è
ç

ö

ø
÷

暤=Rz(毴) x暤

y
æ

è
ç

ö

ø
÷

暤
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Rz(毴)=
cos毴 sin毴
-sin毴 cos

æ

è
ç

ö

ø
÷

毴
(3灡1灡19)

图3灡3暋

Rz(毴)是实正交矩阵,描述坐标系绕z轴旋转毴 角.由于绕定轴的旋转群为 Abel
群,Rz(毴)是可约化的.不难证明,Rz(毴)的两个本征态可以表示成

R暤= 1
2

1æ
è
ç

ö

ø
÷

i
,暋 L暤= 1

2
iæ
è
ç

ö

ø
÷

1
(3灡1灡20)

分别称为右旋和左旋偏振态,相应的Rz(毴)的本征值为e暲i毴.不难看出,Rz(毴)=ei毴sz

的生成元(无穷小算符)为栙

sz =
0 -iæ

è
ç

ö

ø
÷

i 0
=氁y (3灡1灡21)

而 R暤和 L暤是sz 的本征态,sz 本征值分别为暲1,sz R暤= R暤,sz L暤=- L暤.这
反映光子自旋s=1(而不是1/2).

在量子力学中,右旋和左旋光子态习惯上记为 +暤和 -暤

+暤= 1
2

x暤+iy( )暤

-暤= 1
2

x暤-iy( )暤
(3灡1灡22)

不难看出,sy 暲暤=暲 暲暤,即 +暤和 -暤是sy 本征态,本征值为暲1,分别称为右

旋光子态和左旋光子态.
现在来考虑双光子体系.设一个光子沿+z轴方向传播,另一个往-z轴方向

传播,则下列双光子偏振态

+暤1 -暤2,-暤1 +暤2 (3灡1灡23)

是双光子体系总自旋投影Sz=s1z+s2z=0的本征态.它们对于绕
踿踿踿z轴是旋转不变

踿踿踿踿踿踿
的
踿

[注意,光子自旋沿传播方向的投影,称为螺旋度(helicity).由于两个光子传播
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方向相反,所以两个光子的螺旋度是相同的].注意,式(3灡1灡23)所示两个偏振态并

非纠缠态.但借助它们可以构造

氉暲暤12 =- 1
2

+暤1 -暤2暲 -暤1 +暤( )2 (3灡1灡24)

它们是双光子的偏振纠缠态,仍然是总自旋投影Sz=0的本征态.
设绕z轴旋转毴角后的x 轴和y 轴方向的线偏振态分别记为 x(毴)暤和 y(毴)暤

[见式(3灡1灡19)].定义算符(相当于电子的氁沿毴角方向的分量)

氂(毴)= x(毴)暤暣x(毴)- y(毴)暤暣y(毴) (3灡1灡25)
显然

氂(毴)x(毴)暤=+ x(毴)暤,暋氂(毴)y(毴)暤=- y(毴)暤 (3灡1灡26)

即 x(毴)暤和 y(毴)暤都是氂(毴)的本征态,本征值为暲1.式(3灡1灡25)是算符氂(毴)的谱

表示[见1灡1节 ,式(3灡1灡23)].

练习2暋计算在双光子纠缠态(3灡1灡24)下氂1(毴1)氂2(毴2)的平均值.
考虑到 氉+ 暤12态对z轴旋转的不变性,

12暣氉+ 氂1(毴1)氂2(毴2)氉+暤12 =12暣氉+ 氂1(0)氂2(毴2 -毴1)氉+暤12

=1
2

[2暣x氂2(毴2 -毴1)x暤2 +2暣y氂2(毴2 -毴1)y暤2]

经过计算得(注)

12暣氉+ 氂1(毴1)氂2(毴2)氉+暤12 =cos2(毴2 -毴1)-sin2(毴2 -毴1)=cos2(毴2 -毴1)(3灡1灡27)

暋暋(注)令毴=毴2-毴1,

2暣x氂2(毴)x暤2 =2暣x旤x(毴)暤2·2暣x(毴)x暤2-2暣xy(毴)暤2·2暣y(毴)x暤2

=(1 0)
cos毴

sin

æ

è
ç

ö

ø
÷

毴
(cos毴暋sin毴)æ

è
ç

ö

ø
÷

1

0
-(1 0)

-sin毴

暋cos

æ

è
ç

ö

ø
÷

毴
(-sin毴暋cos毴)æ

è
ç

ö

ø
÷

1

0

=cos2毴-sin2毴

类似有

2暣y氂2(毴)y暤2 =cos2毴-sin2毴

3灡1灡4暋N (N 曒3)量子比特的纠缠态,GHZ态

可以证明栙,对于3量子比特体系,4个3体自旋算符有下列关系

(氁1x氁2y氁3y)(氁1y氁2x氁3y)(氁1y氁2y氁3x)(氁1x氁2x氁3x)=-1 (3灡1灡28)

上列左侧的4个3体自旋算符中,任何3个都构成一个CSCO.例如,取
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{A1,A2,A3}= {(氁1x氁2y氁3y),(氁1y氁2x氁3y),(氁1y氁2y氁3x)} (3灡1灡29)

它们的共同本征态,如表3.3所示,称为 GHZ态.

表3.3暋3量子比特的GHZ态

(氁1z,氁2z,氁3z)表象 氁1x氁2y氁3y 氁1y氁2x氁3y 氁1y氁2y氁3x 氁1x氁2x氁3x

1
2

[|朁朁朁暤暲|朂朂朂暤] 熀1 熀1 熀1 暲1

1
2

[|朁朁朂暤暲|朂朂朁暤] 暲1 暲1 熀1 暲1

1
2

[|朁朂朁暤暲|朂朁朂暤] 暲1 熀1 暲1 暲1

1
2

[|朁朂朂暤暲|朂朁朁暤] 熀1 暲1 暲1 暲1

类似,还可以分析4量子比特的 GHZ态.设(氁1毩氁2毬氁3毭氁4毮)简单表示为(毩毬毭毮),

毩,毬,毭,毮=x,y,z.可以证明

(xxxx)(yyyy)= (xxyy)(yyxx)= (xyxy)(yxyx)

= (xyyx)(yxxy)= (zzzz)
(3灡1灡30)

这9个4体算符中任何4个函数独立的4体算符,都构成4量子比特体系的一个

CSCO .例如,{(xxxx),(xxyy),(xyxy),(xyyx)}就组成一个 CSCO.当然,在这

4个4体算符中,把任何一个换成(zzzz),也构成一个CSCO.它们的共同本征态

列于表3.4中.

表3.4暋4量子比特的GHZ态

(zzzz)表象 xxxx xxyy xyxy xyyx zzzz

1
2

[|朁朁朁朁暤暲|朂朂朂朂暤] 暲1 熀1 熀1 熀1 +

1
2

[|朁朁朁朂暤暲|朂朂朂朁暤] 暲1 暲1 暲1 熀1 -

1
2

[|朁朁朂朂暤暲|朂朂朁朂暤] 暲1 暲1 熀1 暲1 -

1
2

[|朁朁朂朂暤暲|朂朂朁朁暤] 暲1 熀1 暲1 暲1 +

1
2

[|朁朂朁朁暤暲|朂朁朂朂暤] 暲1 熀1 熀1 暲1 -

1
2

[|朁朂朁朂暤暲|朂朁朂朁暤] 暲1 暲1 熀1 暲1 +

1
2

[|朁朂朂朁暤暲|朂朁朁朂暤] 暲1 暲1 暲1 熀1 +

1
2

[|朁朂朂朂暤暲|朂朁朁朁暤] 暲1 熀1 暲1 暲1 -

暋暋
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3.2暋Bell定理

3灡2灡1暋Bell不等式,CHSH不等式,局域实在论

20世纪60年代,J.Bell栙 分析了EPR佯谬的Bohm形式.在局域隐变量
踿踿踿踿踿

(lo灢
calhiddenvariable)假定下,得出了一个不等式,即著名的 Bell不等式.实验证明,
自旋为1/2粒子的自旋s=氁/2(淈=1)沿任何方向的分量的测量值,只有两种可

能,即暲1/2,即氁沿任何方向的分量只能暲1.考虑自旋为1/2的2粒子组成的体

系,处于自旋单态|氉- 暤(参见3灡1灡1节,表3.1).
设粒子1的氁1 沿空间方向a的投影的测量结果记为A(a,毸),它依赖于方向a

和隐变量毸,A(a,毸)=暲1.与此类似,设粒子2的氁2 在空间方向b的投影的测量

结果记为B(b,毸),它依赖于方向b和隐变量毸,而B(b,毸)=暲1.两个粒子的自旋

沿不同方向a和b的投影的关联为A(a,毸)B(b,毸).考虑到在现今实验中隐变量毸

尚未被人们揭示出来,设毸有一个分布氀(毸),曇d毸氀(毸)=1(归一化).在实验中观测

到的关联,是已经对隐参量进行了平均后的结果,即

P(a,b)=曇d毸氀(毸)A(a,毸)B(b,毸) (3灡2灡1)

按照量子态的统计诠释,P(a,b)相当于量子力学中自旋为1/2的2粒子体系的可

观测量(氁1,a)(氁2,b)在自旋单态|氉- 暤下的平均值,

P(a,b)~ 暣氉-旤(氁1·a)(氁2·b)旤氉-暤=-a·b (3灡2灡2)

Bell证明了下列不等式(证明见注1)

旤P(a,b)-P(a,c)旤曑1+P(b,c) (3灡2灡3)
它给出在自旋单态下,自旋为1/2的2粒子体系的氁1 和氁2 沿3个不同方向a,b,

c的各分量P(a,b),P(a,c)和P(b,c)之间的关联,此即Bell不等式.
后来,J.F.Clauser,etal栚,在局域隐变量的假定下,进一步分析了自旋为1/2的

2粒子体系的氁1 和氁2 沿4个不同方向a,b,a曚,b曚的各分量之间的关联,得出下列不

等式

旤P(a,b)+P(a曚,b)-P(a,b曚)+P(a曚,b曚)旤曑2 (3灡2灡4)
此即CHSH 不等式.Bell不等式与CHSH 不等式都是基于局域隐变量而导出,但
后者较便于和实验观测进行比较.(3灡2灡4)式的左侧称为Be·ll·信号

踿踿
(Bell暞ssignal).

按照CHSH 不等式,Bell信号曑2.而按照量子力学理论,式(3灡2灡4)左侧所示

Bell信号的最大值为2 2=2.828(注1),与局域隐变量(LHV)假定所得出的结论
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矛盾.后来所有的精确实验观测结果都表明
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

[见下节],Bell信号>2,与局域隐变量
踿踿踿踿踿踿

(LHV)假定所得出的结论矛盾
踿踿踿踿踿踿踿踿踿踿

,而与量子力学理论的预期一致
踿踿踿踿踿踿踿踿踿踿踿踿踿.

[注1]按照量子力学理论,对于自旋为1/2的2粒子体系[参见式(3灡2灡2],当相邻单位方

向矢量a,b,a曚,b曚之间的夹角为毴=毿/4时,即

cos(a·b)=cos(a曚·b)=cos(a曚·b曚)=cos(a,b曚)=cos(毿/4)= 2/2,

所以Bell信号=2 2.
早期的实验是用偏振双光子态来进行的.按3灡1灡3节,式(3灡1灡27),相应的角度应为2毴=毿/

4,即毴=毿/8=22.5曘.
[注2]局域实在论的确切含义

对于局域实在论
踿踿踿踿踿

(localrealism),M.A.Rowe栙 有如下确切表述:

“Localrealismistheideathatobjectshavedefinitepropertieswhetherornottheyare

measured(注:此即physicalreality概念),andthatmeasurementsofthesepropertiesare

notaffectedbyeventstakingplacesufficientlyfaraway(注:此即locality概念).暠

对于物理实在论
踿踿踿踿踿

(physicalrealism)和局域性
踿踿踿

(locality),S.Gr昳blacher,etal栚.有如下确切

的表述:

“Physicalrealismsuggeststhattheresultsofobservationareaconsequenceprop灢

ertiescarriedbyphysicalsystems.暠“Allmeasurementoutcomesdependonpre灢existing

propertiesofobjectsthatareindependentofthemeasurement.暠(物理实在论)

“Localitymeansthatlocaleventscannotbeaffectedbyactionsinspace灢likeregions.暠即

(|r1-r2|2曒c2(t1-t2)2 区域.(局域性)

[注3]Bell不等式的证明

按照(3灡2灡1)式,有

P(a-b)-P(a-b曚)=曇d毸氀(毸)[A(a,毸)B(b,毸)-A(a,毸)B(b曚,毸)]

=曇d毸氀(毸){A(a,毸)B(b,毸)[1暲A(a曚,毸)B(b曚,毸)]}

-曇d毸氀(毸){A(a,毸)B(b曚,毸)[1暲A(a曚,毸)B(b曚,毸)]}

暋暋考虑到

-1曑A(a,毸)B(b,毸)曑+1,暋-1曑A(a,毸)B(b曚,毸)曑1
可得

旤P(a,b)-P(a,b曚)旤

曑曇d毸氀(毸)[1暲A(a曚,毸)B(b曚,毸)]+曇d毸氀(毸)[1暲A(a曚,毸)B(b,毸)]

即

旤P(a,b)-P(a,b曚)旤曑2+[P(a曚,b曚)+P(a曚,b)]
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暋暋如让a曚=b曚=c,考虑到P(c,c)=1,而且P(b,c)=P(c,b),则得

旤P(a,b)-P(a,c)旤曑2暲[-1+P(b,c)]
由于-1+P(b,c)曑0,上式可化为

旤P(a,b)-P(a,c)旤曑2+[-1+P(b,c)]
即

旤P(a,b)-P(a,c)旤曑1+P(b,c)

Bell不等式证毕.
[注4]CHSH 不等式的证明

CHSH 不等式的证明与Bell不等式的证明相似,但涉及氁沿任何4个不同方向a,b,a曚,b曚
的分量的观测值的关联.为表述简洁,把暣氁·a暤,暣氁·b暤,暣氁·a曚暤,暣氁·b曚暤分别简单记为a,b,

a曚,b曚.[注意:a,b,a曚,b曚=暲1].不难证明,
(a+a曚)b-(a-a曚)b曚=暲2

(分别考虑两种情况,即a+a曚=0,a-a曚=0,两种情况来证明.)对隐变量分布氀(毸)求平均后,
得出

暣ab暤+暣a曚b暤-暣ab曚暤+暣a曚b曚暤= 暣毴暤
上式中毴=暲2,|暣毴暤|曑2.因此,

旤暣ab暤+暣a曚b暤-暣ab曚暤+暣a曚b曚暤旤曑2
或写成

旤P(a,b)+P(a曚,b)-P(a,b曚)+P(a曚,b曚)旤曑2
CHSH 不等式证毕.

3灡2灡2暋Bell不等式与实验的比较

Aspect在文献栙中对1999年以前有关Bell定理的实验工作的进展做了系统

总结.早期的实验工作始于20世纪70年代栚,是用双光子偏振态来进行的.由于

激光物理和现代光学的进展,在80年代建立了第2代实验装置栛,使用了基于非

线性光学中原子级联辐射产生的高效的关联光子对.第2代的实验给出的结果与

不等式的偏离超过10个标准偏离.第3代的系列实验始于80年代后期栜栞.文献栙

还提及90年代末期Innsbruck研究组的工作栟,它避免了实验观测中的“光椎漏
踿踿踿

洞
踿

暠(light灢coneloopholes),即 保 证 实 验 中 没 有 来 自 光 椎 (lightcone)之 外
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[(r2-r1)2曒c2(t2-t1)2]的事件出现,亦即保证局域性
踿踿踿.21世纪初期,Rowe,et

al.栙的实验使用了处于纠缠态的实物粒子(9Be+ 离子),实验观测得出的Bell信号

为2灡25暲0.03,与CHSH 不等式(即局域隐变量理论)所预言的 Bell信号曑2矛

盾.文献栙 还讨论了“观测漏洞
踿踿踿踿

暠(detectionloophole)问题,并指出:
“Incontrasttopreviousmeasurementswithmassiveparticles,the

violationofBell暞sinequalitywasobtainedbyuseofacompletesetof
measurements.Moreover,thehighdetectionefficiencyofourapparatus
eliminatestheso灢called“detection灢loophole.暠
关与Bell不等式(CHSH 不等式)的重要性,A.Aspect栚 还评论道:

“BellprovedthatEinstein暞spointofview (localrealism)leadsto
algebraicpredictions(thecelebratedBell暞sinequality)thatarecontra灢
dictedbythequantum灢mechanicalpredictionsforanEPRgedankenex灢
perimentinvolvingseveralpolarizerorientations.Theissuewasnolon灢
geramatteroftaste,orepistemologicalposition:itwasaquantitative
questionthatcouldbeansweredexperimentally,atleastinprinciple.暠
在纪念量子论提出一百周年的文章,A.Zeilinger栛 指出:

“Allmodernexperimentsconfirmthequantumpredictionswithun灢
precendentedprecision.Evidenceoverwhelminglysuggeststhatalocal
realisticexplanationofnatureisnotpossible.暠

A.Aspect栜 评论道:
“Theexperimentalviolationofmathematicalrelationsknownas

Bell暞sinequalitiessoundedthedeath灢knellofEinstein暞sideaof‘local
realism暞inquantummechanic暠s.
S.Gr昳blacher,etal.栞还评论道:

“AccordingtoBell暞stheorem,anytheorythatisbasedonthejoint
assumptionsofrealismandlocalityisatvariancewithcertainquantum
predictions.Experimentswithentangledpairsofparticleshaveamply
confirmedthesequantumpredictions,thusrenderinglocalrealisticthe灢
oriesuntenable.暠
概括起来讲,近几十年的无数实验结果都与基于局域实在论得出的

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿 Bell
(CHSH)不等式的预期矛盾

踿踿踿踿踿踿踿踿
,而与量子力学的预期一致
踿踿踿踿踿踿踿踿踿踿踿.
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但 Aspect又指出:
“Butwhichconcept,localityorrealism,istheproblem?暠

Gr昳blacher,etal.做了纠缠光子对的实验,实验结果与基于非局域实在论
踿踿踿踿踿踿

(non灢localrealism)而得出的Leggett不等式栙也是矛盾的.所以他们认为:
“Givinguptheconceptoflocalityisnotsufficienttobeconsistent

withexperiments,unlesscertainfeaturesofrealismareabandoned.暠
即只放弃 “locality暠是不够的,还必须涉及 “reality暠问题.关于“reality暠概念,

Gisin的文献栚的注3特别提醒人们,不要把实在论(realism)与决定性(determin灢
ism)混为一谈.他提到:

“realismisoftenconfusedwithdeterminism,anuninterestingter灢
minologyissue暠.
我们认为:“实在性

踿踿踿
暠(reality)并不一定排除几率的概念

踿踿踿踿踿踿踿踿踿踿踿
,不要把“实在性暠与

“波函数的几率诠释暠混为一谈.关于实在性的确切概念,可参见3灡2灡1节,[注2].
概括起来说,迄今所有实验观测结果

踿踿踿踿踿踿踿踿踿踿
,既与局域实在论
踿踿踿踿踿踿踿

(LR)的预期矛盾
踿踿踿踿踿

,也与
踿踿

非局域实在论
踿踿踿踿踿踿

(NLR)的预期矛盾
踿踿踿踿踿.而自然界中存在量子纠缠所展示的非局域关

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
联
踿

,则已经是一个不可争辩的事实
踿踿踿踿踿踿踿踿踿踿踿踿踿

,并已在量子信息技术领域得到广泛应用
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.对其

物理本质的进一步探讨,将在3灡5灡4节中介绍.

3灡2灡3暋GHZ定理

应当强调,实验观测与Bell不等式(CHSH 不等式)的预期尖锐矛盾,而与量子

力学预期完全一致,是统计性的,即实验测量肯定了量子理论的统计预期
踿踿踿踿

(statistical
prediction),而与局域实在论(LR)尖锐矛盾.下面我们介绍 GHZ定理栛栜,它将判断

量子理论和局域实在论的确切预期
踿踿踿踿

(perfectprediction)孰是孰非.这里要涉及

N(N曒3)量子比特体系的纠缠态.
3量子比特体系的纠缠态已在3灡1灡3节中给出.以纠缠态

旤氉暤123 = 1
2
[旤朁朁朁暤123-旤朂朂朂暤123] (3灡2灡5)

为例,按照局域实在论,自旋为淈/2的3个粒子的氁沿毩 方向(毩=x,y,z)的分量

mi毩(i=1,2,3),有下列关系(见表3.3)

m1xm2ym3y =1,m1ym2xm3y =1,m1ym2ym3x =1,
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此外,考虑到m2
i毩=1,应该有

(m1xm2ym3y)(m1ym2xm3y)(m1ym2ym3x)=m1xm2xm3x =1 (3灡2灡6)
这是局域实在论的确切预期

踿踿踿踿.而按照量子力学理论(见表3.3),纠缠态(3灡2灡5)还
是氁1x氁2x氁3x的本征态栙,本征值为-1,即

m1xm2xm3x =-1 (3灡2灡7)
比较(3灡2灡6)式与(3灡2灡7)式,可以看出,对于3量子比特的 GHZ态,量子力学的

踿踿踿踿踿
确切预期与
踿踿踿踿踿LR尖锐矛盾

踿踿踿踿.实验测量结果肯定量子力学的确切预期
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而与
踿踿LR尖锐

踿踿
矛盾
踿踿

栚.
对于4量子比特的 GHZ态也可以类似论证.关于4量子比特的CSCO结构,

可以证明栙

(氁1x氁2x氁3x氁4x)(氁1y氁2y氁3y氁4y)

=(氁1x氁2x氁3y氁4y)(氁1y氁2y氁3x氁4x)

=(氁1x氁2y氁3x氁4y)(氁1y氁2x氁3y氁4x)

=(氁1x氁2y氁3y氁4x)(氁1y氁2x氁3x氁4y)

=(氁1z氁2z氁3z氁4z) (3灡2灡8)
从上式前面4对算符中的每一对,任取一个,所构成的4个4体自旋算符,即构成

4量子比特体系的一组CSCO.例如,
{(氁1x氁2x氁3x氁4x),(氁1y氁2y氁3y氁4y),(氁1x氁2y氁3x氁4y)(氁1x氁2y氁3y氁4x)}

即可构成一组CSCO.它们的共同本征态,即4量子比特的GHZ态及本征值,已列

于3灡1灡4节的表3.4中.以 GHZ态[|朁朁朁朁暤-|朂朂朂朂暤]为例,按照局域实

在论,
m1xm2xm3xm4x =-1,m1xm2xm3ym4y =+1,m1xm2ym3xm4y =+1

考虑到m2
i毩=1,我们有

m1xm2xm3xm4x·m1xm2xm3ym4y·m1xm2ym3xm4y =m1xm2ym3ym4x =-1
(3灡2灡9)

而按照量子力学理论(见表3.3),量子态[|朁朁朁朁暤-|朂朂朂朂暤]还是氁1x氁2y氁3y

氁4x的本征态,其本征值为+1,所以

m1xm2ym3ym4x =+1 (3灡2灡10)
比较(3灡2灡9)与(3灡2灡10)两式,可以看出,对于4量子比特的 GHZ态,量子力学理

踿踿踿踿踿
论与局域实在论的确切预期也是尖锐矛盾的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.实验测量结果与量子力学理论的确

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
切预期一致
踿踿踿踿踿

,而与局域实在论的确切预期截然相反
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

3灡2灡4暋非隐变量定理

Bell(CHSH)不等式与实验观测结果的矛盾,否定了隐变量
踿踿踿

理论.但它们要求
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制备特殊的量子态,即纠缠态
踿踿踿.实际上,还存在众多的其他类型的量子态(非纠缠

态),并不一定违反这些不等式栙.
隐变量理论
踿踿踿踿踿

认定栚:
(1)测量一个可观测量A 的结果为一个隐变量毸事先所确定.
(2)如果A 与B 的测量结果,与在此前(此后,或同时)它们是否有过测量没

有关系,则称“可观测量A 和B 是相容的(compatible)暠.这就是隐变量理论中的

non灢contextuality 概念.
关于经典力学(隐变量)理论中的non灢contextuality概念,文献[1]提到:

“Anintuitivefeatureofclassicalmodelsisnon灢contextuality:the
propertyofanymeasurementhasavalueindependentofothercompati灢
blemeasurementsbeingcarriedoutatthesametime.暠
文献 Kochen&Specker栛andBell栜 证明:隐变量模型理论中的non灢contextu灢

ality概念与量子力学是抵触的.进而提出非隐变量
踿踿踿踿

(NHV)定理
踿踿.后来,A.Peres栞

与 N.D.Mermin栟 对于此定理做了进一步分析.特别是,Mermin认为,原来文

献栛 的证明过于繁复,而且论证中有严重缺陷.下面给出 Mermin文献中的论证.
设有彼此对易的可观测量(厄密算符)A,B,C,…,满足下列函数关系

f(A,B,C,…)=0 (3灡2灡11)
按照量子力学理论,它们可以共同测定.假设它们的共同测量值分别为它们的本征

值之一,A曚,B曚,C曚,…,则不管在测量之前体系处于什么状态,下列关系式总是成

了的

f(A曚,B曚,C曚,…)=0 (3灡2灡12)

暋暋假设对于一个给定体系相继测量这些可观测量A,B,C,…的所得值分别为

v(A),v(B),v(C),…,[它们分别必定是A,B,C,…的本征值之一].由于这些可

观测量可以共同测量,如果要求这些测量满足non灢contextuality,并满足量子力学

理论,则下式成立

f(毻(A),毻(B),毻(C),…)=0 (3灡2灡13)

Mermin分别以2灢和3灢量子比特体系为例来论证,这是不可能的,而且这个证明不

依赖于体系所处的状态.
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2灢量子比特体系

考虑Pauli算符构成的3暳3矩阵((Peresmatrix)

氁1x 氁2x 氁1x 熱氁2x

氁2y 氁1y 氁1y 熱氁2y

氁1x 熱氁2y 氁1y 熱氁2x 氁1z 熱氁2

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

z

(3灡2灡14)

可以看出:
(1)Peres矩阵的每一行(每一列)的诸元素是彼此对易的.
(2)Peres矩阵的每一行以及每一列的诸元素的乘积分别为

R1 =R2 =R3 =C1 =C2 =1,C3 =-1
暋暋按照式(3灡2灡13),应该有下列6组关系式

毻(氁1x)毻(氁2x)毻(氁1x氁2x)=1暋暋暋暋
毻(氁2y)毻(氁1y)毻(氁1y氁2y)=1
毻(氁1x)毻(氁2y)毻(氁1x氁2y)=1
毻(氁2x)毻(氁1y)毻(氁1y氁2x)=1
毻(氁1x氁2y)毻(氁1y氁2x)毻(氁1z氁2z)=1
毻(氁1x氁2x)毻(氁1y氁2y)毻(氁1z氁2z)=-1

(3灡2灡15)

以上每一个式子的左边的每一个因子的取值为暲1.上式左边一共有18个因子,但
每一个因子都成对出现,所以上式18个因子的乘积为+1.但上式右边的乘积为

-1.这是不可能的,由此说明,量子力学理论与隐变量理论中的non灢contextuality
概念是不相容的.

3量子比特体系

可以证明,
(氁1x氁2y氁3y)(氁1y氁2x氁3y)(氁1y氁2y氁3x)(氁1x氁2x氁3x)=-1 (3灡2灡16)

上式左边4个因子是彼此对易的,它们中任何3个都构成3量子比特体系的一组

CSCO.还可以证明下列4个算符关系式栙,
(氁1x氁2y氁3y)(氁1x)(氁2y)(氁3y)=1
(氁1y氁2x氁3y)(氁1y)(氁2x)(氁3y)=1
(氁1y氁2y氁3x)(氁1y)(氁2y)(氁3x)=1
(氁1x氁2x氁3x)(氁1x)(氁2x)(氁3x)=1

(3灡2灡17)

上面每个式子的左边的4个因子都是彼此对易的.因此,按照式(3灡2灡14),有下列

5个关系式,
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毻(氁1x氁2y氁3y)毻(氁1y氁2x氁3y)毻(氁1y氁2y氁3x)毻(氁1x氁2x氁3x)=-1
毻(氁1x氁2y氁3y)毻(氁1x)毻(氁2y)毻(氁3y)=1
毻(氁1y氁2x氁3y)毻(氁1y)毻(氁2x)毻(氁3y)=1
毻(氁1y氁2x氁3x)毻(氁1x)毻(氁2x)毻(氁3x)=1
毻(氁1x氁2x氁3x)毻(氁1x)毻(氁2x)毻(氁3x)=1

(3灡2灡18)

以上5个等式的左边共有20个因子,每个因子的可能取值暲1,但每个因子都成对

出现,一共有10对,每对因子的取值为+1.所以以上5个式子的左边诸因子的乘

积为+1.但上式右边诸因子的乘积为-1,这是不可能的.再一次证明,量子力学与
踿踿踿踿踿

因变量理论中的
踿踿踿踿踿踿踿non灢踿contextuality

概念是不相容的
踿踿踿踿踿踿踿.

近期,Cabello栙 证明:对于所有non灢contextuality理论,下列不等式成立,

暣氈KS暤= 暣R1暤+暣R2暤+暣R3暤+暣C1暤+暣C2暤-暣C3暤曑4 (3灡2灡19)
上式中暣… 暤表示对系综的平均

踿踿踿踿踿踿
(ensembleaverage),此式称为 Kochen灢Specker不

等式.而按照量子力学理论,可以证明暣氈KS暤=6.两者是矛盾的.
之后不久,G.Kirchmairetal.栚所做的实验结果,都与 Kochen灢Specker不等

式矛盾.在他们的实验中,对束缚于线性Pauli阱中的一对40Ca+ 离子的各种量子

态(相当于2量子比特的各种纠缠态和非纠缠态)都进行了测量,所得结果暣氈KS暤=
5.22(10)>4.

3.3暋Schr昳dinger猫态佯谬,退相干

3灡3灡1暋Schr昳dinger猫态佯谬

暋暋量子力学理论成功阐明了微观世界的众多现象,例如原子结构,分子结构,化
学键,固体的导电性等.但量子力学理论的一些基本概念与我们日常生活经验格格

不入.EPR佯谬栛指出,两个粒子(无自旋)的纠缠态[见(3灡1灡1)式]所展现的非局
踿踿

域关联
踿踿踿

(non灢localcorrelation),即不管两个粒子相距多远,粒子1的测量结果会影

响到粒子2的同时测量结果,需要引进离奇的超距作用.Einstein认为量子理论对
踿踿踿踿踿

于物理实在的描述是不完备的
踿踿踿踿踿踿踿踿踿踿踿踿踿.

Schr昳dinger猫态佯谬栜一文更进一步,对量子力学的正统理论对于宏观世界
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

的实用性提出质疑
踿踿踿踿踿踿踿踿

(特别是针对量子态的几率诠释及态叠加原理).Schr昳dinger讨
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论了如下一个理想实验:设想一个可怜的猫被关在一个与外界隔绝的笼子里,笼中

装有一个毒药瓶,瓶子的开关用一个放射性原子控制.当原子处于激发态|朁暤时,
毒药瓶未被打开,猫是活着的.但原子有一定的几率跃迁到基态,当原子跃迁到基

态|朂暤时,将发射出一个光子,从而启动毒药瓶口,毒药就释放出来,猫就会被毒死

Schr昳dinger用下列波函数来描述这种状态

旤氉暤=毩旤朁暤旤活猫暤+毬旤朂暤旤死猫暤,暋旤毩旤2+旤毬旤2 =1 (3灡3灡1)
此即Schr昳dinger猫态.按照量子态的统计诠释,|毩2|表示原子处于激发态而猫是

活着的几率,而|毬|2 表示原子处于基态而猫是死的几率.当猫被关在笼子里的时
踿踿踿踿踿踿踿踿踿踿

候
踿

,人们并不知道它究竟是活
踿踿踿踿踿踿踿踿踿踿踿

,还是死
踿踿踿

,即猫处于一个既是活
踿踿踿踿踿踿踿踿踿

,也是死的状态
踿踿踿踿踿踿

,[或者
踿踿

说处于不死不活的状态
踿踿踿踿踿踿踿踿踿踿

].这与我们日常生活的经验是格格不入的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,是反直觉的
踿踿踿踿踿

(counterintuitive).在宏观现实世界中,猫要不是活,就是死,两者必居其一,即“非
踿

活即死
踿踿踿

暠,这是经典世界中的图像.而在量子理论的描述中,猫可以处于“亦死亦
踿踿踿

活
踿

暠,或“不死不活
踿踿踿踿

暠的状态.
关于量子世界与经典世界的这种差异,在P.Ball栙 文中做了如下概括:

“Classicalworldisan ‘either/or暞(非此即彼
踿踿踿踿

)kindofplace.The
quantumworld,bycontrast,is‘both/and暞(亦此亦彼

踿踿踿踿
):amagneticat灢

om,say,hasnotroubleatallpointingbothdirectionsatonce.The
sameistrueforotherpropertiessuchasenergy,locationorspeed,gen灢
erallyspeaking,theycantakeonarangeofvaluessimultaneously,

thataquantumobjectisina‘superposition暞ofstates.暠

Einstein对于量子理论能否用以描述宏观现象也持怀疑态度.他反对如下概

念:真正宏观物体的行为,与光子或自旋一样,遵守量子力学规律,特别是量子态的

叠加原理以及量子态的几率诠释.“一个宏观物体同时处于空间两个地点是反直觉
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

的
踿

(counter灢intuitive)暠.他提到栚:
“IliketothinkthatthemoonisthereevenIdon暞tlookatit.暠

按照Einstein的物理实在性
踿踿踿踿踿

(physicalreality)的思想以及日常生活经验,在宏观

世界中一个物体存在与否,是否在那儿,以及它的性质,不依赖于人们是否观测它
踿踿踿踿踿踿踿.

3灡3灡2暋纠缠与退相干,量子力学与经典力学的关系

尽管量子力学正统理论所给出的各种预期,已被无数实验所证实,特别是对于

微观世界的各种现象,都给予了很满意的说明.但量子力学正统理论与我们的直觉

和日常经验是如此格格不入,Einstein与Schr昳dinger始终对量子力学的正统诠释

持反对的态度.Schr昳dinger强烈反对正统的量子力学理论中量子态的几率诠释以
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及态叠加原理,因为这种“亦此亦彼
踿踿踿踿

暠的量子图像与我们日常生活经验中的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

“非此
踿踿

即彼
踿踿

暠图像格格不入
踿踿踿踿踿踿.

“量子力学理论对于宏观世界究竟是否适用
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

?暠始终是众多物理学家关切的问

题.但对此问题应该注意:不要把“经典(classical)暠与“宏观(macroscopic)暠混为一

谈.问题应归结为:“量子力学与经典力学的关系
踿踿踿踿踿踿踿踿踿踿踿踿

暠,或“量子世界的规律如何过度到
踿踿踿踿踿踿踿踿踿踿踿踿

经典力学规律
踿踿踿踿踿踿

?暠.
量子力学的Copenhagen诠释的要点是:量子力学与经典力学之间有一个分界

踿踿
线
踿

)栙栚.但Bohr强调,这个分界线是移动的(mobile).这里,涉及测量
踿踿

(measurement)
问题,而测量装置是经典的

踿踿踿踿踿踿踿踿.关于“量子力学与经典力学的关系暠这个问题,曾经出现

过各种理论.据作者的了解,目前为物理学界多数同行认可的理论是:必须考虑量子
踿踿踿踿踿踿

体系与周围环境的纠缠
踿踿踿踿踿踿踿踿踿踿

(entanglement)以及退相干
踿踿踿

栛栜栞(decoherence).下面对退相干

理论做一个简单的定性介绍.更系统的介绍可以参阅有关专著栞

按照量子力学理论,一个量子体系的量子态随时间的演化按照Schr昳dinger
方程进行

i淈毠
毠t旤氉(t)暤=H旤氉(t)暤 (3灡3灡2)

式中 Hamilton量 H 是线性厄米算符.与经典力学一样,只要给定体系的 Hamil灢
ton量 H 以及体系的初始量子态|氉(0)暤,人们就可以计算出以后任何时刻t的量

子态.量子态随时间的这种决定性的演化(deterministicevolution)已为仔细控制

的实验所证实栛 量子力学中的态叠加原理可以认为是线性方程(3灡3灡2)的推论.
下面先简单介绍文献中关于量子力学与经典力学的关系的论述.
H.D.Zeh曾经强调:Schr昳dinger方程

踿踿
(3灡3灡2)只适用于闭合体系

踿踿踿踿踿踿踿.例如,

W.H.Zurek栟.提到:
“Macroscopicquantumsystemsareneverisolatedfromtheirenvi灢

ronments….Theyshouldnotbeexpectedtofollow Schr昳dinger暞s
equation,whichisapplicableonlytoaclosedsystem.Asaresultsys灢
temsusuallyregardedasclassicalsuffer(orbenefit)fromthenatural
lossofquantumcoherence,which‘leaksout暞intotheenvironment.暠

Myatt,etal.栠.提到:
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H.D.Zeh,Found.Phys.1(1970)69.
W.H.Zurek,Phys.Rev.D24(1981)1516;26(1982)1862.
W.H.Zurek,DPhys.Rev.D24(1981)1516;D26(1982)1862.
W.H.Zurek,Rev.Mod.Phys.75(2003)715.
M.Schlosshauer,DecoherenceandtheQuantum灢to灢ClassicalTransition (Springer ,Heidelberg/Berlin,

2007.)

W.H.Zurek,PhysicsToday,1991,Oct.,pp.36灢44.
C.J.Myatt,etal.Nature403(2000)269.



“Thetheoryofquantum mechanicsappliestoclosedsystems.In
suchidealsituations,asingleatomcan,forexample,existsimultane灢
ouslyinasuperpositionoftwodifferentlocations.Incontrast,realsys灢
tems alwaysinteract with their environment, with consequence that
macroscopicquantum superpositions (asillustratedbytheSchr昳dinger暞s
thought灢experiment)arenotobserved.暠

Schlosshauer栙 指出:
“Akeyingredientis‘entanglement暞:whensystemsinteractthey

losetheirindividualityandmustbedescribedbyasharedwave灢func灢
tion.Entanglementisubiquitous.Physicalsystemscannotavoidinter灢
actingwiththeirenvironment,soasystem暞sbehaviorisdictatedbythe
wavefunctioninvolvingbothsystem andenvironment.Thisisthe
physicalprocessofentanglement.暠

P.Ball栚 指出:
“Thequantum灢classicaltransitionisnotreallyamatterofsize,but

oftime.Thestrongeraquantumobject暞sinteractionsarewiththesur灢
roundings,thefasterdecoherencekicksin.Solargerobjects,which
generallyhavemorewaysofinteracting,decoherencealmostinstantane灢
ously,transformingtheirquantumcharacterintoclassicalbehaviorjust
asquickly.暠

“Decoherenceisunavoidabletosomedegree.Eveninaperfectvac灢
uum,particleswilldecoherethroughinteractionswithphotonsinthe
omni灢presentcosmicmicrowavebackground.暠

“Insummary,decoherenceofferaway‘tounderstandclassicalityas
emergentfromwithinthequantumformalism暠.
通常用量子力学来处理问题时,体系的 Hamilton量 H 往往未计及体系与周围

环境的相互作用.这对于微观情况的体系是可以的.例如,处理氢原子时,就只计及原

子核对于电子库仑引力和电子之间的排斥力,而未计及与更大的外界环境的相互

作用.
对于宏观体系,它们不可避免与周围环境有相互作用

踿踿踿踿踿踿踿踿踿踿踿踿踿踿.因此,一个宏观体系的
踿踿踿踿踿踿踿

行为应该由它与环境的共同
踿踿踿踿踿踿踿踿踿踿踿踿

(纠缠
踿踿

)波函数来支配
踿踿踿踿踿踿.所以必须考虑体系与相邻环境

踿踿踿踿踿踿踿踿踿踿踿踿踿
的纠缠
踿踿踿

,这个物理过程即退相干
踿踿踿踿踿踿踿踿踿踿.宏观体系绝不可能与相邻环境相孤立.在某种程

度上,退相干是不可避免的,因为即使在完全真空中,粒子也会与宇宙微波背景辐
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P.Ball,Nature453(2008)22.



射的光子的相互作用而不断退相干.宏观体系的量子相关性将会不断‘流失暞到环

境中去.在通常情况下,宏观体系可以认为是经典的.
量子体系从量子态
踿踿踿踿踿踿踿踿

—
踿

经典态的过度发生的快慢
踿踿踿踿踿踿踿踿踿踿踿

,依赖于它与相邻环境的相互
踿踿踿踿踿踿踿踿踿踿踿踿

作用的强度
踿踿踿踿踿.一般说来

踿踿踿踿
,一个较大的物体与相邻环境的相互作用就更大
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,退相干过
踿踿踿踿

程几乎立即发生
踿踿踿踿踿踿踿.例如,一个大分子被制备在一个叠加态,彼此相距~10痄,在周

围分子的碰下,在大约10-17秒内就会退相干.
Zurek及其同事们提出了“量子达尔文主义

踿踿踿踿踿踿踿
暠的观点栙栚.P.Ball如下通俗地

介绍量子达尔文主义:
“Differentquantumstateshaveverydifferentresistencestodeco灢

herence.Soonlytheresistantstatewillsurvivewhenasysteminteracts
withitsenvironment.Theserobuststatesarethosethatfeatureinclas灢
sicalphysics,suchaspositionanditsrateofchange,whichisassociat灢
edmomentum.Inasense,thesearethe‘fittest暞states暞—whichiswhy
ZurekandhiscolleaguescalltheirideaquantumDarwinism.暠

“Insummary,decoherenceoffersawaytounderstandclassicalityas
emergentfrom withinthequantum formalism.Indeed,thispicture
meansthattheclassicalworldnolongersitsinoppositiontoquantum
mechanics,butisdemandedit.暠
从理论本身来看,退相干理论是可行的.而从实验技术来讲,还有很长的路要

走.有兴趣的读者可以阅读有关的文献.

3灡3灡3暋介观与宏观Schr昳dinger猫态的制备

Myatt,etal.栛指出:
“Macroscopicsuperpositionsdecaysoquicklythateventhedynamicsof

decoherencecannotbeobserved.However,mesoscopicsystemsofferthepos灢
sibilityofobservingthedecoherenceofsuchquantumsuperpositions.暠
该文还报道了下列类型的介观量子叠加态,即受控的单个被束缚的原子的相

干态的叠加态.而几年之前,C.Monroeetal.栜首先在单原子水平上从实验上制

备出类似于Schr昳dinger猫态的实物离子9Be+ 的如下叠加态

旤氉暤= 1
2
[旤朁暤旤x1暤+旤朂暤旤x2暤] (3灡3灡3)

式中|朁暤和|朂暤分别表示9Be+ 的内部(电子)激发态和基态,|x1暤和|x2暤分别描述
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H.Ollivier,D.Poulin&W.H.Zurek,Phys.Rev.Lett.93(2004)220401.
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C.J.Myatt,etal,Nature403(2000)269.
C.Monroe,etal.,Science272(1996)1131.



9Be+ 的质心运动的两个很窄的 Gauss波包,波包中心的位置分别在x1 点和x2

点.Gauss波包的宽度~7nm烅原子尺度~0.1nm,但远小于两个波包中心的距离

|x1-x2|~80nm(介观尺度).所以|x1暤和|x2暤可以认为是 “局域于不同地点的两
踿踿踿踿踿踿踿踿踿

个很窄的
踿踿踿踿 Gauss波包

踿踿
暠.比较(3灡3灡1)和(3灡3灡3)式,可以看出,|x1暤相当于|活猫暤,

而|x2暤相当于|死猫暤.式(3灡3灡3)所示的Schr昳dinger猫态,称为介观Schr昳dinger
猫态,或称为Schr昳dinger猫仔(kitten)态栙.

我们还注意到,式(3灡3灡3)所示纠缠态,并不涉及两个实物粒子,而只是一个实

物粒子9Be+ 的内部运动自由度的量子态与其质心运动的相干叠加态(纠缠态),并
不涉及非局域性问题.所以“纠缠

踿踿
暠的概念与“非局域性

踿踿踿踿
暠概念并不完全等同.式

(3灡3灡3)所示纠缠态表明,同一个实物粒子9Be+ 可以同时处于空间不同地点(x1 点

或x2 点).

图3.4暋Monroeetal.的9Be+ 离子的介观Schr昳dinger猫态的制备过程的示意图

按照原子核壳模型,9Be+ 的原子核(含4个质子和5个中子)的基态,其中4个质子和4个

中子已配对,对核自旋无贡献.而未配对的奇中子处于p3/2能级,所以原子核的自旋为I=3/2.
9Be+ 离子有3个电子(处于原子核的Coulomb场中),其中2个电子处于原子的最低壳的1s1/2

能级,而价电子处于2s1/2能级.所以9Be+ 离子的总角动量为F=1,2.在外磁场中,9Be+ 离子的

内部态的基态为|F=2,MF=-2暤,记为|朂暤.激发态为|F=1,MF=-1|,记为|朁暤.当加上频率

为氊HF =1.250GHz的脉冲时,离子的内部态在在|朂暤与|朁暤之间振荡.
9Be+ 离子的介观Schr昳dinger态的制备过程,分为5个步骤(见图3.4):
(A)在Paul阱中的9Be+ 离子经激光冷却后,离子的内部态处于基态|朂暤,而质心运动则为局

域于谐振子势的底部(x=0)的 Gauss波包,|x=0暤.
(B)经毿/2脉冲作用后,离子将处于叠加态~[|朂暤|x=0暤+|朁暤x=0].
(C)经历只作用于|朁暤的常作用力F(持续时间氂=10毺s)后,离子态将变为|朁暤|x2暤与|朂|0暤

的相干叠加,但两者之间有一定的相位差.
(D)对 离 子 加 上 毿- 脉 冲,使 离 子 的 内 部 态|朁暤与|朂暤互 相 对 换,离 子 将 处 于 与

|朁暤|0暤与|朂暤|x2暤相干叠加态.
(E)再加上沿相反方向的均匀场-Fx作用,使离子处于|朁暤|x1暤与|朂暤|x2暤的相干叠加,两

者之间有一相差,这就是式(3灡3灡3)所示量子态.

·021·
栙 GTaubes,Science272(1996)1101.



[注]Monroeetal.的一个注中提到,在文献中并无为大家公认的关于“Schr昳dinger猫态暠

的定义.某些作者把~[|x1暤+|x2暤]也称为Schr昳dinger猫态.特别是量子光学中,把谐振子的

两个相干态的叠加态

旤a暲暤=N毩[旤毩暤暲旤-毩暤] (3灡3灡4)

也称为Schr昳dinger猫态,式中 N毩 为归一化常数,|毩暤为谐振子的相干态(见卷I,3.4节)

旤毩暤= 暺
曓

n=0
Cn毩旤n暤,暋Cn毩 = 旤毩旤n

2nn!e
exp[-旤毩旤2/2] (3灡3灡5)

L=毩-1=(淈/m氊)1/2是谐振子的长度自然单位.当|毩|烅1,N毩曋1/2.在量子态(3灡3灡4)下,简谐

振子处于不同位置的两个量子态的相干叠加态.

真正宏观物体的纠缠态的实验制备,是在21世纪初才得以实现.例如,Fried灢
man等栙在一个超导量子干涉仪(superconductingquantuminterferencedevice,

SQUID)上实现了如下量子态:即SQUID处于两个磁通(magneticflux)状态的相

干叠加,相应于沿相反方向(顺时针与反时针方向)的两束电流的相干叠加态,电流

强度约几个 mA.
与此几乎同时,VanderWal等栚的实验中,在一个具有3个Josephson节的宏观

超导环 (macroscopicsuperconductingloop)的附近,放置一个 DC灢SQUID 与之相耦

合.当加上一个小的外磁场时,宏观超导环上将出现一个诱导电流.[此实验装置相当

于一个对称双势阱中的粒子的能级状态.]当对此宏观超导环上加上一个超导磁通

毜0 的整数倍的磁场时,将有沿相反方向的两束经典持续性电流.此实验装置上将出

现两个宏观的对称态与反对称态的相干叠加.

3灡3灡4暋双缝干涉的纠缠诠释

Feynman栛栜 认为电子双缝干涉现象是量子力学的最核心的问题
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,绝对不能用
踿踿踿踿踿

任何经典的方式来诠释
踿踿踿踿踿踿踿踿踿踿

,
“aphenomenonwhichisimpossible,absolutelyimpossible,toex灢

plaininanyclassicalway,andwhichisintheheartofquantummechan灢
ics.Inreality,itcontainstheonlymystery.Wecannotmakethemys灢
terygoawayby‘explaining暞howitworks.Wewilljusttellyouhowit
works.暠

Heisenberg认为,确定粒子通过哪条缝(即确定粒子位置)的观测,由于测量
踿踿

仪器的不可控制的扰动
踿踿踿踿踿踿踿踿踿踿

,粒子的动量就有一个不确定度,从而破坏原来的干涉图

像.Bohr的观点略有不同.他认为:波动 粒子两重性是辐射
踿踿 踿踿踿踿踿踿踿踿

(radiation)和实物粒
踿踿踿踿
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子
踿

(静质量
踿踿踿曎踿0)都具有的内在的和不可避免的性质

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.波动与粒子描述是两个理想的
踿踿踿踿踿踿踿踿踿踿踿踿踿

经典概念
踿踿踿踿

,每一个概念都有一个有限的适用的范围
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,其中任何单独一个都不能对所
踿踿踿踿踿踿踿踿踿踿踿踿踿

涉及的现象给出完整的说明
踿踿踿踿踿踿踿踿踿踿踿踿.这两种描绘中任何单独一个都是不充分的

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.在电子双

缝干涉实验中,从电子的粒子性来看:“Eachelectroneithergoesthroughhole1or
itgoesthroughhole2暠.但是,确定粒子通过哪条缝的任何观测,都会导致双缝干

涉现象的消失,而干涉现象是波动性的特征.
辐射以及实物粒子(电子,原子,中子等)的波动 粒子二象性已为多种实验所

证实.20世纪与21世纪之交,大分子 C60(fullerene)的量子干涉现象已为奥地利

Zeilinger研究组的实验所证实栙.在 Arndtetal.的实验中,从温度约900-1000K
的高温炉中蒸发出来的 C60分子束,经过SiNx 衍射光栅(周期~100nm,缝宽~
50nm)后,在屏上可观测到衍射现象.衍射现象证实了 C60分子的波动性,即一个

C60分子自己与自己干涉,或者说,在衍射实验中,C60分子处于一种叠加态,它描述

一个C60分子同时处于空间不同的地域.然而如果用一个电子显微镜去观测它(位
置),它又表现为一个有确定位置的粒子.对此,A.Zeilinger如下表述粒子 波动

的互补性(complementarity)观点[见P.Ball栚]:
“Ifyouscan withascanningtunnelling microscopeasurfaceto

whichfullerenemoleculesstick,youseethelittlesoccerballssitting
thereasclassicalobjects.Butifyouchooseourinterferenceexperiment
set灢up,theyarequantummechanicallydelocalized.Inotherwords,the
sameobjectcanbehaveasaquantumsysteminonesituation,andasa
classicalsysteminanother.暠

Zeilinger研究组还进行了比更大的分子[C60(C60F48)和(C44H30N4)]的实

验栛.他们发现,这些大分子的干涉图像,随它们经过的气体的密度增大而逐渐消

失.这种现象可以用退相干(decoherence)理论给予说明.随气体的密度增大,这些

大分子与气体分子的碰撞更加频繁,因而退相干会更加速.干涉效应是纯粹的量子

效应,是量子态叠加原理的表现.
以上介绍的是量子力学正统理论对于双缝干涉现象的诠释.近期有人提出用

踿
纠缠来说明双缝干涉现象
踿踿踿踿踿踿踿踿踿踿踿.D湽rr等进行了如下实验栜,先把铷原子85Ru制备在基态

(价电子处于52s1/2能级.)铷原子核85
37Ru的自旋为J=5/2[按原子核壳模型,第37个

奇质子处于f5/2能级].所以铷原子的基态的总角动量为F=(5/2暲1/2)=2,3.铷原

子(具有超精细结构)的基态为F=2,紧邻的激发态为F=3,分别记为|2暤和|3暤.这
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两个紧邻能级的间距很小,而且远离铷原子的其他电子激发能级,形成一个具有超精

细结构的2能级体系.

图3.5暋D湽rr等实验的示意图

在D湽rr等的实验栙中,先把铷原子束制备在基态|2暤上.然后进行下列几个步骤:(见图3.5).
(a)让铷原子束经过一个毿/2微波脉冲,铷原子束就被制备在量子态~[|3暤+|2暤]上.
(b)再通过一个分束装置(beamsplitter,由astandingwaveoflight构成).按照波动光学,

从光疏介质到光密介质,反射波有毿相位的变化,而透射波无相位变化.而从光密介质到光疏介

质时,反射波与透射波都没有相位变化.通过分束装置后,Ru原子束分列为两束,所经两条路径

分别记为B和C,,量子态分别为

旤氉暤~ (旤3暤)旤氉C暤,暋旤氉暤~ (旤3暤-旤2暤)旤氉B暤 (3灡3灡6)

暋暋(c)分别再经过一个毿/2微波脉冲,两束原子的量子态为

旤氉暤~-旤2暤旤氉B暤,暋旤氉暤~旤3暤旤氉C暤 (3灡3灡7)

暋暋此时,沿B和C 两条路径的原子束,已经分别用原子的内部态|2暤和|3暤进行了标记.式

(3灡3灡7)是原子的内部态与质心运动路径的纠缠态,人们可以用原子内部态来判定 Ru原子所走

的路径.
(4)再经过一个分束装置,原子束B 又分裂为D 和E 两束,而原子束C 分裂为F 和G 两

束.在经历一段路程后,D 和E 两束射向左侧,F和G 两束射向右侧 ,左侧两束与右侧两束在空

间上彼此分开.量子态分别表示为
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旤氉暤~-旤2暤旤氉D暤+旤3暤旤氉E暤,暋旤氉暤~旤2暤旤氉F暤+旤3暤旤氉G暤 (3灡3灡8)

考虑到原子内部态的正交性,暣2|3暤=0,左边的 D 和E 两条原子束的干涉消失,叠加形成的条

纹的强度为

P(z)=旤氉(z)旤2

曍旤氉D(z)旤2 +旤氉E(z)旤2 -氉*
D (z)氉E(z)暣2旤3暤-氉*

E (z)氉D(z)暣3旤2暤

=旤氉D(z)旤2 +旤氉E(z)旤2 (3灡3灡9)

同样,右边的F和G 两条原子束叠加形成的条纹的强度为

P(z)=旤氉(z)旤2

曍旤氉F(z)旤2 +旤氉G(z)旤2 +氉*
F (z)氉G(z)暣2旤3暤-氉*

F (z)氉G(z)暣3旤2暤

=旤氉F(z)旤2 +旤氉G(z)旤2 (3灡3灡10)

3灡3灡5暋量子态工程

美国物理学会1959年 Pasadena会议上,R.P.Feynman做了一个题目为

“There暞splentyofroomatthebottom暠的报告栙,副标题为“aninvitationtoentera
newfieldofphysics暠.很多人认为,这个报告标志“纳米技术暠(nanotechnology)的发

轫.所谓“纳米技术暠是指对实物进行纳米(nm)尺度上的操作.1nm=10-9m=10-3毺,
相当于~20个氢原子Bohr半径a的长度(a=0.053nm).Feynman设想,有朝一日能

实现对物质原子按人们的要求的某种规律进行排列.他说:
“…itwouldbepossible,inprinciple,possible(Ithink)foraphys灢

icisttosynthesizeanychemicalsubstancethatchemistwritesdown.
Givetheordersandthephysicistsynthesizesit.How ? Puttheatoms
downwherethechemistsays,andsoyoumakethesubstance.暠
由于技术上的困难,在很长一段时间内 Feynman的设想没有能够实现.到

20世纪末,情况有了较大改变.例如,在美国加州的IBM 研究中心的 D.Eigler
和他的同事们,用扫描隧道显微镜(scanningtunnelingmicroscopy,STM)对单个

原子进行操控,制备出世界上最小的IBM 商标图案(见图3.6),以及很壮观的量

子畜栏(quantumcorral)(见图3.7).他们还把一个一个的原子排列起来,构成

一些人工分子(artificialmolecule).Weinhacht等的报告栚中,利用裁剪激光脉冲

(tailoredlaserpulse)对原子中的电子波函数按照选定的形状进行造型.Schleich栛

认为这类工作对于量子计算和选键化学有重要应用,有兴趣的读者可以跟踪这

一方面的进展.
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图3.6暋D.Eigler等把少量 Xe原子放置于一块清洁 Ni板的表面,在低温(~4K)下,对
一个一个Xe原子进行操控,放在指定的位置.最后,用35个Xe原子排成IBM 这3个字

母.本图取自上页文献栙 ,p.85

图3.7暋量子畜栏(quantumcorral),取自上页文献栙 ,p.184.

3.4暋纠缠与不确定性

量子力学中的不确定性原理
踿踿踿踿踿踿

(uncertaintyprinciple)是 Heisenberg在1927年

发现的栙.事隔8年之后,Schr昳dinger栚 提出了纠缠
踿踿

的概念.基于 EPR佯谬栛中的
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局域实在论
踿踿踿踿踿

概念建立起来的Bell不等式栙和CHSH 不等式栚,与量子力学理论的

预期是矛盾的.尔后几十年间的所有实验都证实了量子力学的预期,而与Bell不

等式(CHSH 不等式)相矛盾栛.近年来,量子纠缠已经引起人们广泛注意,且在量

子信息和量子计算技术中得到广泛应用.但量子纠缠与不确定性原理的密切关系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

似未引起人们注意
踿踿踿踿踿踿踿踿

栜踿.本节分析将指出,量子纠缠与不确定度关系之间确有很密切
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

的关系
踿踿踿

,但这首先要求搞清楚纠缠的确切含义.

3灡4灡1暋纠缠的确切含义

有一种观点认为[A.Aspect,1栞]:
“Incontrasttowave灢particleduality,whichisaone灢particlefea灢

ture,entanglementinvolvesatleasttwoparticles(与波动 粒子二象性
踿踿踿 踿踿踿踿踿

属于单粒子性质相反
踿踿踿踿踿踿踿踿踿

,量子纠缠至少涉及两个粒子
踿踿踿踿踿踿踿踿踿踿踿踿.)暠.

另一种观点栟栠 则认为:量子纠缠并不一定涉及两个粒子
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而只涉及
踿踿踿踿

(至少
踿踿

)两
踿

个彼此对易的可观测量
踿踿踿踿踿踿踿踿踿踿

(observables).例如,P.Knight提到:
“Entanglementisapeculiarbutbasicfeatureofquantummechanics

introducedbyErwinSchr昳dingerin1935.Individualquantum灢mechani灢
calentitiesneedhavenowell灢definedstate;they mayinsteadbein灢
volvedincollective,correlated (‘entangled暞)stateswithotherenti灢
ties,whereonlytheentiresuperpositioncarriesinformation.Thatmay
applytoasetofparticles ,ortotwoormorepropertiesofasingle
particle.暠

V.Vedral栠栢 更明确地提到:
“Whatexactlyisentanglement? Afterallissaidanddone,ittakes

(atleast)twototangle,althoughthesetwoneednotbeparticles.To
studyentanglement,twoormoresubsystemsneedtobeidentified,to灢
getherwiththeappropriatedegreesoffreedomthatmightbeentangled.
Thesesubsystemsaretechnicallyknownasmodes.Mostformally,en灢
tanglementisthedegreeofcorrelationbetweenobservablespertaining

·621·

栙

栚

栛

栜

栞

栟

栠

栢

J.Bell,Physics1(1964)195.
J.F.Clauser,M.A.Horne,A.Shimony,R.A.Holt,Phys.Rev.Lett.23(1969)880.
A.Aspect,Nature398(1999)189.
M.Q.Ruan&J.Y.Zeng,Chin.Phys.Lett.20(2003)1420.
A.Aspect,Nature446(2007)866.
P.Knight,Nature395(1998)12.
V.Vedral,Nature453(2008)1004.
S.D湽rr,T.Nonn& G.Rempe,Nature395(1998)33.



todifferentmodes,thatexceedsanycorrelationallowedbythelawsof
classicalphysics.暠

Knight还介绍了D湽rr等人栚 的实验工作.在D湽rr等人的实验中,制备了一个
踿踿

原子的动量与它的内部电子态的纠缠态
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.在文献栙中,分析了一个自旋淈/2为的粒

子与其路径的纠缠态.在C.Monroe等人的工作栚中,制备了一个介观尺度上的纠

缠态,即束缚在Paul阱中的一个9Be+ 离子的内部态(电子激发态)与其质心运动

(即离子的空间运动)自由度的纠缠态.
我们倾向于后一种观点.从量子力学理论上来看,一般而言,量子纠缠应该理

踿踿踿踿踿踿踿
解为涉及不同自由度的至少两个可对易可观测量
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.这两个可观测量

踿踿踿踿踿踿踿
,既可以属于同
踿踿踿踿踿踿

一个粒子
踿踿踿踿

,也可以属于两个粒子
踿踿踿踿踿踿踿踿踿

栛.为确切起见,当谈及一个纠缠态时
踿踿踿踿踿踿踿踿踿

,必须指明
踿踿踿踿

,
它是属于不同自由度的什么样的两个
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(或多个
踿踿踿

)可对易的可观测量之间的纠缠
踿踿踿踿踿踿踿踿踿踿踿踿踿.可

对易可观测量A 和B 的纠缠纯态,有如下两个特点栜:
(a)测量之前,A 和B 都不具有确定的值(即不是A 和B 的共同本征态).
(b)A 和B 的同时测量结果之间有确切的关联(几率性的).

3灡4灡2暋纠缠与不确定度关系的联系

基于上述看法,我们注意到,量子纠缠与不确定度关系之间确有密切的关系.
在量子力学理论建立的初期,Heisenberg的不确定性原理的提出,是科学史上一

个重大事件.特别是,按照不确定性原理
踿踿踿踿踿踿踿踿

,一个粒子的同一时刻的坐标和动量
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,一般
踿踿

说来
踿踿

,不具有确定值
踿踿踿踿踿踿

;即两个不对易的可观测量
踿踿踿踿踿踿踿踿踿踿踿

,一般说来
踿踿踿踿

,不能具有共同本征态
踿踿踿踿踿踿踿踿踿.

在经典力学中,一个粒子的运动状态用相空间
踿踿踿踿踿踿踿踿踿踿踿踿踿

(正则坐标和正则动量空间
踿踿踿踿踿踿踿踿踿踿踿

)中的一
踿踿踿

个点来描述
踿踿踿踿踿

不同.基于不确性原理
踿踿踿踿踿踿踿

,一个体系的量子纯态需要用
踿踿踿踿踿踿踿踿踿踿踿踿 Hilbert空间中的

踿踿踿踿
一个矢量来描述
踿踿踿踿踿踿踿

;而量子态的演化
踿踿踿踿踿踿踿

,遵守
踿踿Schr昳dinger方程

踿踿
,并遵守态叠加原理和
踿踿踿踿踿踿踿踿踿

几率诠释
踿踿踿踿.粒子运动状态的经典描述与量子描述大相径庭

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.
按照不确定度关系,一般说来,两个不对易的可观测量不能同时具有确定值

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,

即不能具有共同本征态
踿踿踿踿踿踿踿踿踿踿.如果两个可观测量属于不同的自由度,则彼此一定是对

易的,因而原则上可以同时测定的.而纠缠则是涉及属于不同自由度的两个或多个
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

彼此对易的可观测量的共同测量
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(simultaneousmeasurement)结果之间的关联
踿踿踿踿踿踿踿.人

们可以想到,不确定关系与纠缠之间可能存在一定关系.但在这里一定要涉及多自

由度体系.
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3灡4灡3暋纠缠纯态的一个判据

在通常量子力学的教科书中,两个可观测量A 和B 的不确定度关系表示为

殼A殼B 曒 1
2旤C

暋-
旤 (3灡4灡1)

上式中,殼A和殼B分别表示在给定量子态|氉暤系综概念下可观测量A和B的测量值的

不确定度(方均根偏差),殼A= 暣氉|A2|氉暤-暣氉|A|氉暤2,殼B= 暣氉|B2|氉暤-暣氉|B|氉暤2,而

C是A 与B 的厄米对易式,C=i[B,A],C
暋-
=暣氉|C氉暤.

按照不确定度关系,在任何给定的量子态|氉暤下,两个不对易的可观测量,一
般说来,不能同时具有确定值,即它们不可能具有共同本征态.例外是,对于特殊

的量子态|氉暤,如果满足

C
暋-
= 暣氉旤C旤氉暤=0 (3灡4灡2)

则可观测量A 和B 可以同时具有确定值.例如,同属于一个粒子转动自由度的轨

道角动量l的两个分量是不相对易的.例如[lx,ly]=i淈lz,所以lx 和ly 一般不能同

时具有确定值.但对于l=0的特殊量子态,暣l=0|[lx,ly]|l=0暤=0,则lx 与ly 可

以同时具有确定值,即存在共同本征态,本征值均为0.
我们注意到:不确定度关系本身并不明显涉及自由度的问题

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.但只当可观测

量A 和B 属于同一个体系的同一个自由度,A 和B 才有可能不对易(C 为非零算

符)情况下,才需要考虑在量子态|氉暤下,C 的平均值暣C暤=暣氉|C|氉暤是否为0的问

题.而要讨论纠缠的问题,一定会涉及多自由度体系,或多粒子体系.
一个多自由度或多粒子体系的量子态,可以用一组对易的可观测量完全集

(CSCO )的共同本征态来完全确定[参见本书,卷I,4.3.4节].每一组对易的可观

测量原则上可以共同测定的.在实验上,相当于进行一组完备可观测量的测量,以
制备体系的一个完全确定的量子态.

设(A1,A2,…)构成体系的一组CSCO,其共同本征态记为{|A曚1,A曚2,…暤},再
假设(B1,B2,…)构成体系的另一组 CSCO,其共同本征态记为{|B曚1,B曚2,…暤},考
虑(A1,A2,…)中的任何一个量与(B1,B2,…)中任何一个量的对易关系,定义对易式

矩阵C =C+

C毩毬 曉i[B毬,A毩] (3灡4灡3)
与不确定度关系式(3灡4灡1)相似,我们有

殼A毩殼B毬 曒 1
2旤暣C毩毬暤旤 (3灡4灡4)

如果|暣C毩毬暤|=|暣[A毩,B毬]暤|曎0,则A毩 与B毬 不能同时具有确定值.
以下我们给出一个给定的量子纯态的一个纠缠判据栙:
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(a)设矩阵C的每一行i(i=1,2,…),至少都有一个矩阵元素Cij不为零.
(b)对于所有量子态,{|氉暤=|A曚1,A曚2,…暤},暣氉|C|氉暤曎0都成立.
如果条件
踿踿踿踿

(a)和
踿

(b)都成立
踿踿踿

,则在量子态,A曚2,…暤}是(B1,B2,…)的纠缠态.
例外的是
踿踿踿踿

,条件
踿踿

(a)成立
踿踿

,但条件
踿踿踿

(b)不成立
踿踿踿

,即对于所有
踿踿

{|氉暤=|A曚1,A曚2,
…暤},暣氉|C|氉暤=0,就不能判定所有的量子态|A曚1,A曚2,…暤都是,或都不是(B1,

B2,…)的纠缠态.(例如,参见3灡4灡4节,例4.下面的证明与表象无关.)

[证明]

因为{|A曚1,A曚2,…暤}和{|B曚1,B曚2,…暤}分别都张开体系的 Hilbert空间的一组完备基,体系

的任何给定的量子态都可以用任何一组基展开.因此,在条件(a)下,|A曚1,A曚2,…暤态肯定不是

(B1,B2,…)的任何一个共同本征态.但可以展开如下,

旤A曚1,A曚2,…暤= 暺B曚1B曚2,…
暣B曚1B曚2,…旤A曚1,A曚2,… =暤旤B曚1,B曚2,…暤 (3灡4灡5)

暋暋对于给定的量子态|A曚1,A曚2,…暤,展开系数暣B曚1B曚2,…|A曚1,A曚2,…暤就不完全为0,而且是完

全确定的,其值依赖于|B曚1,B曚2,…暤.|暣B曚1,B曚2,…|A曚1,A曚2,…暤|2 就是在|A曚1,A曚2,…暤态下(B1,

B2,…)的共同测量值分别为(B曚1,B曚2,…)的几率.因此,(B曚1B曚2,…)的共同测量值之间有确切的

关联(率性的).即量子态|A曚1,A曚2,…暤是(B1,B2,…)的纠缠态.

可以看出,上述量子纯态的纠缠判据与不确定度关系有一定的相似性.不确

定度关系主要强调:在任何给定的量子态下
踿踿踿踿踿踿踿踿踿踿

,不对易的两个可观测量
踿踿踿踿踿踿踿踿踿踿A 和

踿B,即C
=i[B,A]曎0,A 和B 不能同时具有确定值,即A 和B 不具有共同本征态[特殊的

量子态|氉暤,满足暣氉|C|氉暤=0,除外].而上述量子纠缠判据,则讨论在多粒子或多

自由度体系的对易的可观测量完全集(A1,A2,…)的共同本征态{|氉暤=|A曚1,A曚2,
…暤}下,另一个对易的可观测量完全集(B1,B2,…)的共同测量之间存在相干关联

(纠缠)的条件,即借助于对易式矩阵Cij曉i[Bi,Ai]的性质来判断.

3灡4灡4暋几个示例

以下以几个简单的例子对上述量子纯态的纠缠判据进行验证.
例1暋EPR佯谬中的2自由粒子(无自旋)的纠缠态.
可以证明,EPR佯谬一文中的(9)式给出的量子态

毮(x1 -x2 -a)= 1
2毿淈曇

+曓

-曓
dpexp[ip(x1 -x2 -a)/淈] (3灡4灡6)

是2个自由(一维)粒子的一组对易可观测量完全集 (A1,A2)=(x,P)的共同本征态栙,x=x1-

x2 是相对坐标,P=p1+p2是总动量.分别取(B1,B2)=(p1,p2)和(x1,x2),则相应的C矩阵为

C=淈
1 0

-
æ

è
ç

ö

ø
÷

1 0
,暋C=淈

0 1æ

è
ç

ö

ø
÷

0 1
(3灡4灡7)

是常数矩阵,满足条件(a)和(b).这就验证了|x=a,P=0暤既不是(p1,p2)的共同本征态,也不
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是(x1,x2)的共同本征态,而可以看成是(p1,p2)或(x1,x2)的共同本征态的相干叠加态,即它们

的纠缠态.
例2暋单电子的总角动量的本征态

单电子的总角动量j=l+s,l是轨道角动量,s是自旋角动量.(l2,j2,jz)构成一组对易可观

测量完全集.人所熟知,它们的共同本征态[见本书卷I,9.2节]记为|ljmj暤,j=l暲1/2,|mj|
曑j,mj=m+1,

对于j=l+1/2,(l=0,1,2,…,mj) 旤jmj暤= 1
2l+1

l+m+1 Ym
l

l-m Ym+1

æ

è
çç

ö

ø
÷÷

l

对于j=l-1/2,(l=0,1,2,…,mj) 旤jmj暤= 1
2l+1

- l-m Ym
l

l+m+1 Ym+1

æ

è
çç

ö

ø
÷÷

l

(3灡4灡8)

由上式可以看出,对于给定l的|ljmj暤态,lz 和sz 的共同测量值是纠缠的,

对于j=l+1/2,它们的相对几率为(l+m+1)/(1-m)
对于j=l-1/2,它们的相对几率为 (l-m)/(l+m+1)

在给定l的情况下,取(A1,A2)=(j2,jz),(B1,B2=(lz,sz),则相应的C矩阵为

C=2淈
(-sxly +sylx) 0
(-sxly -sylx)

æ

è
ç

ö

ø
÷

0
(3灡4灡9)

满足条件(a)和(b).这就验证了(3灡4灡8)式所示的单电子(给定l)的总角动量的本征态|jmj暤是

lz 和sz 的纠缠态.注意:纠缠态(3灡4灡8)不涉及两个粒子
踿踿踿踿踿踿踿

,它只涉及单个粒子的自旋分量和轨道
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

角动量分量的纠缠
踿踿踿踿踿踿踿踿.

例3暋Bell基

不难证明,对于2量子比特体系,如选择(A1,A2)=(氁1x氁2x,氁1y氁2y),(B1,B2)=(氁1x熱I(2),

氁2x熱I(1)),(氁1y熱I(2),氁2y熱I(1)),(氁1z熱I(2),氁2z熱I(1)),则C矩阵分别为

-2
0 氁1z氁2y

0 氁1y氁2

æ

è
ç

ö

ø
÷

z

,暋2
氁1z氁2x 0

氁1x氁2z

æ

è
ç

ö

ø
÷

0
,暋2

-氁1y氁2x 氁1x氁2y

-氁1x氁2y 氁1y氁2

æ

è
ç

ö

ø
÷

z

(3灡4灡10)

满足条件(a)和(b).这就验证了众所周知的 Bell基既是(氁1x,氁2x),的纠缠态,也是(氁1y,氁2y)和
(氁1z,氁2z)的纠缠态.

例4暋(S2,Sz)的共同本征态

在角动量耦合理论中(见本书,卷II,3灡1灡2节),2电子的自旋本征态通常选为对易可观测量

完全集(S2,Sz)的共同本征态|S,M暤,其中S=s1+s2 是总自旋,S2 的本征值记为S(S+1),Sz=s1z

+s2z,它的本征值记为 M,|M|曑S.|S=1,M=暲1,0暤是三重态(triplet),|S=0,M=0暤是单态(sin灢

glet).从波函数的形式来看,|0,0暤和|1,0暤是s1z和s2z的纠缠态,而|1,1暤和|1,-1暤则是直积态.这
一点也可以用上述量子纯态的纠缠判据来验证.因为对于(A1,A2)=(S2,Sz),(B1,B2)=(s1z,

s2z),可得

C=- 1
2淈3

氁1y氁2x -氁1x氁2y 0

氁1x氁2y -氁1y氁2x

æ

è
ç

ö

ø
÷

0
(3灡4灡11)

满足条件(a),但不满足条件
踿踿踿踿踿

(b),[可以证明,对于所有三重态和单态,暣氉|C|氉暤=0.]所以不能保

证(S2,Sz)的所有共同本征态都是,或都不是,(s1z,s2z)的共同本征态.
·031·



从算符结构来看,在(A1,A2)=(S2,Sz)中,尽管S2 是2体自旋算符,但Sz 却为单体自旋算

符,所以上述结论也是可以理解的.
例5暋3量子比特体系的 GHZ态

3量子比特体系的对易可观测量完全集的结构已在3灡1灡4节中讨论过.3量子比特的 GHZ
态已列于表3.3中,它们是

{A1,A2,A3}= {氁1x氁2y氁3y,氁1y氁2x氁3y,氁1y氁2y氁3x}

的共同本征态.如{B1,B2,B3}分别取为{氁1x,氁2y,氁3y},{氁1y,氁2x,氁3y},{氁1y,氁2y,氁3x},则C矩阵分别为

-2

0 氁1z氁2x氁3y 氁1z氁2y氁3x

0 -氁1y氁2z氁3y 0

0 0 -氁1y氁2y氁3

æ

è

ç
çç

ö

ø

÷
÷÷

z

-2
-氁1x氁2y氁3y 0 0

-氁1x氁2z氁3y 0 氁1y氁2z氁3x

0 0 -氁1y氁2y氁3

æ

è

ç
çç

ö

ø

÷
÷÷

z

-2
-氁1x氁2y氁3y 0 0

0 -氁1y氁2z氁3y 0

氁1x氁2y氁3z 氁1y氁2x氁3z

æ

è

ç
çç

ö

ø

÷
÷÷

0

(3灡4灡12)

满足条件(a)和(b),所以3 量子比特的 GHZ态是自旋纠缠态.对于4个和更多量子比特的

GHZ态,也可以类似讨论它们的纠缠性.

3.5暋量子信息理论简介

量子信息理论涉及量子计算(quantumcomputation),量子态远程传递(quan灢
tumteleportation),量子搜 索 (quantumsearching),量 子 密 码 (quantumcryp灢
togragh),量子博弈(quantumgame)等基于量子力学原理的各种信息过程的理论.

本节简单介绍与量子力学基本原理密切相关的一部分内容.量子信息理论的

系统介绍,可以参阅文献栙栚

3灡5灡1暋量子计算与量子信息理论基础

在量子计算和量子信息理论中,操作的对象是量子比特
踿踿踿踿.比特(bit)是经典计

算和信息理论的基本概念.量子比特
踿踿踿踿

(quantum灢bit,简记为qubit)是比特的推广.
为了区别,比特也称为经典比特.一个经典比特有两个状态:即0,或1.量子比特

的两个可能状态的 Dirac符号表示分别记为|0暤和|1暤.量子比特的物理实现,例
如:电子沿某一个方向的两个可能取向的自旋态,光子的两种可能的偏振态,超导
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环中电流的两种可能取向,一个二态体系的量子态等.
|0暤和|1暤构成一个量子比特的 Hilbert空间的一组彼此正交的基.量子比特

的一般状态用2维 Hilbert空间的一个矢量用|氉暤来表示,

旤氉暤=a旤0暤+b旤1暤 (3灡5灡1)
它是|0暤和|1暤的相干线性叠加.按照量子态的几率诠释,|a|2 和|b|2 分别表示测

量时,量子比特分别处于|0暤和|1暤的几率.通常取归一化条件

旤a旤2+旤b旤2 =1 (3灡5灡2)
与经典量子比特不同,一个量子比特可以处于满足归一化条件的|0暤和|1暤的任意

线性叠加态.式(3灡5灡2)可以改写成

旤氉暤=ei毭 cos毴
2旤0暤+ei氄sin毴

2旤1[ ]暤 (3灡5灡3)

上式中毭,氄,毴为任意实数.量子力学中,一个量子态的整体的相因子ei毭无可观测

的效应,可以省去.所以(3灡5灡3)式可以改记为

旤氉暤= cos毴
2旤0暤+ei氄sin毴

2旤1[ ]暤 (3灡5灡4)

|氉暤可以直观地用指向单位球面上的任何一点(毴,氄)的矢量来表示,此单位球称为

Bloch球.(3灡5灡4)式的一个特例(毴=毿/2,氄=0)是

旤氉暤= 1
2
[旤0暤+旤1暤] (3灡5灡5)

它表示的量子态测量时,体系处于|0暤和|1暤的几率各为1/2.
N(N曒2)量子比特的量子态用2N 维 Hilbert空间中的一个矢量来描述.例

如,2量子比特的量子态用4维 Hilbert空间中的一个矢量来描述.4维 Hilbert空

间最常用的一组基,即Bell基

旤氉暤= 1
2
[旤00暤暲旤11暤],暋 1

2
[旤01暤暲旤10暤] (3灡5灡6)

本书卷I第9章中,电子自旋向上和向下的量子态分别形象地表示为|朁暤和|朂暤.
而2电子体系的纠缠自旋态用Bell基

旤氉暤= 1
2
[旤朁朁暤暲旤朂朂暤],暋 1

2
[旤朁朂暤暲旤朂朁暤] (3灡5灡7)

描述,它们是2量子比特的一种物理实现.
N 量子比特的量子态用2N 维 Hilbert空间的一个矢量来描述,

旤氉暤= 暺s1,s2…sN
as1s2…sN 旤s1s2…sN暤 (3灡5灡8)

每个si 可以取0或1,si=0,1(i=1,2,…,N),|s1s2…sN暤表示2N 维 Hilbert空间

的一组基矢,而as1s2…sN =暣s1s2…sN|氉暤是量子态|氉暤在|s1s2…sN暤表象中的表示,是
(2N-1)个独立的复数,满足归一化条件

暺s1s2…sN
旤as1s2…sN 旤2 =1 (3灡5灡9)
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所以N 量子比特可用以存储
踿踿踿踿踿踿踿踿踿

(2N -踿1)个不受限制的复数描述的信息
踿踿踿踿踿踿踿踿踿踿踿踿踿.这与经典比

特截然不同,N 个经典比特只能存储从
踿踿踿踿踿踿踿踿踿踿0到

踿
(2N-踿1)之间的整数描述的信息

踿踿踿踿踿踿踿踿踿踿
。

只要 N 个量子比特的相干性能够保持,量子态|氉暤随时间的演化就按照

Schr昳dinger方程进行

i淈毠
毠t旤氉暤=H旤氉暤 (3灡5灡10)

即|氉暤按照一个幺正变换
踿踿踿踿踿踿踿踿U(t)=exp[-iHt/淈]演化

踿踿
(设 H 不显含t)

旤氉(t)暤=exp[-iHt/淈]旤氉(0)暤 (3灡5灡11)

暋暋为量子力学读者方便,2维空间的量子态常常用一个列矢来表示.两个基矢分

别记为

旤0暤=旤朁暤=旤氁z =1暤=
æ

è
ç

ö

ø
÷

1
0

,暋旤1暤=旤朂暤=旤氁z =-1暤=
æ

è
ç

ö

ø
÷

0
1
(3灡5灡12)

对量子态的操作用一个2暳2矩阵表示.常用的基本操作有3个Pauli矩阵,Had灢
amard门 H,和相位变换S

X =氁x =
0 1æ

è
ç

ö

ø
÷

1 0
,暋Y =氁y =

0 -iæ

è
ç

ö

ø
÷

i 0
,暋Z=氁z =

1 0
0 -

æ

è
ç

ö

ø
÷

1
(3灡5灡13)

H = 1
2

1 1
1 -

æ

è
ç

ö

ø
÷

1
= 1

2
(氁x +氁z),暋H+ H =1 (3灡5灡14)

S=
1 0
0 ei

æ

è
ç

ö

ø
÷

氄
,(氄实数),S+S=1 (3灡5灡15)

暋暋容易证明

H旤0暤= 1
2
[旤0暤+旤1暤]=旤氁x =1暤,暋H旤1暤= 1

2
[旤0暤-旤1暤]=旤氁x =-1暤

(3灡5灡16)

S旤0暤=旤0暤,暋S旤1暤=ei氄旤1暤,暋S
æ

è
ç

ö

ø
÷

a
b

=
a

bei

æ

è
ç

ö

ø
÷

氄
(3灡5灡17)

暋暋定义球面上的一个单位矢量,n=1
2
(ex+ez),它处于xz平面中的x 轴与z 轴

的等分角线上.绕n方向旋转毴角的算符为

R(n,毴)=e-i毴氁·n =cos毴
2-i氁·nsin毴

2
(3灡5灡18)

不难证明

R(n,毿)=-i氁·n=-i1
2
(氁x +氁z)=-iH (3灡5灡19)

·331·



Shor量子算法

1994年P.W.Shor栙.给出了一个量子算法(quantumalgorithms),目的是想

解决大数
踿踿N 的因式分解

踿踿踿踿踿
问题,N=n1暳n2.例如29083=127暳229.

正整素数N 的因式分解的经典计算方法是用正整数1曻 N逐个相除栚,

所需次数(时间)曍 N =2exp 1
2log2[ ]N ~eL,暋L=log2N (3灡5灡20)

所需时间与
踿踿踿踿踿L的关系是指数关系

踿踿踿踿踿踿踿踿
,L 表示在2进制中 N 的长度.当 N 非常大时,

这是一个非常困难的问题.据说,在1994年,对一个129位的大数进行因式分解,
用1600台工作站花了8个月时间,计算才完成.对一个250位的大数进行因式分

解,需要时间~8暳105 年.而对一个600位的大数进行因式分解,就需时~1025年

(宇宙年龄),这实际上是不可能的.
Shor量子算法是利用量子态的相干叠加性

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,进行平行计算
踿踿踿踿踿踿.可以证明,按照

踿踿
Shor量子算法

踿踿踿踿
,大数
踿踿N 的因式分解所需时间与

踿踿踿踿踿踿踿踿踿踿L的关系是多项式
踿踿踿踿踿踿踿

(polynomial)关
踿

系
踿

,即所需时间曍Pol(L),称为P问题[注].例如,对于一个1000位大数的因式分

解大约只需~1秒即可完成.这就引起人们对量子算法,进而对量子信息理论的广

泛注意.实现量子算法的主要困难在于在保证计算过程中的相干性的问题.

[注]P问题,即多项式问题.

NP问题,即非多项式(non灢polynomial)问题,分为两种:即 NPC问题和 NPI问题.

NPC(completeNP)问题,指已经证明为 NP问题,

NPI(intermediateNP)问题,指尚未能证明为 NP问题.
按照经典算法,大数的因式分解是一个 NPI问题.

Grover量子搜索

量子搜索的系统研究始于L.K.Grover栛 的工作.要解决的问题是:在未分类
踿踿踿踿

(杂乱无章
踿踿踿踿

)的
踿N 个客体中

踿踿踿踿
,找出特定的目标
踿踿踿踿踿踿踿.

经典搜索方案是逐个搜寻
踿踿踿踿

(onebyone),每一次搜索的结果是:是或否(yesor
no).经历N/2次搜索后,找到特定目标的几率约为1/2.

按照量子搜索方案
踿踿踿踿踿踿

,每次都对所有客体进行搜索
踿踿踿踿踿踿踿踿踿踿踿踿

,但对各种结果的几率幅不做
踿踿踿踿踿踿踿踿踿踿踿踿

记录
踿踿

,(既可以为
踿踿踿踿0,也可以为

踿踿踿踿1).由于量子相干效应
踿踿踿踿踿踿踿踿

,上一次的搜索会影响下一次
踿踿踿踿踿踿踿踿踿踿踿踿
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的搜索
踿踿踿.可以证明

踿踿踿踿
,重复的搜索
踿踿踿踿踿 N次以后

踿踿踿
,找到特定的对象的几率
踿踿踿踿踿踿踿踿踿踿~1/2.

例如,在100万人口的城市中去找寻一个特定的个人的电话号码.按照经典搜

索方法,经过50万次搜索后,找到的几率~1/2.而按照量子搜索方法,经过一千次

搜索后,找到的几率~1/2.随N 增大,量子搜索的优越性就越明显.

3灡5灡2暋量子不可克隆定理

Wotters&Zurek栙 一文,基于量子态叠加原理得出下列论断:一个未知的量子
踿踿踿踿踿踿踿

态不可能被完全精确复制
踿踿踿踿踿踿踿踿踿踿踿.此即量子不可克隆定理

踿踿踿踿踿踿踿踿
(quantumno灢cloningtheo灢

rem).量子不可克隆定理是量子态叠加原理的一个重要推论.该文以光子的偏振

态为例来论证.但其论证适用于任何一个 2 态体系,即任何一个量子比特.
Wotters&Zurek的论证简述如下:(更全面的论述,见原始文献.)

一个量子比特的 Hilbert空间的一组正交归一基矢分别记为|0暤和|1暤.按照

量子态叠加原理,一个量子比特的任何量子态|氉暤都可以表示成|0暤和|1暤的相干

叠加,

旤氉暤=a旤0暤+b旤1暤,暋旤a旤2+旤b旤2 =1 (3灡5灡21)
设复制装置的初态为|A暤.量子态的完全精确复制过程可以表述如下:

旤A暤旤氉暤曻旤A氉暤旤氉暤旤氉暤 (3灡5灡22)

|A氉暤是复制后复制装置所处的状态,它可以依赖,也可以不依赖于被复制的量子

态|氉暤.设|0暤与|1暤可以被这个复制装置完全精确复制,即

旤A暤旤0暤曻旤A0暤旤0暤旤0暤,旤A暤旤1暤曻旤A1暤旤1暤旤1暤 (3灡5灡23)
试问:体系的任何一个量子态|氉暤是否也可以被这个复制装置完全精确复制? 回

答是否定的.理由如下:按式(3灡5灡21),

旤A暤旤氉暤=旤A暤(a旤0暤+b旤1暤)=a旤A暤旤0暤+b旤A暤旤1暤(3灡5灡24)
而按式(3灡5灡22)的假定,

旤A暤旤氉暤曻a旤A0暤旤0暤旤0暤+b旤A1暤旤1暤旤1暤 (3灡5灡25)
以下分两种情况来讨论:

(1)设|A0暤曎|A1暤,则上式所示复制出来的体系处于混合态,不可能是要复制

的纯态|氉暤|氉暤(不计及归一化问题),因为

旤氉暤旤氉暤=(a旤0暤+b旤1暤)暳(a旤0暤+b旤1暤)

=a2旤0暤旤0暤+2ab旤0暤旤1暤+b2旤1暤旤1暤
(3灡5灡26)

暋暋(2)设|A0暤=|A1暤,则式(3灡5灡26)所示的复制出来的体系处于如下纯态,

~a|0暤|0暤+b|1暤|1暤,是一个纠缠态,而决不可能是式(3灡5灡25)所示状态.
(证明完毕)
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H.P.Yuen栙 对于不可克隆定理做了进一步工作.他证明:假设复制过程可
踿踿踿踿踿踿踿

以用一个幺正变换描述
踿踿踿踿踿踿踿踿踿踿

,则当
踿踿

,且仅当
踿踿踿

,两个量子态正交时
踿踿踿踿踿踿踿踿

,它们才可以被同一个复
踿踿踿踿踿踿踿踿踿踿

制装置克隆
踿踿踿踿踿.

[证明]设两个量子态|氉0暤与|氉1暤可以被同一个复制装置克隆

U旤A暤旤氉0暤曻旤A0暤旤氉0暤旤氉0暤 (3灡5灡27a)

U旤A暤旤氉1暤曻旤A1暤旤氉0暤旤氉0暤 (3灡5灡27b)
式中U+U=UU+ =1,U 是描述复制过程的幺正变换.式(35.27b)取复共轭,与
(3灡5灡27a)取内积,得

暣氉1旤氉0暤= 暣氉1旤氉0暤2暣A1旤A0暤 (3灡5灡28)
由于|暣A1|A0暤|曑1,所以要求

暣氉1旤氉0暤曑旤暣氉1旤氉0暤2旤 (3灡5灡29)
而只有当暣氉1|氉0暤=0,上式中的等式才能满足,即要求两个待复制的量子态|氉1暤与

|氉0暤正交.(证毕)
以上讨论的是对純态的复制

踿踿踿踿踿.H.Barnum,etal.栚进一步研究了混合态的复
踿踿踿踿踿

制
踿

,提出了量子不可播送定理
踿踿踿踿踿踿踿踿

(non灢broadcastingtheorem).A.K.Patti& L.S.
Braunstein栛 提出了一个与量子不可克隆定理相似的量子不可删除定理

踿踿踿踿踿踿踿踿
(quantum

non灢deletingtheorem).介绍量子不可克隆定理的科普文献,还可参阅栜.

3灡5灡3暋量子态远程传递

1993年,C.H.Bennett,etal.栞,提出借助于纠缠态以进行量子态的远程传递

的一个方案.从基本原理上来讲,此方案基于量子态叠加原理以及量子态的统计诠

释.其方案简述如下:
此方案的目的是要求发送人员 Alice把一个量子比特的态

旤毤暤=a旤朁暤+b旤朂暤 (3灡5灡30)
发送给远处的接收人员Bob.Alice与Bob之间有一个经典通道(例如电话),以传

递测量过程中技术上的信息.但为了保密,Alice对于要传递的量子态|毤暤可能一无

所知.
Bennett的量子态远程传递方案的程序,分为如下4步:
(1)在 Alice处存放量子比特1的量子态

旤毤暤1 =a旤朁暤1+b旤朂暤1暋旤a旤2+旤b旤2 =1 (3灡5灡31)
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图3.8暋Bennett等的量子态远程传递方案示意图

暋暋(2)制备量子比特2与3的一个纠缠态(Bell基之一),例如

旤氉-暤23 = 1
2
[旤朁暤2旤朂暤3-旤朂暤2旤朁暤3] (3灡5灡32)

并把处于纠缠态的量子比特2发送给 Alice,而把处于纠缠态的量子比特3发送

给Bob.
(3)Alice使用可以识别4个Bell基的技术,对量子比特1和2进行测量.与此

同时,Bob对量子比特3进行测量.联合起来,是对如下的3量子比特体系进行了

一个完备测量,

旤毞暤123 =旤毤暤1旤氉-暤23 (3灡5灡33)

这个量子态可以按照量子比特1和2的纠缠态完全集(Bell基,见3.1节,表3.1)
来展开.直接计算,可以得出

旤毞暤123 =1
2

{[旤氉-暤12(-a旤朁暤3-b旤朂暤3)]+[旤氉+暤12(-a旤朁暤3+b旤朂暤3)]

+[旤毤-暤12(-b旤朁暤3+a旤朂暤3)]+[旤毤+暤12(-b旤朁暤3-a旤朂暤3)]}
(3灡5灡34)

这里,(3灡5灡33)式中的量子比特2与3的纠缠态转化为(3灡5灡34)式中的量子比特

1和2的纠缠态.形式上这与角动量的重耦合(angularmomentumrecoupling)相
似.当 Alice对粒子1和2进行 Bell基的测量时,每一个 Bell基出现的几率都是

1/4.Bob同时对量子比特3的测量结果,应该与 Alice对量子比特1和2的 Bell
基的测量结果相对应,见表3.5.

(4)Alice把对粒子1和2的Bell基的测量所得结果[Ui(i=1,2,3,或4)中的

某一个.例如4,告诉Bob.于是Bob用U-1
4 作用于U4|毤暤3 上,就可得到待传送的

量子态|毤暤3,即U-1
4 U4|毤暤3=|毤暤3,|毤暤3 就是原来要传送的量子态|毤暤1 的一个副

本,只不过粒子1被粒子3所替换罢了.
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表3.5暋

Alice测得粒子对
(1,2)所处Bell基

Bob对量子比特3的进行相应测量所得到的态 Ui,i=1,2,3,4

|氉-暤12 -a|朁暤3-b|朂暤3=
-a

-
æ
è
ç

ö
ø
÷

b 3
=U1|毤暤3 U1=

-1 0æ
è
ç

ö
ø
÷

0 -1

|氉+暤12 -a|朁暤3+b|朂暤3=
-aæ

è
ç

ö
ø
÷

b 3
=U2|毤暤3 U2=

-1 0æ
è
ç

ö
ø
÷

0 1

|毤-暤12 b|朁暤3+a|朂暤3= æ
è
ç

ö
ø
÷

b

a 3
=U3|毤暤3 U3=

0 1æ
è
ç

ö
ø
÷

1 0

|毤+暤12 -b|朁暤3+a|朂暤3=
-bæ

è
ç

ö
ø
÷

a 3
=U4|毤暤3 U4=

0 -1æ
è
ç

ö
ø
÷

1 0

从1997年 开 始,量 子 态 的 传 递 过 程 的 实 验 已 陆 续 实 现.例 如,D.Bou灢
wmeester,etal.栙,借助处光子偏振实态现量子态的远程传递.与此几乎同时,

D.Boschi,etal.栚,实现了一个光子偏振态的远程传递.A.Fursawa,etal.,栛利

用光的压缩态实现了量子态远程传递.M.A.Nielsen,etal,栜利用核磁共振实现

了量子态远程传递.随后的几年,在许多实验室中也都实现了各种类型的量子态

远程传递栞栟栠栢.
关于量子态的远程传递,还有下点应该注意:
(a)量子态不可克隆定理

在量子态的远程传递过程中,原来在处的粒子1的量子态|毤暤1 已经被破坏

(粒子1与2已发生了纠缠),这正是量子态不可克隆定理的表现.
(b)量子非信息传递定理(Quantumno灢signalingtheorem)

Bennett等的量子态远程传递方案一文中明确指出:
“Ourteleportationcannottakeplaceinstantaneouslyorovera

space灢likeinterval,becauseitrequires,amongotherthings,sendinga
classicalmessagefromAlicetoBob.暠
即他们的量子态的远程传递方案并不能用来进行量子态的超光速的传递

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.这

就是所谓量子非信息传递定理
踿踿踿踿踿踿踿踿踿.例如,N.Gisin栣 一文中指出:
“Itisimportanttostatethatthenonlocalcorrelationsofquantum
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physicsarenon灢signaling.Thatis,theydonotcommunicateinforma灢
tion.Thisshouldremovesomeoftheuneasiness.暠
但是他指出:“Inanon灢signalingworld,correlationscanbenon灢localonlyif

themeasurementresultswerenotpredetermined.暠Gisin强调的这一点与纠缠态

的定义是一致的.例如,A.Mair栙 指出:
“Themeasurementofthestateofoneparticleinatwo灢particleen灢

tangledstatedefinesthestateofthesecondparticleinstantaneously,

whereasneitherparticlepossessesitsownwell灢definedstatebeforethe
measurement.暠
但应当指出:“Quantum mechanicsaswellasclassicalmechanicsobeysthe

no灢signalingprinciple,meaningthatinformationcannottravelfasterthanlight.暠
看来,“no灢signaling暠并不能作为区分量子力学与经典力学的特征.

(c)量子态的传递需要借助于纠缠性

在Bennett量子态远程传递方案中,量子比特2与3所构成的纠缠态(Bell
基)的约化密度矩阵的秩r=2.如果量子比特2与3处于直积态,就不能进行量子

态的传递.不难证明

旤毤暤1旤朁朁暤23 =旤朁朁暤13
aæ
è
ç

ö

ø
÷

0 2
+旤朂朁暤13

bæ
è
ç

ö

ø
÷

0 2

旤毤暤1旤朂朂暤23 =旤朂朂暤13
0æ

è
ç

ö

ø
÷

b 2
+旤朁朂暤13

0æ
è
ç

ö

ø
÷

a 2

旤毤暤1旤朁朂暤23 =旤朂朂暤13
bæ
è
ç

ö

ø
÷

0 2
+旤朁朂暤13

0æ
è
ç

ö

ø
÷

a 2

旤毤暤1旤朂朁暤23 =旤朁朁暤13
0æ

è
ç

ö

ø
÷

a 2
+旤朂朁暤13

0æ
è
ç

ö

ø
÷

b 2

(3灡5灡35)

文献栙 也证明,2粒子(自旋1/2)的(S2,Sz)的共同本征态[即角动量耦合表象的基

矢|SM暤,S=1,M=1,0,-1(triplet),S=M=0(singlet)],也不能用来进行完全

确切的量子态的远程传递.这是因为尽管它们一部分态(|0,0暤,|1,0暤)是纠缠态,
另一部分(|1,1暤,|1,-1暤)则是直积态.

(d)借助于
踿踿踿N 量子比特的

踿踿踿踿踿GHZ态
踿

,不能传递
踿踿踿踿2个或多个量子比特的任意量子

踿踿踿踿踿踿踿踿踿踿踿踿踿
态
踿

栚.因为所有N 量子比特的GHZ态的k粒子约化密度矩阵(k=1,2,…,[N/2])
的秩.都是r=2.为了进行k量子比特的任意量子态的传递,必须借助于约化密

度矩阵的秩r=k的其他类型量子态.
(e)纠缠转移
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图3.9所示的待传递的量子比特1处于一个确定的量子态|毤暤1.如果待传递

的是一个量子比特的不确定的态[例如,是2量子比特体系(1和4)的某一个纠缠

态,如Bell基|氉- 暤14],则称为纠缠转移(entanglementswapping)栙.不难证明(参
见表3.1)

旤氉暤1423 =旤氉-暤14旤氉-暤23

=1
2

[旤氉+暤13旤氉+暤42+旤氉-暤13旤氉-暤42+旤毤+暤13旤毤+暤42+旤毤-暤13旤毤-暤42]

(3灡5灡36)

在纠缠态|氉-暤14=1
2
[|朁暤1|朂暤4-|朂暤1|朁暤4]中,量子比特1所处量子态是不确定的.

纠缠转移的数学结构,在形式上与角动量重耦合(angularmomentumrecou灢
pling)有相似之处,但角动量的重耦合比纠缠更为复杂,因为角动量重耦合还涉及

简并态的问题.例如,式(3灡5灡36)与如下4个角动量的重耦合的结构形式上有相似

之处,

毞((j1j4)J14(j2j3)J23,JM)

=暺
J14J23

毞((j1j4)J14(j2j3)J23,JM) (2J14+1)(2J23+1)(2J12+1)(2J43+1)

暳
j1 j4 J14

j2 j3 J23

j12 j43

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ
(3灡5灡37)

j1 j4 J14

j2 j3 J23

j12 j43

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ

称为9灢j系数,它描述4个角动量的两个不同耦合之间的关系(参

见本书卷II,7.4.2节).

3灡5灡4暋非局域性与量子纠缠的进一步探讨

在3灡2灡2节中已提及,迄今所有实验观测都与局域实在论(LR)的预期矛盾.
自然界中存在量子纠缠与非局域关联是一个不可争辩的事实,并已在量子信息技

术领域得到广泛应用.量子非局域性可以说是最反直觉的一种现象
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.对此,Brun灢

ner栚 一文提到:
“Quantummechanicspredictsthatmeasurementsonspatiallysepa灢

ratedparticlescanyieldnon灢localcorrelations.暠“Quantumnon灢locality
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J.W.Pan,D.Bouwmeester,H.Weinfurtrer& A.Zeilinger,Phys.Rev.Lett.80(1998)3891.
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isarguablythemoststrikingandcounterintuitive:spatiallyseparated
quantumparticlescanbehaveinawaythatdrasticallydefiesourintui灢
tionaboutspaceandtime.Apartfromitsobviousfundamentalsignifi灢
cance,quantumnon灢localityisalsothekeyingredientinpromisingap灢
plicationsininformationprocess.暠
关于非局域关联和量子纠缠,N.Gisin栙 提到:

“In modernquantum physics,entanglementisfundamental;fur灢
thermore,spaceisirrelevant—atleastinquantuminformationscience,

spaceplaysnocentralroleandtimeisamerediscreteclockparameter.
Inrelativity,space灢timeisfundamentalandthereisnoplacefornonlo灢
calcorrelations.Toputthetensioninotherwords:Nostoryinspace灢
timecantellushownonlocalcorrelationshappen;hencenonlocalquan灢
tumcorrelationsseemtoemerge,somehow,fromoutsidespace灢time.暠

操控

Brunner认为,Schr昳dinger的操控(steering)概念栚有助于人们更好地理解量

子非局域性.量子非局域性1935年首先为Einstein,Podolsky,&Rosen(EPR)栛提

出.Schr昳dinger的操控概念,可以认为是EPR佯谬思想的推广.Schr昳dinger原来

的操控思想在文献栜中得以系统化.Brunner的文献给出了非局域性的三种不同形

式,见图3.9.
如何鉴别a和c? 即区分究竟发生了量子纠缠,还是操控? 基于Gavalcanti等

的工作栞,Saunders等栟给出了一个漂亮的解答.他们导出了类似 Bell不等式的

“steeringinequality暠,借助于此不等式,可以判断是否发生了“操控暠.
首先,Bob要求 Alice对她的光子进行一些可能的操作,并把她进行了的是什

么操作告诉他.Bob对他的光子进行操作,得知其实际所处的状态.多次重复此过

程,以检验此“steeringinequality暠是否成立.如果肯定观测结果违反了“steering
inequality暠,就可以判断 Alice的确制备了一个纠缠态.

当然,还需要判断,这些实验是否只是 Belltest的一个变种? 已经搞清楚:
“不是所有纠缠态可以用以进行操控,而且不是所有可操控态都导致违反Bell不

等式暠.结论是:“操控是一种新的量子非局域形式,介于纠缠与非局域性之间.暠
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图3.9暋非局域性的3种不同形式

a量子纠缠(EPR佯谬的Bohm形式).Alice对她的光子做了一个观测,Bob的光子

就会立即改变为量子力学所预期的状态.但Alice与 Bob之间的信息传递不能超过

光速.

b与量子力学无关的非局域性.

c操控.介于两种情况之间.光子源在 Alice手中,当她发射一个光子给 Bob时,声

称她能操控在远处的Bob的光子的状态.但Bob只相信自己的测量装置的观测结

果,并不相信对方的任何言词(也许有欺骗).他如何判断 Alice没有欺骗他? (例

如,Alice发送了一个没有关联的一个光子给他).

信息因果性原理

经典物理学假定
踿踿踿踿踿踿踿

:所有物理量同时具有完全确定的值
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.而相对论则认为

踿踿踿踿踿踿踿
:光
踿

(辐
踿

射
踿

)与电荷的速度
踿踿踿踿踿踿.对于所有观测者都是一样的

踿踿踿踿踿踿踿踿踿踿踿踿.与此截然不同
踿踿踿踿踿踿

,量子态用相空间
踿踿踿踿踿踿踿

中的一个矢量来描述
踿踿踿踿踿踿踿踿踿

,而且其动力学具有时间反演不变性
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

栙.量子力学具有如下一

些特点:例如,在一般情况下
踿踿踿踿踿踿

,量子力学只给出几率性的预期
踿踿踿踿踿踿踿踿踿踿踿踿踿

(non灢determinism).
坐标与动量不能同时测定,一般说来

踿踿踿踿
,测量要改变体系的状态
踿踿踿踿踿踿踿踿踿踿.与此相关的特征是

出现非局域关联
踿踿踿踿踿

和纠缠
踿踿.但可以证明,一个未知的量子态是不能复制的(no灢clo灢

ning).此外,尽管量子关联要强于任何经典关联,信息传递是不能超过光速的(no灢
signalling).这在量子信息理论和技术上已得到广泛应用(例如,量子密码,未知量

子态的远程传递等)栚.然而这些特点还不能把量子理论完全确定下来.有很多理

论都具有这些特点,甚至可以具有比量子力学更强的关联.
文献栙 建议,把信息因果性

踿踿踿踿踿
(informationcausality)当作一个物理原理.把信息
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因果性当作一个物理原理的含义如下:
“TheinformationgainthatBobcanreachaboutapreviouslyun灢

knowntohimdatasetofAlice,byusingallhislocalresoursesandm
calassicalbitscommunicatedbyAlice,isatmostmbits.暠“Thestand灢
ardno灢signallingconditionisjustinformationcausalityform=0.暠
这些建议还有待实验进一步检验.
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第4章暋二次量子化

4灡1暋全同粒子系的量子态的描述

暋暋对于全同粒子组成的体系,由于粒子的全同性(不可分辨性),任何两个粒子的

置换并不导致一个新的量子态.通过深入分析可以得出 (见卷栺,5灡5节),这种置

换对称性对全同粒子系的量子态给予了很强的限制,即对于全同粒子系
踿踿踿踿踿踿踿

,在自然界
踿踿踿踿

中能实现的量子态
踿踿踿踿踿踿踿踿

,只可能是具有一定置换对称性的量子态
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.它们或者是对于任何

踿踿踿踿踿踿踿踿踿
两个粒子交换不变的对称态
踿踿踿踿踿踿踿踿踿踿踿踿

,或者是对任何两个粒子交换改变正负号的反对称态
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

对于前者,粒子系的统计性质遵守 Bose统计,故称为 Bose子;对于后者,则遵守

Fermi统计,故称为Fermi子.所有实验都表明,统计性与粒子的自旋值密切相关,
即Bose子的自旋(单位淈)为整数(包括0),而Fermi子的自旋为半奇数.

4灡1灡1暋粒子数表象

在卷栺,5灡5节中,全同粒子系的量子态的描述采用了坐标表象,以下简称q
表象(q表示单粒子的全部坐标

踿踿踿踿
,如粒子有自旋,除空间坐标外,还应包含自旋变

量).在q表象中,N 个全同Fermi子的归一化的量子态表示成

氉A
毩毬毭… (q1,…,qN)= 1

N!

氄毩(q1)…氄毩(qN)

氄毬(q1)…氄毬(qN)

氄毭(q1)…氄毭(qN)
汅暋暋暋汅

(4灡1灡1)

= 1
N!暺P毮PP[氄毩(q1)氄毬(q2)氄毭(q3)…]

上式表示在每个单粒子态(假设已归一化)氄毩,氄毬,氄毭,…上分别有一个粒子,P
表示粒子之间的某种置换,毮P(=暲1)是置换P 的奇偶性(参阅附录 B灡2灡2).
由式(4灡1灡1)可以看出,处于每个单粒子态上的全同

踿踿踿踿踿踿踿踿踿踿 Fermi子的数目不能超过
踿踿踿踿踿踿踿踿

1(Pauli原理).
对于全同 Bose子体系,情况与此不同.它们的波函数对于任何两个粒子

的交换要求是对称的.因此,处于每一个单粒子态上的
踿踿踿踿踿踿踿踿踿踿踿 Bose子的数目没有什

踿踿踿踿踿踿踿
么限制
踿踿踿.设在单粒子态氄k1

,氄k2
,…,氄kN

上分别有n1,n2,…,N 个粒子(暺
i
ni =

N,ni 中有的可以为0,有的可以大于1),则归一化的交换对称波函数可表

示为
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氉S
n1…nN

(q1,…,qN)=
暻
i
ni!

N! 暺
P
P[氄k1

(q1
掯 掲掱梺梺 梺梺

)…

n1

……氄kN
(qN

掯 掲掱梺梺 梺梺
)

nN

] (4灡1灡2)

这里P 是指那些只对处于不同单粒子态上的粒子进行对换所构成的置换
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,因而

式(4灡1灡2)中各项是彼此正交的,总的项数为N! 暻
i
ni! .

采用坐标表象来描述全同粒子系的量子态是相当繁琐的,利用它来进行各种

计算很不方便,所以它不是一种令人满意的表象.其根源在于:对于全同粒子进行
踿踿踿踿踿踿踿踿

编号是没有意义的
踿踿踿踿踿踿踿踿

,完全是多余的.但在波函数的上述表示方式中,又不得不先对

粒子进行编号,以写出q表象中的某一项波函数[如氄k1
(q1)氄k2

(q2)…氄kN
(qN)],然

后再把对粒子进行各种置换所构成的各项波函数叠加起来,以满足置换对称性时

要求.事实上,只需要把处于每个单粒子态上的粒子数
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(n1,n2,…,nN)交待清楚
踿踿踿踿

,全
踿

同粒子系的量子态就完全确定了
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,并不需要
踿踿踿

(也没有意义
踿踿踿踿踿

)去指出处于某单粒子态
踿踿踿踿踿踿踿踿踿踿

上的粒子是
踿踿踿踿踿

“哪一个
踿踿踿

暠粒子
踿踿.这就是式(4灡1灡2)中用(n1,n2,…,nN)来标记波函数的

根据.为避免对全同粒子进行编号,需要脱离q表象.此时,全同Bose子体系的量

子态可以用下列右矢来标记:

n1n2…nN暤 (4灡1灡3)
这种表示方式称为粒子填布数表象(occupationparticlenumberrepresentation),
简称粒子数表象,也称为Fock表象.

对于Fermi子,Pauli原理要求ni=1或0[即ni(ni-1)=0].根据上述精神,
式(4灡1灡1)也可改记为氉A

11…1(q1q2…qN),表示n毩=n毬=…=1(其余单粒子态上无粒

子,ni=0,没有明显写出).脱离q表象后,可记为

n毩 =1,n毬 =1,n毭 =1,…暤
简记为

1毩1毬1毭…暤暋 或 暋 毩毬毭…暤 (4灡1灡4)
后一式中只标出了被粒子占据的那些单粒子态

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

4灡1灡2暋产生算符与湮没算符,全同Bose子体系的量子态的描述

为了在粒子数表象中进行各种计算,引进粒子产生算符和湮没算符是很方便

的.利用它们,就可以把粒子数表象的基矢以及各种类型的力学量方便地表示出

来,而且在各种计算中,只需借助这些产生算符和湮没算符的基本对易关系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,量子
踿踿

态的置换对称性即可自动得以保证
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

为了初学者方便,在引进产生算符和湮没算符之前,简要回顾一下一维谐振子

的代数解法(因式分解)(卷栺,10灡1节)中的升算符和降算符概念.
一维谐振子的 Hamilton量为(采用自然单位,淈=m=氊=1)

H = 1
2p2+1

2x2 (4灡1灡5)
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引进无量纲算符

a= 1
2
(x+ip)

a+= 1
2
(x-ip) (4灡1灡6)

根据[x,p]=i,易于证明

[a,a+]=1 (4灡1灡7)
式(4灡1灡6)之逆为

x= 1
2
(a++a),暋p= i

2
(a+-a) (4灡1灡8)

由此不难求出

H =a+a+1
2 =N

暷

+1
2

(4灡1灡9)

暋暋可以证明,N
暷

=a+a为正定厄米算符
踿踿踿踿踿踿.本征方程表示为 N

暷

|n暤=n|n暤,本征值

为非负整数n=0,1,2,….相应的归一化本征态(采取适当的相位)可以表示成(试
用归纳法证明)

n暤= 1
n!

(a+)n旤0暤,暋n=0,1,2,… (4灡1灡10)

显然,|n暤也是 H 的本征态,本征值为En= n+æ

è
ç

ö

ø
÷

1
2

(能量单位为淈氊).基态为|0暤,

能量E0=淈氊/2称为零点能.
利用式(4灡1灡10)和对易式(4灡1灡7),可以得出栙

a+ n暤= n+1旤n+1暤

an暤= n旤n-1暤
(4灡1灡11)

其伴式(adjoint)表示为

暣na= n+1暣n+1旤
暣na+= n暣n-1

(4灡1灡12)

所以a+ (a)可以视为谐振子的相邻能级之间的升(降)算符.
我们也可以采用另一种看法,即把|0暤视为真空态,|n暤视为有n个声子(pho灢

non)的激发态(n=1,2,…),每个声子的能量为淈氊.这样,a+ 和a可理解为声子的
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栙 论证的方式也可以倒过来.令|n暤表示有n个声子的激发态.定义声子产生和湮没算符如下:a+|n暤=

n+1|n+1暤,a|n暤= n|n-1暤.由此易于证明,[a,a+]=1.并由此证明归一化的|n暤可以表示为

n暤= 1
n!

(a+)n旤0暤

暋暋提示:n暷=a+a是声子数算符,可证明[n暷,a+k]=ka+k,k=0,1,2,….|0暤表示无声子态,a|0暤=0.证

明n暷 n暤=n|n暤,然后用归纳法证明暣n|n暤=1.



产生(creation)和湮没(annihilation)算符.
以上讨论可推广到N 维谐振子.N 维谐振子可以分解为彼此独立的N 个一

维谐振子.对于不同的谐振子,分别引进相应的声子产生算符a+
i 和湮没算符ai

(声子能量为淈氊i),它们满足下列基本对易式:
[ai,a+

j ]=毮ij

[ai,aj]= [a+
i ,a+

j ]=0,暋i,j=1,2,…,N
(4灡1灡13)

而N 维谐振子的归一化的能量本征态可表示为

n1n2…暤= 1
n1!n2! …

(a+
1)n1(a+

2)n2…旤0暤 (4灡1灡14)

相应的本征值为

En1n2… = 暺
N

i=1

(ni+1/2)淈氊i (4灡1灡15)

Bose子多体系的粒子数表象的基矢

现在借用上述理论形式来描述Bose子多体系在粒子数表象中的基矢.但此时

a+
i 与ai 应理解为单粒子态氄i 上的粒子产生与湮没算符.它们满足对易关系式

(4灡1灡13),而式(4灡1灡14)所描述的Bose子多体系的态是:在氄i 单粒子态上有ni 个

Bose子(i=1,2,…),

n1n2…暤= 1

暻
i
ni!

(a+
1)n1(a+

2)n2…旤0暤 (4灡1灡16)

它是粒子数算符n暷i=a+
iai 的本征态,本征值为ni(i=1,2,…).当然,它也是粒子

总数算符N
暷

=暺
N

i=1
n暷i的本征态,本征值为N =暺

N

i=1
ni.式(4灡1灡16)描述的态对于任

何两个Bose子的交换是对称的.
类似于式(4灡1灡11),可以证明,在取适当相位规定后,

a+
毩 n1n2…n毩…暤= n毩+1n1n2…(n毩+1)…暤

a毩 n1n2…n毩…暤= n毩 n1n2…(n毩-1)…暤
(4灡1灡17)

其伴式为

暣…n毩…n2n1 a毩= n毩+1暣…(n毩+1)…n2n1

暣…n毩…n2n1 a+
毩 = n毩暣…(n毩-1)…n2n1

(4灡1灡18)

4灡1灡3暋全同Fermi子体系的量子态的描述

对于全同Fermi子多体系,也可类似处理.不同之处在于,考虑到波函数的交

换反对称性,每一个单粒子态上最多只允许一个粒子占据
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(Pauli原理).利用粒子

产生算符,式(4灡1灡1)所示状态可以记为
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毩毬毭…暤=a+
毩a+

毬a+
毭 … 0暤 (4灡1灡19)

a+
毩 、a+

毬 、…分别代表在单粒子态氄毩、氄毬、…上的粒子产生算符.考虑到交换反对称性

[见式(4灡1灡1)]

毬毩毭…暤=- 毩毬毭…暤
即

a+
毬a+

毩a+
毭 … 0暤=-a+

毩a+
毬a+

毭 … 0暤
亦即

(a+
毩a+

毬 +a+
毬a+

毩 )毭…暤=0
由于 毭…暤是任意的,所以要求Fermi子产生算符满足下列反对易式:

a+
毩a+

毬 +a+
毬a+

毩 曉 [a+
毩 ,a+

毬 ]+=0 (4灡1灡20)
显然,上式对于毩=毬也适用,这就导致

a+
毩a+

毩 =0暋(毩任意) (4灡1灡21)
此即Pauli原理.式(4灡1灡19)之伴态为

暣…毭毬毩 = 暣0 …a毭a毬a毩 (4灡1灡22)
与式(4灡1灡20)相应,要求Fermi子湮没算符满足下列反对易式:

[a毩,a毬]+曉a毩a毬+a毬a毩 =0 (4灡1灡23)

暋暋考虑到单粒子态的归一性,暣毩|毩暤=1,即暣0|a毩a+
毩|0暤=1.由于真空态|0暤及其

伴态暣0|不简并,所以a毩a+
毩|0暤代表一个确定状态,即真空态

a毩a+
毩 0暤=a毩旤毩暤= 0暤 (4灡1灡24)

上式中,毩是任意的
踿踿踿.这正是湮没算符的性质.按照湮没算符的物理含义,有

a毩 0暤=0 (4灡1灡25)
更一般的情况是

a毩 毬毭…暤=0暋(毩曎毬曎毭曎 …) (4灡1灡26a)

a毩 毩毬毭…暤= 毬毭…暤 (4灡1灡26b)
利用式(4灡1灡20)、式(4灡1灡21)和式(4灡1灡26),可知

a毬a+
毩a+

毬a+
毭 … 0暤=-a毬a+

毬a+
毩a+

毭 … 0暤=-a+
毩a+

毭 … 0暤

=-a+
毩a毬a+

毬a+
毭 … 0暤

所以

(a毬a+
毩 +a+

毩a毬)毬毭…暤=0
而对于单粒子态毬空着的态 毭毮…暤,由式(4灡1灡26a)有

(a毬a+
毩 +a+

毩a毬)毭毮…暤=0
因此,无论对什么态(毬态被占据与否),a毬a+

毩 +a+
毩a毬(毬曎毩)运算的结果均为0,

所以

[a+
毩 ,a毬]+=0暋(毬曎毩) (4灡1灡27)

暋暋其次,考虑a毩a+
毩 与a+

毩a毩 对 毩毬毭…暤的运算.利用式(4灡1灡21),有

a毩a+
毩 毩毬毭…暤=a毩a+

毩a+
毩a+

毬a+
毭 … 0暤=0
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而利用式(4灡1灡26b),有

a+
毩a毩 毩毬毭…暤=a+

毩a毩a+
毩a+

毬a+
毭 … 0暤=a+

毩a+
毬a+

毭 … 0暤= 毩毬毭…暤
所以

(a毩a+
毩 +a+

毩a毩)毩毬毭…暤= 毩毬毭…暤 (4灡1灡28)
而对于 毬毭…暤态(单粒子态毩空着)的运算,利用式(4灡1灡26b),

a毩a+
毩 毬毭…暤= 毬毭…暤

利用式(4灡1灡26a),有
a+

毩a毩 毬毭…暤=0暋(毩曎毬曎毭曎 …)
所以

(a毩a+
毩 +a+

毩a毩)毬毭…暤= 毬毭…暤 (4灡1灡29)
联合式(4灡1灡28)、式(4灡1灡29)可知,无论对什么态(单粒子态毩被占据与否),(a毩a+

毩 +
a+

毩a毩)的作用都相当于恒等算符,即
[a毩,a+

毩 ]+=1 (4灡1灡30)
将式(4灡1灡20)、式(4灡1灡23)、式(4灡1灡27)、式(4灡1灡30)概括起来,表示为

[a毩,a+
毬 ]+=毮毩毬

[a毩,a毬]+= [a+
毩 ,a+

毬 ]+=0
(4灡1灡31)

它概括了
踿踿踿 Fermi子产生和湮没算符的全部代数性质

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.与 Bose子相应的关系式

(4灡1灡13)相比,差别只在于对易式换成了反对易式
踿踿踿踿踿踿踿踿踿踿.这是波函数交换对称或反对称

的反映.
如把每个单粒子态上的粒子数明显写出来

n1n2…暤
对于Fermi子,ni=1或0,即ni(ni-1)=0.与 Bose子的式(4灡1灡17)相应,对于

Fermi子有

a+
毩 n1…n毩…暤=(-1)暺

毩-1

毻=1
n毻 1-n毩 n1…(n毩+1)…暤

=
0, n毩 =1

(-1)暺
毩-1

毻=1
n毻 n1…1毩…暤, n毩 =

{ 0
(4灡1灡32)

这是因为不同单粒子态上的(产生和湮没)算符是反对易的,而a+
毩 要跨过算符

(a+
1 )n1 …(a+

毩-1)n毩-1 后才能对毩态上的粒子数进行运算,由于反对易关系,就出现

了因子

(-1)n1+n2+…+n毩-1 = (-1)暺
毩-1

毻=1
n毻

暋暋式(4灡1灡32)可改写成

a+
毩 …n毩…暤= (-1)暺

毩-1

毻=1
n毻 …1毩…暤毮n毩0

(4灡1灡33)
类似有
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a毩 …n毩…暤= (-1)暺
毩-1

毻=1
n毻 …0毩…暤毮n毩1

(4灡1灡34)
它们的伴式为

暣…n毩… a毩 = (-1)暺
毩-1

毻=1
n毻暣…1毩… 毮n毩0

(4灡1灡35)

暣…n毩… a+
毩 = (-1)暺

毩-1

毻=1
n毻暣…0毩… 毮n毩1

(4灡1灡36)

暋暋练习1暋设[a,a+ ]+ =1,[a,a]+ =0,令n暷=a+a,证明n暷 的本征值n只能取1或0,并

证明

a+ n暤= 1-n n+1暤,暋a n暤= n n-1暤

暋暋练习2暋令n暷毩=a+
毩a毩,证明:无论对于Bose子或Fermi子,

[n暷,a+
毩 ]=a+

毩 ,暋[n暷毩,a毩]=-a毩 (4灡1灡37)

4灡2暋Bose子的单体和二体算符的表示式

Bose子的产生和湮没算符满足的基本对易关系式,如4灡1节式(4灡1灡13)所
示,用它们来表示粒子数表象的基矢,见4灡1节,式(4灡1灡14).全同

踿踿Bose子体系的
踿踿踿踿

一般状态
踿踿踿踿

,可以用这些基矢来展开
踿踿踿踿踿踿踿踿踿踿.下面我们考虑全同Bose子体系的力学量如何

用这些产生和湮没算符来表示.通常碰到的力学量是单体或二体算符.

4灡2灡1暋单体算符

设

F
暷

= 暺
N

a=1
f
暷(a) (4灡2灡1)

表示N 个单粒子算符f
暷(a)(a=1,2,…,N)之和.例如粒子系的总动量、总角动

量、总动能、总粒子数、磁矩、电四极矩等,都是这类算符.下面我们先用平常q表象

中的具有交换对称性的N 粒子波函数

氉n1…nN
(q1,…,qN)= 暻ni!

N! 暺
P
P[氄k1

(q1)…氄kN
(qN)] (4灡2灡2)

来计算F
暷

的矩阵元.然后证明在粒子数表象中F
暷

可表示成

F
暷

= 暺
毩毬
f毩毬a+

毩a毬 (4灡2灡3)

式中

f毩毬 = (氄毩,f
暷

氄毬) (4灡2灡4)

是单粒子算符f
暷

在单粒子态氄毩 与氄毬 之间的矩阵元.

先用波函数(4灡2灡2)来计算矩阵元(氉n曚1n曚2… ,F
暷

氉n1n2… ).由于F
暷

对于粒子交换是
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完全对称,而波函数氉n1n2… 和氉n曚1n曚2… 中各粒子所处的地位完全同等,不难看出

(氉n曚1n曚2… ,F
暷

氉n1n2… )= 暺
a

(氉n曚1n曚2… ,f
暷(a)氉n1n2… )

=N(氉n曚1n曚2… ,f
暷(1)氉n1n2… ) (4灡2灡5)

即任意挑一个粒子的算符[例如f
暷(1)]来计算其矩阵元,然后乘上粒子总数N.由

于f
暷(a)为单体算符,只当体系的初态与末态相同

踿踿踿踿踿踿踿
,或只差一个单粒子态时
踿踿踿踿踿踿踿踿踿踿

,矩阵
踿踿

元才可能不为
踿踿踿踿踿踿0.

1)F 的平均值

煀F = (氉n1n2… ,F
暷

氉n1n2… )=N(氉n1n2… ,f
暷(1)氉n1n2… ) (4灡2灡6)

设“粒子1暠处于氄k 态(k任意),f
暷

(1)的平均值记为

fkk = (氄k(q1),f
暷(1)氄k(q1))= (氄k,f

暷

氄k)

此时,其余(N-1)个粒子的填布数为(n1,n2,…,nk-1,…).考虑到f
暷(1)与其余粒

子的坐标无关以及各单粒子态的正交归一性,式(4灡2灡6)积分后,有贡献的项数为

(N-1)!
n1!n2! …(nk-1)! …

因此

煀F =N·
暻
i
ni!

N! 暺
k

(N-1)!
n1!…(nk-1)!…fkk = 暺

k
nkfkk (4灡2灡7)

暋暋2)F 的非对角矩阵元

体系初末态只能差一个单粒子态,矩阵元为

氉…(ni+1)…(nk-1)… ,F
暷

氉…ni…nk( )… =N 氉…(ni+1)…(nk-1)… ,f
暷(1)氉…ni…nk( )… (4灡2灡8)

显然,只当“粒子1暠在初态中处于氄k 而在末态中处于氄i 的项才对矩阵元(4灡2灡8)

有贡献.此时单粒子算符f
暷(1)的矩阵元为fik,而在式(4灡2灡8)中,这种贡献有

(N-1)!
…ni! …(nk-1)! …

项,因此,式(4灡2灡8)所示矩阵元为

N
…ni! …(nk-1)! …

N! (ni+1)nk
(N-1)!

…ni! …(nk-1)! …fik = (ni+1)nkfik

(4灡2灡9)

暋暋以下证明,如在粒子数表象中F
暷

用式(4灡2灡3)来表示,则所求得的矩阵元与式

(4灡2灡7)和(4灡2灡9)完全一样.首先考虑F
暷

的平均值,用式(4灡2灡3)代入,有

煀F = 暣…nk…ni… F
暷

…ni…nk…暤

= 暺
毩毬
f毩毬暣…nk…ni… a+

毩a毬 …ni…nk…暤

= 暺
毩
f毩毩暣…nk…ni… a+

毩a毩 …ni…nk…暤
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利用4灡1节,式(4灡1灡18)= 暺
毩
f毩毩暣…nk…ni… n毩 …ni…nk…暤= 暺

毩
f毩毩n毩

这与式(4灡2灡7)相同.其次考虑F
暷

的矩阵元

暋暋暣…(nk-1)…(ni+1)… F
暷

…ni…nk…暤暋暋

暋 =暺
毩毬
f毩毬暣…(nk-1)…(ni+1)… a+

朂
毩a毬 …ni…n

朂
k…暤

暋 = 暺
毩毬
f毩毬 ni+1毮毩i暣…(nk-1)…ni… …ni…(nk-1)…暤 nk毮毬k

暋 = (ni+1)nkfik

这与式(4灡2灡9)相同.这样,我们就证明了在粒子数表象中Bose子单体算符F
暷

的

表示式(4灡2灡3)的正确性.

4灡2灡2暋二体算符

设

G= 暺
N

a<b
g暷(a,b) (4灡2灡10)

是各二体算符g
暷(a,b)=g

暷(b,a)之和.例如,粒子之间的二体相互作用即属于此类

型.由于G 为二体算符,体系的初态与末态最多可以相差两个单粒子态
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,否则矩阵
踿踿踿踿

元为
踿踿0.下面分别讨论G 的对角元与非对角元的计算.仍然先用Bose子体系的在q
表象中的波函数(4灡2灡2)来计算,然后讨论如何用产生和湮没算符来表示二体

算符.
1)G 的平均值

由于在对称波函数,式(4灡2灡2)中诸粒子的地位完全等当,而G 对于任何两个

粒子交换是对称的,所以只需任意挑选一对粒子[例如(1,2)粒子]来计算其平均

值,然后乘以粒子对的数目N(N-1)/2,即

煀G =(氉n1n2… ,G氉n1n2… )= 暺
N

a<b

(氉n1n2… ,g暷(a,b)氉n1n2… )

=N(N-1)
2

(氉n1n2… ,g
暷(1,2)氉n1n2… ) (4灡2灡11)

在波函数氉n1n2… 的各项中,“粒子1暠与“粒子2暠所处的单粒子态,可以不同,也可以

相同.
(1)先假设两个粒子所处单粒子态不同

踿踿踿踿踿踿踿踿踿踿踿踿
,例如假定一个在氄k 态,另一个在氄k曚

态(约定k<k曚),其余(N-2)个粒子中,有(nk-1)个处于氄k 态,有(nk曚-1)个处于

氄k曚态,所以它们取各种可能的单粒子态的项数为
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(N-2)!
n1! …(nk-1)! …(nk曚 -1)! …

这一部分对煀G 的贡献为

暋暋暋 N(N-1)
2

暻
i
ni!

N! 暺 (
PP曚

P[氄k1
(q1)…],g暷(1,2)P曚[氄k1

(q1 ))…]

=N(N-1)
2

暻
i
ni!

N! 暺
k<k曚

(N-2)!
n1! …(nk-1)! …(nk曚 -1)! …

æ

è
çç暳
氄k(q1)氄k曚(q1)

氄k(q2)氄k曚(q2)+

,g暷(1,2)氄k(q1)氄k曚(q1)

氄k(q2)氄k曚(q2)
ö

ø
÷÷

+

=暺
k<k曚

nknk曚{(氄k(q1)氄k曚(q2),g暷(1,2)氄k曚(q2)氄k(q1))

暋暋暋 +(氄k(q1)氄k曚(q2),g
暷(1,2)氄k(q2)氄k曚(q1))}

=暺
k<k曚

nknk曚{暣kk曚 g
暷 k曚k暤+暣kk曚 g

暷 kk曚暤} (4灡2灡12)

式中

氄k(q1)氄k曚(q1)

氄k(q2)氄k曚(q2)+
曉氄k(q1)氄k曚(q2)+氄k曚(q1)氄k(q2)

而

暣kk曚 g暷 k曚k暤=犽d氂1d氂2氄*
k (q1)氄*

k曚 (q2)g暷(1,2)氄k曚(q2)氄k(q1)

暣kk曚 g暷 kk曚暤=犽d氂1d氂2氄*
k (q1)氄*

k曚 (q2)g暷(1,2)氄k(q2)氄k曚(q1)

分别表示直接项与交换项
踿踿踿踿踿踿踿.

(2)其次,考虑粒子1和2所处的单粒子态相同
踿踿踿踿踿踿踿踿

的情况,如都处于单粒子态

氄k,与上类似,可求出这一部分对煀G 的贡献为

N(N-1)
2

暻
i
ni!

N! 暺
k

(N-2)!
n1!…(nk-2)!…·(氄k(q1)氄k(q2),g暷(1,2)氄k(q2)氄k(q1))

=1
2暺

k
nk(nk-1)暣kk g暷 kk暤 (4灡2灡13)

联合式(4灡2灡12)和(4灡2灡13),得到

煀G =1
2暺

k曎k曚
nknk曚{暣kk曚 g暷 k曚k暤+暣kk曚 g暷 kk曚暤}+1

2暺
k
nk(nk-1)暣kk g暷 kk暤

(4灡2灡14)

暋暋2)G 的非对角元

根据初态和末态的粒子数填布情况,二体算符G 有下列两大类非对角元,分
别列于图4灡1和图4灡2中.
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下面举两个例子,即图4灡1(a)和4灡1(c)所示跃迁,来说明如何利用q表象中

的波函数表示式(4灡2灡2)来计算G 的非对角元.其他类型的跃迁所相应的矩阵元

也可类似计算.

(a)(i,j)曻(k,l)

暣…nl+1…nk+1…nj-1…ni-1 G
暷

…ni…nj…nk…nl…暤

(b)(i,j)曻(k,k)

暣…nk+2…nj-1…ni-1… G
暷

…ni…nj…nk…暤

(c)(i,i)曻(k,k)

暣…nk+2…ni-2… G
暷

…ni…nk…暤

图4灡1暋
(a)(i,j)曻(k,l)涉及4条能级的填布发生变化;(b)(i,j)曻(k,k)涉及3条能级的填布发生变化;

(c)(i,i)曻(k,k)涉及2条能级的填布发生变动.凡与讨论的跃迁无关的“旁观暠粒子,未在图中画出

暋暋图4灡1(a)

(

所示跃迁的矩阵元为

氉…(ni-1)…(nj-1)…(nk+1)…(nl+1)… ,G
暷

氉…ni…nj…nk…nl )…

=N(N-1)
(2 氉…(ni-1)…(nj-1)…(nk+1)…(nl+1)… ,g暷(1,2)氉…ni…nj…nk…nl )…

=N(N-1)
2

(ni-1)! (nj-1)! (nk+1)! (nl+1)!
N[ ]!

1/2

· ni!nj!nk!nl!
N

é

ë
êê

ù

û
úú!

1/2

暺{
PP曚

P[氄k1
(q1)…],g

暷(1,2)P曚[氄k1
(q1 })…]

(4灡2灡15)

显然,只当粒子(1,2)在初态中处于单粒子态氄i 与氄j,而在末态中处于氄k 与氄l

时,才对矩阵元有贡献.这样的项数为
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(N-2)!
(ni-1)! (nj-1)!nk!nl!

因此,式(4灡2灡15)所示矩阵元为

1
2 ninj(nk+1)(nl+1)

æ

è
çç· 氄k(q1)氄l(q1)

氄k(q2)氄l(q2)+

,g暷(1,2)氄i(q1)氄j(q1)

氄i(q2)氄j(q2)
ö

ø
÷÷

+

= ninj(nk+1)(nl+1)(暣kl g暷 ij暤+暣kl g暷 ji暤) (4灡2灡16)
图4灡1(c)

(

所示跃迁矩阵元为

氉…(ni-2)…(nk+2)… ,G
暷

氉…ni…nk )…

=N(N-1)
(2 氉…(ni-2)…(nk+2)… ,g暷(1,2)氉…ni…nk )…

=N(N-1)
2

(ni-2)! (nk+2)!
N[ ]!

1/2

· ni!nk!
N

æ

è
ç

ö

ø
÷

!
1/2

· (N-2)!
(ni-2)!nk! (· 氄k(q1)氄k(q2),g暷(1,2)氄i(q2)氄i(q1 ))

=1
2

[ni(ni-1)(nk+2)(nk+1)]1/2暣kk gii暤 (4灡2灡17)

暋暋还有一类非对角元(图4灡2所示),表面看来只有一个单粒子发生了跃迁(j曻
k),另一个粒子似未改变状态.但由于波函数的交换对称性及粒子之间的二体作

用,仍对矩阵元有贡献.因为另一个粒子所处单粒子态并非固定,它可以是毩曎j,k
的任一条单粒子态,例如毩=i或l(图4灡2,上两图),或毩=j或k(图4灡2,下两图).
这一类非对角元的计算,见后.

图4灡2

(j,毩)曻(k,毩),矩阵元暣…nk+1…nj-1… G
暷

…nj…nk…暤.交换项涉及的跃迁未在图中画出.

*暋暋暋暋暋暋*暋暋暋暋暋暋*

下面我们来证明,在粒子数表象中二体算符G
暷

可以表示成
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G
暷

= 1
2暺

毩曚毬曚毩毬
g毩曚毬曚,毬毩a+

毩曚a+
毬曚a毬a毩 (4灡2灡18)

其中

g毩曚毬曚,毬毩 (曉 氄毩曚(q1)氄毬曚(q2),g暷(1,2)氄毬(q2)氄毩(q1 ))

曉暣毩曚毬曚 g
暷

毬毩暤
由它给出的矩阵元与上面分析所得结果完全相同.

1)G 的平均值

分两种情况计算G 的平均值煀G=暣…n2n1 G
暷

n1n2…暤.一种情况是G
暷

的两个

产生(湮没)算符作用于不同的单粒子态的粒子占据数上,即

=1
2暺

毩毬毩曚毬曚
g毩曚毬曚,毩毬

=1
2暺

毩毬毩曚毬曚
g毩曚毬曚,毬毩 n毩n毬(毮毩曚毩毮毬曚毬 +毮毩曚毬毮毬曚毩) n毩n毬

=1
2暺

毩毬
n毩n毬(g毩毬,毬毩 +g毩毬,毩毬)

这与式(4灡2灡12)相同.另一种情况是G
暷

的两个产生(湮没)算符作用于同一个单粒

子态的粒子占据数上,即

=

=1
2暺

毩毬毩曚毬曚
g毩曚毬曚,毬毩 n毩(n毩-1)毮毩曚毩毮毬曚毩 n毩(n毩-1)毮毩毬

=1
2暺

毩
n毩(n毩-1)g毩毩,毩毩

所以

煀G = 1
2暺

毩毬
n毩n毬(g毩毬,毬毩 +g毩毬,毩毬)+

1
2暺

毩
n毩(n毩-1)g毩毩,毩毩 (4灡2灡19)

这与式(4灡2灡14)一致.
2)G 的非对角元

下面依次给出图4灡1所示各种类型的矩阵元.
图4灡1(a)(i,j)曻(k,l),G 的矩阵元如下:
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暣…(nl+1)…(nk+1)…(nj-1)…(ni-1)… G
暷

…ni…nj…nk…nl…暤

=

=1
2暺

毩毬毩曚毬曚
g毩曚毬曚,毬毩 (nk+1)(nl+1)(毮毩曚k毮毬曚l +毮毩曚l毮毬曚k)(毮毩i毮毬j +毮毩j毮毬i)

· ninj暣…nl…nk…(nj-1)…(ni-1)… …(ni-1)…(nj-1)…nk…nl…暤

=1
2 ninj(nk+1)(nl+1)(gkl,ij +gkl,ji+glk,ij +glk,ji)

= ninj(nk+1)(nl+1)(gkl,ij +glk,ji) (4灡2灡20)
这与式(4灡2灡16)完全一致.

图4灡1(c)(i,j)曻(k,k),G 的矩阵元如下:

暣…(nk+2)…(ni-2)… G
暷

…ni…nk…暤

=

=1
2暺

毩毬毩曚毬曚
g毩曚毬曚,毬毩 (nk+2)(nk+1)毮毩曚k毮毬曚k· ni(ni-1)毮毩i毮毬i

=1
2 ni(ni-1)(nk+2)(nk+1)gkk,ii (4灡2灡21)

这与式(4灡2灡17)相同.

练习1暋计算图4灡1(b)(i,j)曻(k,k)的矩阵元

暣…(nk +2)…(nj-1)…(ni-1)… G
暷

…ni…nj…nk…暤

=

=1
2暺

毩曚毬曚,毩毬
g毩曚毬曚,毬毩 (nk +2)(nk +1)毮毩曚k毮毬曚k·(毮毩i毮毬j +毮毩j毮毬i) ninj

= ninj(nk +1)(nk +2)gkk,ij (4灡2灡22)

暋暋练习2暋证明图4灡2所示跃迁的非对角矩阵元为

暣…(nk +1)…(nj-1)… G
暷

…nj…nk…暤暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋
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= 暺
毩(曎j,k)

nj(nk +1)n毩(gk毩,j毩 +g毩k,j毩)+ n2
k(nk +1)njgkk,kj + (nj-1)2nj(nk +1)gjk,jj

(4灡2灡23)

4灡3暋Fermi子的单体和二体算符的表示式

考虑N 个全同Fermi子组成的体系.设在单粒子态氄毩、氄毬、氄毭、…上分别有一

个粒子.在q表象中,反对称N 粒子波函数通常写成Slater行列式形式[4灡1节,式
(4灡1灡1)]

氉毩毬毭… (q1,q2,q3,…)= 1
N!

氄毩(q1)氄毩(q2)氄毩(q3)…

氄毬(q1)氄毬(q2)氄毬(q3)…

氄毭(q1)氄毭(q2)氄毭(q3)…
汅 汅 汅

= 1
N!暺P (-1)毮PP[氄毩(q1)氄毬(q2)氄毭(q3)…]暋暋(4灡3灡1)

暋暋在粒子数表象中,式(4灡3灡1)可写成[4灡1节,式(4灡1灡4)]

n毩 =1,n毬 =1,n毭 =1,…暤= 1毩1毬1毭…暤 (4灡3灡2)
或简记为 毩毬毭…暤.用粒子产生算符表示出来,则为

毩毬毭…暤=a+
毩a+

毬a+
毭 … 0暤 (4灡3灡3)

其伴态表示为

暣…毭毬毩 = 暣0 …a毭a毬a毩 (4灡3灡4)

Fermi子产生和湮没算符满足下列基本反对易式[4灡1节,式(4灡1灡31)]:
[a毩,a+

毬 ]+=毮毩毬

[a毩,a毬]+= [a+
毩 ,a+

毬 ]+=0
(4灡3灡5)

下面我们来讨论如何用产生算符和湮没算符来表示全同Fermi子体系的力学量.
分析表明,与Bose子体系在形式上完全相同

踿踿踿踿踿踿踿
,单体和二体算符可分别表示成

F
暷

= 暺
毩毬
f毩毬a+

毩a毬 (4灡3灡6)

G
暷

= 1
2暺

毩毬毩曚毬曚
g毩曚毬曚,毬毩a+

毩曚a+
毬曚a毬a毩 (4灡3灡7)

只是需要注意:Fermi子产生和湮没算符所满足的反对易关系式(4灡3灡5)与 Bose
子的对易关系式[4灡1节,式(4灡1灡13)]截然不同.以下我们分别来论证式(4灡3灡6)
和(4灡3灡7)的正确性.

4灡3灡1暋单体算符

先考虑单体算符F
暷

= 暺
a
f
暷(a)在q表象中的反对称态(4灡3灡1)下的平均值.
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与Bose子完全相同的论证[参阅4灡2节,式(4灡2灡5)、(4灡2灡7)]可得出

煀F =(氉毩毬毭… ,F
暷

氉毩毬毭… )=N(氉毩毬毭… ,f
暷(1)氉毩毬毭… )= 暺

k
nkfkk (4灡3灡8)

式中nk=1或0.更仔细一点写出来,即
煀F =f毩毩 +f毬毬 +f毭毭 +… (4灡3灡9)

这里只有被Fermi子占据的那些单粒子态(毩,毬,毭,…)才有贡献,其余单粒子态(k
曎毩,毬,毭,…)上,nk=0,对煀F 没有贡献.

其次考虑F
暷

的矩阵元.由于F
暷

为单体算符体系的初、末态,最多可以差一个

单粒子态,否则矩阵元为0.对于Fermi子,这种矩阵元的一般形式为

(氉…1j…0k… ,F
暷

氉…0j…1k… )暋暋(约定j<k) (4灡3灡10)
即初态中有一个粒子处于单粒子氄k 态而在末态中跃迁到单粒子态氄j 上去了,其
余(N-1)个粒子的填布保持不变.按式(4灡3灡1),这种矩阵元

(氉…1j…0k… ,F
暷

氉…0j…1k…)=N(氉…1j…0k… ,f
暷(1)氉…0j…1k…)

=N 1
N!暺PP曚

毮P毮P曚·{P[…氄j(qj)…],f
暷(1)P曚[…氄k(qk)…]}

(4灡3灡11)
初态中“粒子1暠必须占据氄k 态,从标准排列式氄毩(q1)氄毬(q2)…到此排列需经历

暺
k-1

i=1
ni 次对换,所以

毮P曚 = (-1)暺
k-1

i=1
ni

同理,末态中“粒子1暠必须占据氄j 态,

毮P = (-1)暺
j-1

i=1
ni

在Slater波函数(4灡3灡1)中这种类型的项有(N-1)! 项,所以式(4灡3灡11)化为

N· 1
N!·(N-1)!(-1)暺

j-1

i=1
ni+暺

k-1

i=1
nifjk暋暋(j<k)

=(-1)2暺
j-1

i=1
ni+暺

k-1

i=j
nifjk = (-1)暺

k-1

i=j
nifjk

=(-1)暺
k-1

i=j+1
nifjk暋暋(因初态中nj =0)

最后得

(氉…1j…0k… ,F
暷

氉…0j…1k… )= (-1)暺
k-1

i=j+1
nifjk暋暋(j<k) (4灡3灡12)

暋暋下面我们来验证,在粒子数表象中用单体算符的表示式(4灡3灡6)来计算,也可

得出与上相同的结果.首先计算平均值
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煀F =暣…毭毬毩 F
暷

毩毬毭…暤= 暺
毩曚毬曚

f毩曚毬曚暣…毭毬毩 a+
毩曚a毬曚 毩毬毭…暤

=暺
毩曚
f毩曚毩曚暣…毭毬毩 n暷毩曚 毩毬毭…暤=f毩毩 +f毬毬 +f毭毭 +… (4灡3灡13)

这是因为 毩毬毭…暤是粒子数算符n暷毩曚的本征态,在毩,毬,毭,…单粒子态上,n毩曚=1,在
其余单粒子态上,n毩曚=0.式(4灡3灡13)与式(4灡3灡9)完全一样.

其次计算矩阵元

暋暣…0k…1j… F
暷

…0j…1k…暤暋暋(j<k)暋暋

暋暋

利用4灡1节,式(4灡1灡33)与(4灡1灡34),得

暺
毩毬
f毩毬毮毩j毮毬k(-1)暺

j-1

i=1
ni+暺

k-1

i=1
ni = (-1)暺

k-1

i=j+1
nifjk (4灡3灡14)

这与式(4灡3灡12)相同.这样我们就验证了单体算符的表示式(4灡3灡6)是正确的.

4灡3灡2暋二体算符

1)G 的平均值

先用q表象中的反对称波函数,式(4灡3灡1)来计算二体算符G
暷

的平均值.式(4灡3灡1)
还可以写成与Bose子相同的形式氉n1n2…,但应注意在Fermi子情况下nk=1或0,因而

nk(nk-1)曉0.计算煀G的过程与4灡2节中相同,但考虑到Pauli原理,4灡2节中式(4灡2灡13)
类型的贡献在这里不存在,只剩下式(4灡2灡12)类型对平均值有贡献.所以

煀G =(氉n1n2… ,G
暷

氉n1n2… )= N(N-1)
2

(氉n1n2… ,g暷(1,2)氉n1n2… )

=N(N-1)
2

1
N!暺k<k曚

(N-2)!
n1! …(nk-1)! …(nk曚 -1)![ ]…

· 氄k(q1)氄k曚(q1)

氄k(q2)氄k曚(q2)
,g暷(1,2)氄k(q1)氄k曚(q1)

氄k(q2)氄k曚(q2

æ

è
ç

ö

ø
÷

)

=暺
k<k曚

nknk曚[(氄k(q1)氄k曚(q2),g暷(1,2)氄k曚(q2)氄k(q1))

-(氄k(q1)氄k曚(q2),g暷(1,2)氄k(q2)氄k曚(q1))]

=暺
k<k曚

nknk曚[暣kk曚 g暷 k曚k暤-暣kk曚 g暷 kk曚暤-]

或 =1
2暺

k曎k曚
nknk曚[暣kk曚 g暷 k曚k暤-暣kk曚 g暷旤kk曚 ]暤 (4灡3灡15)

暋暋2)G 的非对角元

以下考虑G
暷

的非对角元.对于Fermi子,考虑到n毩(n毩-1)=0(Pauli原理),
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图4灡1中所示三种非对角元,只有图4灡1(a)型非对角元存在,而且ni=nj=1,nk=
nl=0.相应的矩阵元为

(氉…0i…0j…1k…1l… ,G
暷

氉…1i…1j…0k…0l… )暋暋(i<j,k<l)暋暋

=1
2N(N-1)(氉…0i…0j…1k…1l… ,g暷(1,2)氉…1i…1j…0k…0l… )

在初态中把“粒子1暠和“粒子2暠从标准式挪到氄i 态和氄j 态将出现因子 (-1)暺
i-1

毻=1
n毻+暺

j-1

毻=1
n毻.

同样,在末态中把“粒子1暠和“粒子2暠从标准式挪到氄k 态和氄l 态将出现因子

(-1)暺
k-1

毻=1
n毻+暺

l-1

毻=1
n毻.所以矩阵元最后表示成

1
2N(N-1)(N-2)!

N! (-1)暺
i-1

毻=1
n毻+暺

j-1

毻=1
n毻+暺

k-1

毻=1
n毻+暺

l-1

毻=1
n毻

æ

è
çç· 氄k(q1)氄l(q1)

氄k(q2)氄l(q2)
,g暷(1,2)氄i(q1)氄j(q1)

氄i(q2)氄j(q2

ö

ø
÷÷)

=(-1)暺
j-1

毻=i
n毻+暺

l-1

毻=k
n毻[暣klg暷 ji暤-暣klg暷 ij暤]

=(-1)暺
j-1

毻=i+1
n毻+ 暺

l-1

毻=k+1
n毻[gkl,ji-gkl,ij] (4灡3灡16)

式中

gkl,ji =曇d氂1d氂2氄*
k (q1)氄*

l (q2)g暷(1,2)氄j(q2)氄i(q1)

gkl,ij =曇d氂1d氂2氄*
k (q1)氄*

l (q2)g暷(1,2)氄i(q2)氄j(q1)

暋暋下面来验证,在粒子数表象中采用二体算符的表示式(4灡3灡7),也可得出与上

相同的结果.首先计算平均值煀G.
煀G =暣…n2n1 G

暷

n1n2…暤

=1
2暺

毩毬毩曚毬曚
g毩曚毬曚,毬毩暣…n2n1 a+

毩曚a+
毬曚a毬a毩 n1n2…暤

=1
2 暺

毩>毬
毩曚>毬曚

+暺
毩<毬

毩曚<毬曚

+暺
毩>毬

毩曚<毬曚

+暺
毩<毬

毩曚>毬

[ ]
曚

g毩曚毬曚,毬毩·暣…n2n1 a+
毩曚a+

毬曚a毬a毩 n1n2…暤

=1
2 暺

毩>毬
毩曚>毬曚

+暺
毩<毬

毩曚<毬

[ ]
曚

g毩曚毬曚,毬毩n毩n毬毮毩毩曚毮毬毬曚 -1
2 暺

毩>毬
毩曚<毬曚

+暺
毩<毬

毩曚>毬

[ ]
曚

g毩曚毬曚,毬毩n毩n毬毮毩毬曚毮毬毩曚

=1
2 暺

毩>毬
+暺

毩<
[ ]

毬
g毩毬,毬毩n毩n毬-1

2 暺
毩>毬

+暺
毩<

[ ]
毬
g毩毬,毩毬n毩n毬

=1
2暺

a曎毬

(g毩毬,毬毩 -g毩毬,毩毬)n毩n毬 (4灡3灡17)

这与式(4灡3灡15)同.
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其次计算非对角元[图4灡1(a),ni=nj=1,nk=nl=0,i<j,k<l]

暣…1l…1k…0j…0i… G
暷

…1i…1j…0k…0l…暤

=

=1
2暺

毩曚毬曚毩毬
g毩曚毬曚,毬毩(-1)暺

k-1

毻=1
n毻+暺

l-1

毻=1
n毻(毮毩曚k毮毬曚l -毮毩曚l毮毬曚k)(毮毩i毮毬j -毮毩j毮毬i)(-1)暺

i-1

毻=1
n毻+暺

j-1

毻=1
n毻

=1
2

(gkl,ji-gkl,ij -glk,ji+glk,ij)(-1)暺
l-1

毻=k
n毻+暺

j-1

毻=i
n毻

=(gkl,ji-gkl,ij)(-1)暺
l-1

毻=k+1
n毻+ 暺

j-1

毻=i+1
n毻

(4灡3灡18)
这与式(4灡3灡16)相同.

练习1暋设g
暷(1,2)=f

暷

(1)f
暷

(2)(可分离变量),则

G
暷

= 1
2暺

毩毬毩曚毬曚
f毩曚毩f毬曚毬a+

毩a+
毬曚a毬毩毩 (4灡3灡19)

暋暋练习2暋在一些文献中,Fermi子的二体相互作用

V = 暺
a<b

V(a,b)

在粒子数表象中还常常写成

V = 1
4暺

毩毬毩曚毬曚
VA

毩曚毬曚,毩毬a+
毩曚a+

毬曚a毬a毩 (4灡3灡20)

其中

VA
毩曚毬曚,毩毬 =V毩曚毬曚,毬毩 -V毩曚毬曚,毩毬 (4灡3灡21)

是已反对称化的相互作用矩阵元,满足

VA
毩曚毬曚,毩毬 =-VA

毬曚毩曚,毩毬 =-VA
毩曚毬曚,毬毩 =VA

毬曚毩曚,毬毩
(4灡3灡22)

以上诸式中[参见4灡2节,式(4灡2灡12)]

V毩曚毬曚,毬毩 = (氄毩曚(q1)氄毬曚(q2),V(1,2)氄毬(q2)氄毩(q1)) (4灡3灡23)

4灡4暋坐标表象与二次量子化

4灡4灡1暋坐标表象

暋暋考虑有自旋1/2的全同粒子组成的多体系.单粒子态取为p(动量)和sz(自旋

的z分量)的共同本征态(采用箱归一化方法确定p的本征值,箱体积取为V),令

a+
psz

与apsz
分别表示相应的粒子产生与湮没算符.作Fourier变换
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氉+ (r,sz)= 暺
p

exp(-ip·r/淈)

V
a+

psz

氉(r,sz)= 暺
p

exp(ip·r/淈)

V
apsz

(4灡4灡1)

氉+ (r,sz)和氉(r,sz)分别表示在空间
踿踿踿r点产生和湮没一个自旋

踿踿踿踿踿踿踿踿踿踿z分量为
踿踿踿sz 的粒子

踿踿踿
的算符
踿踿踿.理由如下:试用氉+ (r,sz)作用于真空态 0暤上,然后投影到坐标表象的基

矢上去,即

暣r曚,s曚z 氉+ (r,sz)0暤=暣r曚,s曚z 暺
p

exp(-ip·r/淈)

V
a+

psz 0暤

=暺
p

exp(-ip·r/淈)

V
暣r曚,s曚z p,sz暤

=暺
p

exp[-ip·(r-r曚)/淈]
V

毮szs曚z

=毮(r-r曚)毮szs曚z
(4灡4灡2)

所以氉+ (r,sz)表示在r点产生一个自旋z分量为sz 的粒子的算符.
对于无自旋的粒子

踿踿踿踿踿踿
,可定义

氄+ (r)= 暺
p

exp(-ip·r/淈)

V
a+

p

氄(r)= 暺
p

exp(ip·r/淈)

V
ap

(4灡4灡3)

氄+ (r)表示在
踿r点产生一个粒子的算符

踿踿踿踿踿踿踿踿踿踿.
利用Bose子产生和湮没算符的基本对易式[ap,a+

p曚]=毮pp曚,可以证明

[氄(r),氄+ (r曚)]=暺
pp曚

exp[i(p·r-p曚·r曚)/淈]
V

[ap,a+
p曚]

=暺
p

exp[ip·(r-r曚)/淈]
V

=毮(r-r曚) (4灡4灡4)

暋暋对于自旋为1/2的粒子,利用Fermi子产生和湮没算符的基本反对易式[apsz
,

ap曚s曚z
]+ =毮pp曚毮szs曚z

,类似可以证明

[氉(r,sz),氉+ (r曚,s曚z)]+=毮(r-r曚)毮szs曚z
(4灡4灡5)

式(4灡4灡1)之逆为

a+
psz =曇d3rexp(ip·r/淈)

V
氉+ (r,sz)

apsz =曇d3rexp(-ip·r/淈)

V
氉(r,sz)

(4灡4灡6)

式(4灡4灡3)之逆为
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a+
p =曇d3rexp(ip·r/淈)

V
氄+ (r)

ap =曇d3rexp(-ip·r/淈)

V
氄(r)

(4灡4灡7)

暋暋利用算符氉+ 和氉(或氄+ 和氄)可以把全同粒子系的单体和二体算符表示如下:

1)动能算符

T = 暺
psz

p2

2m
a+

pszapsz

= 1
2m暺

psz

p2曇d3r曇d3r曚·exp(ip·r/淈-ip·r曚/淈)
V 氉+ (r,sz)氉(r曚,sz)

= 淈2

2m犽d3rd3r曚暺
psz

殼

exp(ip·r/淈)·

殼

曚exp(-ip·r曚/淈)
V 氉+ (r,sz)氉(r曚,sz)

分部积分后,

暋暋T = 淈2

2m犽d3rd3r曚暺
psz

exp[ip·(r-r曚)/淈]
V

·

殼

氉+ (r,sz)·

殼

曚氉(r曚,sz)

= 淈2

2m犽d3rd3r曚暺
sz

毮(r-r曚)

殼

氉+ (r,sz)·

殼

曚氉(r曚,sz)

= 淈2

2m暺
sz
曇d3r

殼

氉+ (r,sz)·

殼

氉(r,sz) (4灡4灡8)

对于无自旋粒子
踿踿踿踿踿

,类似有

T = 暺
p

p2

2m
a+

pap = 淈2

2m曇

殼

氄+ (r)·

殼

氄(r)d3r (4灡4灡9)

通常在坐标表象中,一个无自旋的粒子的波函数
踿踿踿

记为氄(r),则粒子动能平均值(分
部积分后)表示为

煆T =曇氄* (r)p2

2m氄
(r)d3r= 淈2

2m曇

殼

氄* (r)·

殼

氄(r)d3r (4灡4灡10)

可见式(4灡4灡9)与式(4灡4灡10)形式上相似,但在式(4灡4灡10)中氄(r)和氄* (r)为粒
踿

子在坐标表象中的波函数
踿踿踿踿踿踿踿踿踿踿踿

,而在式(4灡4灡9)中氄(r)和氄+ (r)则为在
踿r点粒子湮没和

踿踿踿踿踿踿
产生算符
踿踿踿踿

[见式(4灡4灡3)],它们作用于粒子数表象空间
踿踿踿踿踿踿踿踿踿踿.由此原因,在历史上把此理

论称为二次量子化
踿踿踿踿踿.除此之外,并无其他特别的含义.在全同粒子多体系的描述中,

用“粒子数表象暠一词似乎更确切一些.
2)粒子数算符

N
暷

= 暺
psz

a+
pszapsz暋暋暋暋暋暋暋暋暋暋 (4灡4灡11)

利用式(4灡4灡6)可证明

暋暋 = 暺
sz
曇d3r氉+ (r,sz)氉(r,sz)=曇d3r氀(r) (4灡4灡12)

式中

·461·



氀(r)= 暺
sz
氉+ (r,sz)氉(r,sz) (4灡4灡13)

是粒子在坐标空间的密度分布算符,是一个单体算符.
3)粒子流算符

J= 暺
psz

p
m
a+

pszapsz
(4灡4灡14)

类似地可以证明

J=曇d3rj(r) (4灡4灡15)

式中

j(r)= 淈
i2m暺

sz

[氉+ (r,sz)

殼

氉(r,sz)-(

殼

氉+ (r,sz))氉(r,sz)] (4灡4灡16)

是粒子在坐标空间的流密度算符.
对于无自旋粒子,也可得出与式(4灡4灡11)~(4灡4灡16)相似的式子.

4灡4灡2暋无相互作用Fermi气体

考虑由无相互作用的自旋为1/2的粒子组成的Fermi气体.设毰F 为Fermi能

量,pF 为Fermi动量.体系的基态记为 毜0暤,它表示能量毰曑毰F 的单粒子能级已为

粒子所占据,而毰>毰F 的单粒子能级则完全空着.即动量空间中,p 曑pF(毰F =

p2
F/2m)的球(Fermi球)内的单粒子态完全被粒子填布,而球外(p >pF)的粒子

态则完全空着,这称为完全简并Fermi气体.设粒子系所处空间的体积为V(箱归

一化体积).
令n暷psz=a+

pszapsz
表示单粒子态(p,sz)上的粒子数算符,在|毜0暤态下,其平均

值为

npsz =暣毜0 n暷psz 毜0暤=
1,暋暋 p 曑pF

0,暋暋 p >p{
F

(4灡4灡17)

因此,粒子总数为

N = 暺
psz

npsz =2 暺
p 曑pF

1

化为积分

N =2V曇
pF

0

d3p
(2毿淈)3 = 2V

(2毿淈)3
4毿
3p3

F (4灡4灡18)

由此可得出Fermi动量与粒子系在坐标空间的分布密度n=N/V 的关系

p3
F =3毿2淈3N

V =3毿2淈3n (4灡4灡19)

不难验证,在粒子坐标空间的密度算符氀(r)[见式(4灡4灡13)]在 毜0暤态下的平均值

暣毜0 氀(r)毜0暤=n,
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暣毜0 氀(r)毜0暤=暺
sz

暣毜0 氉+ (r,sz)氉(r,sz)毜0暤

=暺
pp曚sz

exp(-ip·r/淈+ip曚·r/淈)
V

暣毜0 a+
pszap曚sz 毜0暤

=暺
pp曚sz

exp(-ip·r/淈+ip曚·r/淈)
V

毮pp曚npsz

=1
V暺

psz

npsz = N
V =n (4灡4灡20)

1灡 单粒子密度矩阵

作为上式的推广,考虑非对角元,定义单粒子密度矩阵
踿踿踿踿踿踿踿

(one灢particledensity
matrix)如下

Gsz
(r-r曚)=暣毜0 氉+ (r,sz)氉(r曚,sz)毜0暤 (4灡4灡21)

=暺
pp曚

exp[-i(p·r-p曚·r曚)/淈]
V

毮pp曚npsz

=暺
p

exp[-ip·(r-r曚)/淈]
V

npsz

化为积分,得

Gsz
(r-r曚)=曇

pF

0

d3p
(2毿淈)3exp

[-ip·(r-r曚)/淈]

= 1
2毿2曇

kF

0

sin(kr-r曚 )
kr-r曚 k2dk (4灡4灡22)

其中kF=pF/淈.暋令暋x=kF r-r曚 ,则

Gsz
(r-r曚 )= k3

F

2毿2
sinx-xcosx

x3

利用式(4灡4灡19),得

Gsz
(旤r-r曚旤)=3n

2
sinx-xcosx

x3 (4灡4灡23)

图4灡3
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它随 r-r曚 的变化,如图4灡3所示.不难证明,当x曻0(即r曻r曚)时,

Gsz
(r-r曚 )曋 n

2
1- 1

10
(kF r-r曚 )[ ]2 曋 n

2
(4灡4灡24)

在此极限情况下,有一半粒子的自旋sz=1/2,而另一半粒子自旋sz=-1/2.

2灡 二粒子关联函数

考虑一个Fermi子多体系,处于基态 毜0暤,试求在r点找到一个粒子(自旋为

sz)而同时在r曚点找到另一个粒子(自旋为s曚z)的概率.
显然,氉(r,sz)毜0暤曉 毜(r,sz)暤表示把自旋投影为sz 的一个粒子在r点湮没

后的(N-1)个粒子体系的状态.在此态下,求粒子(自旋投影s曚z)在r曚点的空间

密度,
暣毜(r,sz)氉+ (r曚,s曚z)氉(r曚,s曚z)毜(r,sz)暤

=暣毜0 氉+ (r,sz)氉+ (r曚,s曚z)氉(r曚,s曚z)氉(r,sz)毜0暤 (4灡4灡25)
用式(4灡4灡1)代入,它变为

1
V2暺

pp曚qq曚

暣毜0 a+
psza

+
qs曚zaq曚s曚zap曚sz 毜0暤 (4灡4灡26)

把上式表示成

næ

è
ç

ö

ø
÷

2
2

gszs曚z
(r-r曚) (4灡4灡27)

gszs曚z
(r-r曚)称为二粒子关联函数(two灢particlecorrelationfunction),用以刻画两

个粒子的关联(一个粒子自旋为sz,在r点,另一个粒子在r曚点,自旋为s曚z.)
对于sz曎s曚z情况,式(4灡4灡26)中必须p曚=p,q曚=q,否则矩阵元为0.此时

næ

è
ç

ö

ø
÷

2
2

gszs曚z
(r-r曚)= 1

V2暺
pq

暣毜0 a+
psza

+
qs曚zaqs曚zapsz 毜0暤

= 1
V2暺

pq
npsznqs曚z =nszns曚z

(4灡4灡28)

但nsz=ns曚z=n/2,所以

gszs曚z
(r-r曚)=1暋暋(sz 曎s曚z) (4灡4灡29)

这表明:在r点找到一个粒子(自旋投影sz)而且同时在r曚找到另一个粒子(自旋投

影s曚z曎sz)的概率与 r-r曚 无关(由于sz曎s曚z,Pauli原理对粒子在坐标空间的分布

没有限制),此结论与经典无相互作用的气体分子体系的情况相同.
对于s曚z=sz,则必须考虑到Pauli原理.在式(4灡4灡26)中,如p=q或p曚=q曚,

则矩阵元为0,只当p=p曚,q=q曚,或p=q曚,p曚=q时,才有贡献.因此

暣毜0 a+
psza

+
qszaq曚szap曚sz 毜0暤= (毮pp曚毮qq曚 -毮pq曚毮p曚q)暣毜0 a+

pszapsza
+
qszaqsz 毜0暤

= (毮pp曚毮qq曚 -毮pq曚毮p曚q)npsznqsz

所以
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næ

è
ç

ö

ø
÷

2
2

gszsz
(r-r曚)=1

V2暺
pq

{1-exp[-i(p-q)·(r-r曚)/淈]}npsznqsz

= næ

è
ç

ö

ø
÷

2
2

-[Gsz
(r-r曚)]2 (4灡4灡30)

因而[利用式(4灡4灡23)]

gszsz
(r-r曚)=1- 9

x6(sinx-xcosx)2

x=kF r-r曚 (4灡4灡31)
如图4灡4所示,当sz=s曚z时,两个 Fermi子靠近(r-r曚 曻0)的概率为0,这是

波函数交换反对称性的反映,表现为自旋取向相同的两个
踿踿踿踿踿踿踿踿踿 Fermi子之间在坐

标空间的一种排斥力,这纯属量子力学效应.

图4灡4暋二Fermi子关联函数

4灡4灡3暋无相互作用无自旋粒子多体系

作为对比,考虑由无相互作用无自旋粒子组成的多体系.设此Bose子体系处

于状态

毜暤= np1np2
…暤 (4灡4灡32)

粒子在坐标空间的分布密度为

暣毜氀(r)毜暤= 暣毜 氄+ (r)氄(r)毜暤= 1
V暺

p
np =N/V =n (4灡4灡33)

与经典粒子体系以及Fermi子体系[见式(4灡4灡20)]都相同.
下面考虑二粒子关联函数.可以预料,其行为与Fermi子体系很不相同.注意,

式(4灡4灡26)、式(4灡4灡27)形式上对于Fermi子或Bose子都适用.但对于无自旋粒

子,矩阵元暣毜 a+
pa+

qaq曚ap曚 毜暤,只当p=p曚,q=q曚或p=q曚,p曚=q才不为0.但p=q
或p曎q都是允许的.对于p曎q情况,矩阵元表示为

(1-毮pq)[毮pp曚毮qq曚暣毜 a+
pa+

qaqap 毜暤+毮pq曚毮p曚q暣毜 a+
pa+

qapaq 毜暤]

=(1-毮pq)(毮pp曚毮qq曚 +毮pq曚毮p曚q)npnq (4灡4灡34)
对于p=q,矩阵元可表示为
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毮pq毮pp曚毮qq曚暣毜 a+
pa+

paqaq 毜暤=毮pq毮pp曚毮qq曚暣毜 a+
p(毩pa+

p -1)ap 毜暤

=毮pq毮pp曚毮qq曚np(np -1) (4灡4灡35)
与式(4灡4灡25)相应的表示式为[利用式(4灡4灡3)]

暣毜 氄+ (r)氄+ (r曚)氄(r曚)氄(r)毜暤

=1
V2暺

pp曚qq曚
exp -i(p-q曚)·r/淈-i(q-q曚)·r曚/[ ]淈

·[毮pq毮pp曚毮qq曚np(np -1)+(毮pp曚毮qq曚 +毮pq曚毮p曚q -毮pq毮pp曚毮qq曚 -毮pq毮pq曚毮p曚q)npnq]暋暋

=1
V {2 暺

p
np(np -1)+暺

pq
npnq

+暺
pq

exp[-i(p-q)·(r-r曚)/淈]npnq-2暺
p
n2}p

= 1
V暺

p
næ

è
ç

ö

ø
÷p

1
V暺

q
næ

è
ç

ö

ø
÷q + 暺

p

1
Vexp[-ip·(r-r曚)/淈]np

2

- 1
V2暺

p
np(np +1)

=n2+ 暺
p

1
Vexp[-ip·(r-r曚)/淈]np

2

- 1
V2暺

p
np(np +1) (4灡4灡36)

与式(4灡4灡30)(Fermi子多体系)比较,不同之处在于:式(4灡4灡36)中第二项为+号

(反映Bose子波函数交换对称性),而第三项来自可以有多个Bose子处于同一个

单粒子态,是Fermi子体系所不允许的.下面分析两个特例.
例1暋设所有Bose子均处于同一个单粒子态(例如p0),则式(4灡4灡36)简化为

n2 +n2 - 1
V2N(N+1)= N(N-1)

V2 (4灡4灡37)

暋暋例2暋设粒子填布呈 Gauss型,

np =Cexp[-毩(p-p0)2/(2淈2)]=Cexp[-毩(k-k0)2/2] (4灡4灡38)

波包中心在p0,C 为归一化因子.设箱归一化体积V曻曓(但保持 N/V=n 为常数),则式

(4灡4灡36)中最后一项(只有一个求和号)比前两项小得多[曋O(1/V)],可略去,式(4灡4灡36)中第

二项化为积分.最后得

暣毜 氄+ (r)氄+ (r曚)氄(r曚)氄(r)毜暤

=n2 +C2曇d3p
(2毿淈)3exp

[-ip·(r-r曚)/淈-毩(p-p0)2/(2淈)]
2

=n2 +C2 1
(2毿)3曇d3kexp[-毩(-k-k0)2 -ik·(r-r曚)]

2

=n2[1+exp[-(r-r曚)2/毩] (4灡4灡39)

令

暣毜旤氄+ (r)氄+ (r曚)氄(r曚)氄(r)旤毜暤=n2g(r-r曚 ) (4灡4灡40)

g(r-r曚 )随 r-r曚 的变化见图4灡5.式(4灡4灡39)中第二项来自波函数的交换对称性.由于它

的出现,当 r-r曚 曻0时,g(r-r曚 )曻2,而当 r-r曚 曻曓,第二项消失,g(r-r曚 )曻1.这
表明在坐标空间两个Bose子有互相靠近的趋势,与Fermi子正好相反(比较图4灡4与图4灡5).

·961·



图4灡5暋无自旋二粒子关联函数

4灡5暋Hartree灢Fock自洽场,独立粒子模型

多粒子系的Schr昳dinger方程的严格求解,实际上是不可能的.实际问题中总

需要采用某种近似模型和近似计算方法.在这些近似模型中,应用最广泛的是独立
踿踿

粒子模型
踿踿踿踿

,即假设粒子独立地在某种平均场中运动,此平均场当然是由其余粒子所

提供(一般说来,还包括外场对粒子的作用),即粒子之间的相互作用近似地用某种
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

平均场来代替
踿踿踿踿踿踿.这当然是一个粗糙的近似,因为粒子之间的关联效应被忽略了.更
细致的进一步处理中,还有必要把粒子之间的“剩余相互作用

踿踿踿踿踿踿
暠(residualinterac灢

tion),即未能在平均场中反映出来的粒子之间的相互作用,考虑进去.
金属电子论中最简单的独立粒子模型,即Fermi气体模型(卷I,14灡4节).对

于晶体,周期场近似和能带论是很有用的(卷I,4灡8节).原子物理中的电子壳模

型,对阐明元素化学性质的周期律是很成功的(卷I,9灡5节).原子中的电子壳模型

势可以用 Hartree灢Fock自洽场方法来计算栙.后来,此法又被广泛用于原子核的壳

模型势的计算.建立在变分原理基础上的 Hartree自洽场方法,已在卷I,14灡1灡3
节中讲过了.Hartree方法中,未计及全同粒子波函数的交换对称性.Fock对 Har灢
tree方法对此做了改进,考虑了Fermi子多体系波函数的交换反对称性

踿踿踿踿踿踿.下面我们

来介绍Fock的自洽场方法.显然,采用粒子数表象来讲述Fock方法是很方便的.
但为使读者先有一个较形象的理解,先在大家熟悉的坐标表象中来讨论.

考虑由N 个全同Fermi子组成的多体系.设粒子之间有二体相互作用,Ha灢
milton量表示为

H =-暺
i

淈2

2m

殼

2
i+1

2暺
i曎j

V(ri,rj) (4灡5灡1)
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设多体系的试探波函数表示成独立粒子波函数氉i 的乘积形式,并计及交换反对称

性,即表示成Slater行列式的形式

毞(1,2,…,N)= 1
N!

氉1(q1)氉1(q2)…氉1(qN)

氉2(q1)氉2(q2)…氉2(qN)
汅 汅 烑 汅

氉N(q1)氉N(q2)…氉N(qN)

(4灡5灡2)

氉i 表示正交归一化的单粒子态,待求
踿踿.在上述多体波函数形式之下,能量平均值为

煍H = (毞,H毞)=-淈2

2m暺
i曇d氂氉*

i (r)

殼

2氉i(r)

+1
2 暺暺

i曎j犽d氂d氂曚氉*
i (r)氉*

j (r曚)V(r,r曚)氉i(r)氉j(r曚)

-1
2 暺暺

i曎j犽d氂d氂曚氉*
i (r)氉*

j (r曚)V(r,r曚)氉i(r)氉j(r曚) (4灡5灡3)

这里已假定相互作用与粒子自旋无关,所以自旋部分波函数没有明显写出.按变分

原理,试对单粒子态氉i(氉*
i )做微小变化,氉i曻氉i+毮氉i,氉*

i 曻氉*
i +毮氉*

i ,在保证归一

化条件

(氉i,氉i)=1,暋暋i=1,2,… (4灡5灡4)
之下,要求 煍H 取极值(条件极值),即

毮H -暺i毰i毮(氉i,氉i)=0 (4灡5灡5)

毰i 为Lagrange乘子.利用式(4灡5灡3),可求出

毮煍H =-淈2

2m暺
i曇d氂毮氉*

i (r)

殼

2氉i(r)

+1
2 暺暺

i曎j犽d氂d氂曚{[毮氉*
i (r)氉*

j (r曚)+氉*
i (r)毮氉*

j (r曚)]V氉i(r)氉j(r曚)}

-1
2 暺暺

i曎j犽d氂d氂曚{[毮氉*
i (r)氉*

j (r曚)+氉*
i (r)毮氉*

j (r曚)]V氉i(r曚)氉j(r)}

+复共轭项

=-淈2

2m暺
i曇d氂毮氉*

i (r)

殼

2氉i(r)+暺暺
i曎j犽d氂d氂曚毮氉*

i (r)氉*
j (r曚)V氉i(r)氉j(r曚)

-暺暺
i曎j犽d氂d氂曚毮氉*

i (r)氉*
j (r曚)V氉i(r曚)氉j(r)+复共轭项 (4灡5灡6)

把式(4灡5灡6)代入式(4灡5灡5),考虑到毮氉*
i 与毮氉i 是任意的,由此可得出下列方程及

其复共轭方程

-淈2

2m

殼

2氉i(r)+暺
j(曎i)曇d氂曚氉*

j (r曚)V氉i(r)氉j(r曚)-暺
j(曎i)曇d氂曚氉*

j (r曚)V氉i(r曚)氉j(r)

=毰i氉i(r) (4灡5灡7)

暋暋此即Fock自洽场方程.与 Hartree方程相比,不同之处在于式(4灡5灡7)中出
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现了势能作用的交换项
踿踿踿

,它是由于波函数的交换反对称性所导致的.式(4灡5灡7)左

边第二、三两项中的 暺
j(曎i)

可以换为暺
j

,因为j=i时两项互相抵消.所以式(4灡5灡7)

可改写成

-淈2

2m

殼

2氉i(r)+曇d氂曚U(r,r曚)氉i(r曚)=毰i氉i(r) (4灡5灡8)

其中

U(r,r曚)=毮(r-r曚)暺
j曇d氂曞V(r,r曞)氉j(r曞)2-暺

j
V(r,r曚)氉*

j (r曚)氉j(r)

(4灡5灡9)
定义密度矩阵(密度算符在坐标表象中的矩阵表示)

氀(r曚,r)=暣r氀r曚暤= 暺
j

暣r氉j暤暣氉j r曚暤= 暺
j
氉*

j (r曚)氉j(r) (4灡5灡10)

其对角元为

氀(r,r)= 暺
j

氉j(r)2 (4灡5灡11)

不难验证

氀2 =氀 (4灡5灡12)
因为

暣r氀2 r曚暤=曇d氂曞暣r氀r曞暤暣r曞氀r曚暤

=曇d氂曞暺
jk
氉*

j (r曞)氉j(r)氉*
k (r曚)氉k(r曞)

=暺
jk
毮jk氉j(r)氉*

k (r曚)= 暺
j
氉*

j (r曚)氉j(r)= 暣r氀r曚暤

式(4灡5灡9)可改写成

U(r,r曚)=毮(r-r曚)曇d氂曞V(r,r曞)氀(r曞,r曞)-V(r,r曚)氀(r曚,r) (4灡5灡13)

暋暋以上理论形式有一个缺点,即不能明显回答所得结果的近似程度有多好
踿踿踿踿踿踿踿

?
(Hamilton量中哪些部分已经对角化

踿踿踿踿踿踿踿踿踿
? 还有哪些部分未处理

踿踿踿踿踿踿踿踿踿
?)以下采用二次量子

化形式来表述.这里要用到一个有用的数学定理,即 Wick定理(见本节末附录).
利用它,可以把二体相互作用中的单体算符项挑出来,并把略去的二体算符部分明

显表示出来.
按照二次量子化形式,Hamilton量表示为

H = 暺
毻毻曚

T毻毻曚a+
毻a毻曚 +1

4暺
毺毻毺曚毻曚

V毺毻,毺曚毻曚a+
毺a+

毻a毻曚a毺曚 (4灡5灡14)

式中V毺毻,毺曚毻曚是已经反对称化了的二体相互作用矩阵元[见4灡3节,式(4灡4灡21)],即

V毺毻,毺曚毻曚 =-V毺毻,毻曚毺曚 =-V毻毺,毺曚毻曚 =V毻毺,毻曚毺曚 (4灡5灡15)
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设|暤表示Fock真空态(见本节末附录),按 Wick定理

a+
毺a+

毻a毻曚a毺曚 = 暣a+
毺a毺曚 暤暣a+

毻a毻曚 暤-暣a+
毺a毻曚 暤暣a+

毻a毺曚 暤(完全编缩项)

+暣a+
毺a毺曚 暤暶a+

毻a毻曚暶+暣a+
毻a毻曚 暤暶a+

毺a毺曚暶
-暣a+

毺a毻曚 暤暶a+
毻a毺曚暶-暣a+

毻a毺曚 暤暶a+
毺a毻曚暶

(一次编缩项)

+暶a+
毺a+

毻a毻曚a毺曚暶暋(正规乘积项,无编缩) (4灡5灡16)

代入式(4灡5灡14),利用V毺毻,毺曚毻曚的对称性式(4灡5灡15),可以看出,完全编缩项(常数

项)中的两项可化成同一形式,一次编缩项(单体算符形式)中的4项也可化成同一

形式.然后利用

暶a+
毻a毻曚暶=a+

毻a毻曚 -暣a+
毻a毻曚 暤 (4灡5灡17)

把 H 中的常数项,单体算符项和无编缩项(仍为二体算符形式)分开写出

H =-1
2暺

毺毻毺曚毻曚
V毺毻,毺曚毻曚暣a+

毺a毺曚 暤暣a+
毻a毻曚 暤暋暋暋暋(常数项)

+暺
毻毻曚

[T毻毻曚 +暺
毺毺曚

V毺毻,毺曚毻曚暣a+
毺a毺曚 暤]a+

毻a毻曚暋(单体算符项)

+1
4暺

毺毻毺曚毻曚
V毺毻,毺曚毻曚暶a+

毺a+
毻a毻曚a毺曚暶暋暋暋暋(剩余二体作用项)(4灡5灡18)

上式中的常数项对体系的能谱无影响
踿踿踿踿踿踿踿踿踿踿踿踿.

到此,以上诸式中单粒子态的选择还是任意的
踿踿踿踿踿踿踿踿踿踿踿踿.如选择它们使得

踿踿踿踿踿踿踿 H 中的单体
踿踿踿踿

算符项已经对角化
踿踿踿踿踿踿踿踿

,即

T毻毻曚 +暺
毺毺曚

V毺毻,毺曚毻曚暣a+
毺a毺曚 暤=毰毻毮毻毻曚 (4灡5灡19)

则有许多方便之处,上式即Fock方程.
引进密度矩阵

氀毺曚毺 = 暣a+
毺a毺曚 暤 (4灡5灡20)

则Fock方程可改写成

T毻毻曚 +U毻毻曚 =毰毻毮毻毻曚 (4灡5灡21)
式中

U毻毻曚 = 暺
毺毺曚

V毺毻,毺曚毻曚氀毺曚毺 (4灡5灡22)

暋暋Fock方程(4灡5灡19)或(4灡5灡21)的自洽性是明显的,因为方程中出现了Fock
真空态(见本节附录)

旤暤= 暻
N

i=1
a+

i 0暤 (4灡5灡23)

这里 0暤表示裸真空(barevacuum),|暤则表示Fermi面之下的所有单粒子态都已

被粒子填布的状态(往后为清楚起见,在Fermi面之下的单粒子态用i,j,…标记,
而Fermi面之上的记为l,m,…),但要知道这些单粒子态,还有待于求解方程

(4灡5灡21).这只能用迭代
踿踿踿踿踿

(iteration)方式去逐步逼近
踿踿踿踿踿踿踿

,最后达到自洽
踿踿踿踿踿踿.
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如采用Fock基,则

氀毺曚毺 = 暣旤a+
毺a毺曚旤暤=毮毺毺曚暺

N

i=1
毮毺i (4灡5灡24)

即

显然

氀2 =氀 (4灡5灡25)
在Fock基中,常数项表示为

-1
2暺

毺毻毺曚毻曚
V毺毻,毺曚毻曚氀毺曚毺氀毻曚毻 =-1

2暺
毺毻毺曚毻曚

V毺毻,毺曚毻曚·毮毺曚毺暺
N

i=1
毮毺i·毮毻曚毻暺

N

j=1
毮毻j

=-1
2暺

ij
Vij,ij (4灡5灡26)

而 Hamilton量表示成

H = 暺
毻
毰毻a+

毻a毻-1
2暺

ij
Vij,ij +Vres =H0+Vres (4灡5灡27)

其中

毰毻 =T毻毻 +U毻毻 =T毻毻 +暺
毺毺曚

V毺毻,毺曚毻毮毺曚毺暺
N

j=1
毮毺j =T毻毻 +暺

j
Vj毻,j毻

(4灡5灡28)

Vres = 1
4暺

毺毻毺曚毻曚
V毺毻,毺曚毻曚暶a+

毺a+
毻a毻曚a毺曚暶 (4灡5灡29)

Vres是一个二体算符
踿踿踿踿.表示粒子之间的剩余相互作用

踿踿踿踿踿踿
(residualinteraction).在真空

态下,暣Vres 暤=0,而在激发态下,Vres平均值并不为零.作为近似,在Fock自洽场

理论中,Vres被略去了,H曋H0,

H0 = 暺
毻
毰毻a+

毻a毻-1
2暺

ij
Vij,ij (4灡5灡30)

此时,基态能量为

E0 = 暣H0 暤= 暺
N

i=1
毰i-1

2暺
ij

Vij,ij暋 曎 暺
N

i=1
毰( )i (4灡5灡31)

利用

[H0,a+
毻 ]=毰毻a+

毻 ,暋暋[H0,a毻]=-毰毻a毻 (4灡5灡32)

容易求出 H0 的各激发态的能量.例如,有一个粒子和一个空穴(1ph)的态,记为

a+
lai|暤

·471·



H0a+
lai旤暤= (E0+毰l-毰i)a+

lai旤暤 (4灡5灡33)
而2粒子 2空穴(2ph)态a+

la+
maiaj|暤相应的能量本征值为E0+毰l+毰m-毰i-毰j.

附录

1)正规乘积

算符A、B、C、D…代表 Fermi子产生或湮没算符.算符乘积 ABCD…的正规乘积
踿踿踿踿

(normal

product)记为暶ABCD…暶,规定如下:

(a)作用于真空态上为
踿踿踿踿踿踿踿踿0的算符放在右边

踿踿踿踿踿踿踿
,不为
踿踿0的算符放在左边

踿踿踿踿踿踿踿.
(b)任何两个算符换位时

踿踿踿踿踿踿踿踿踿
,出一个负号
踿踿踿踿踿.

按正规乘积定义,可知正规乘积在真空态下平均值必为
踿踿踿踿踿踿踿踿踿踿踿踿踿踿0,即

暣暶ABC…暶 暤=0
关于真空态,有两种常用的选择:

(i)选择真空态为裸真空
踿踿踿

(barevacuum)0暤.此时,正规乘积要求把湮没算符放在右边,产

生算符放在左边.例如

暶a+
毩a毬暶=a+

毩a毬

暶a毩a+
毬 暶=-a+

毬a毩

暶a+
毩a+

毬 暶=a+
毩a+

毬

暶a+
毩a毬a+

毭 暶=-a+
毩a+

毭a毬 =a+
毭a+

毩a毬

暋暋(ii)选择真空态为 Hartree灢Fock真空|暤.对于由 N 个Fermi子组成的体系,

旤暤= ijk…暤= 暻
i曑N

a+
i 0暤

这里把Fermi面之下的 N 个单粒子态记为i、j、k、…,而 Fermi面之上的单粒子态记为l、m、n、
….显然,

al旤暤=0,暋暋am旤暤=0,暋暋…

而考虑到Pauli原理,

a+
i旤暤=0,暋暋a+

j旤暤=0,暋暋…

不妨定义准粒子算符
踿踿踿踿踿

毩+
l =a+

l ,毩l =al,…

但

毩+
i =ai,毩i =a+

i ,…

则

毩毻旤暤=0(不论毻在Fermi面之上,或之下)

此时正规乘积的构成法则同(i),例如

暶a+
la+

iajam暶=暶毩+
l毩i毩+

j毩m暶=-毩+
l毩+

j毩i毩m =-a+
laja+

iam

若直接从粒子算符来运算,应记住把a+
i 放aj 之右边(因a+

i|暤=0),所以

暶a+
la+

iajam暶=-a+
laja+

iam

暋暋2)缩并

两个算符A 与B 的“缩并暠(contraction),记为欬AB,定义为

·571·



欬AB = 暣AB 暤

它是一个数
踿

,不再是算符,所以

暶
欬ABCD…暶=

欬AB暶CD…暶= 暣AB 暤暶CD…暶

暶 …暶=-暶
欬 欬ACBFDE…暶=-

欬 欬ACBF暶DE…暶
暋暋暋暋暋 暋 =-暣AC 暤暣BF 暤暶DE…暶

显然,缩并只能在产生和湮没算符之间进行
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,否则为
踿踿踿0.因为

a+
毺
欬
a+

毻 = 暣a+
毺a+

毻 暤=0,暋a毺
欬a毻 = 暣a毺a毻 暤=0

暋暋3)Wick定理

借助于正规乘积和缩并概念,算符乘积可以表示成更方便的形式,使计算其矩阵元(特别是

平均值)容易进行.先讨论两个算符乘积的情况.两算符乘积AB 经过换位变成正规乘积后,可
能出现一个常数,记为C(AB),即

AB =暶AB暶+C(AB)

上式对真空态求平均,注意到暣 暶AB暶 暤=0,所以C(AB)=暣AB 暤=欬AB,这样

AB =暶AB暶+
欬AB

更一般的情况,有一个 Wick定理(可用归纳法证明,从略)

ABCD… =暶ABCD…暶 (不含缩并项)

+暶
欬ABCD…暶+暶

欬
ABCD…暶+…+暶

欬ABCD…暶
+… (含一次缩并项)

+暶
欬 欬ABCD…暶+… (含二次缩并项)

+… (含多次缩并项)

例如,

ABC =暶ABC暶+
欬ABC-

欬ACB+
欬BCA

……

又如二体作用中

a+
毺a+

毻a毻曚a毺曚 =暶a+
毺a+

毻a毻曚a毺曚暶

+a+
毺
欬
a毺曚暶a+

毻a毻曚暶+a+
毻
欬
a毻曚暶a+

毺a毺曚暶-a+
毺
欬
a毻曚暶a+

毻a毺曚暶-a+
毻
欬
a毺曚暶a+

毺a毻曚暶

+a+
毺
欬
a毺曚a+

毻
欬
a毻曚 -a+

毺
欬
a毻曚a+

毻
欬
a毺曚

暋暋显然,计算真空态下的平均值时
踿踿踿踿踿踿踿踿踿踿踿

,只有完全缩并项才有贡献
踿踿踿踿踿踿踿踿踿踿踿

(含正规乘积的各项在真空态下

平均值必为0).

4灡6暋对关联,BCS波函数,准粒子

考虑全同Fermi子体系,假设粒子之间有对相互作用(pairinginteraction).先
讨论一个简单情况,假设单粒子能级毰毻 为二重简并,即单粒子态毻及其时间反演态
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焵毻(或记为-毻)同属于能级毰毻
栙.设体系的 Hamilton量表示为

H =Hsp +HP暋暋暋暋暋暋 (4灡6灡1)

Hsp = 暺
毻>0

毰毻(a+
毻a毻+a+

焵毻a焵毻)= 暺
毻>0

毰毻n暷毻

HP =-G暺
毺,毻>0

S+
毺S毻

S+
毺 =a+

毺a+
焻毺 ,暋暋S毻 =a焵毻a毻

Hsp为单粒子部分 Hamilton量,HP 为对相互作用,n暷毻=(a+
毻a毻+a+

焵毻a焵毻)为单粒子能

级毰毻 上的粒子数算符,S+
毺 和S毺 是能级毰毺 上的粒子对产生和湮没算符,G>0为对

力强度(吸引力).对力是一种非常短程的非局域的(non灢local)相互作用,在某些方

面与二体力毮(r1-r2)有相似之处栚.但即使对于这样简单的相互作用的多粒子系,

Schr昳dinger方程的严格求解,一般说来也是极为困难的,需要采用近似方法.以下

先用变分法来近似求解,然后介绍准粒子概念.
设体系的基态试探波函数(BCS波函数)栛取为

0烅= 暻
毻

(U毻+V毻S+
毻 )0暤 (4灡6灡2)

U2
毻 +V2

毻 =1暋暋(U毻,V毻,实数) (4灡6灡3)
其中V毻(或U毻)作为变分参数.此试探波函数所描述的态,粒子数是不确定

踿踿踿踿踿踿踿
的
踿

栜 .试问:这种粒子数不确定的状态与具有确定粒子数的实际体系有什么关系?

在最佳的情况下也只能要求在|0烅态下粒子数N
暷

=暺
毻
n暷毻的平均值等于体系实际

的粒子数N0,即

煆N =烆0 N
暷

0烅=N0 (4灡6灡4)
这样,问题就归结为一个条件极值问题

踿踿踿踿踿踿
,即变动参数V毻(U毻),使

毮煍H -毸毮煆N =0 (4灡6灡5)

毸为Lagrange乘子.为此,先计算 煍H 与煆N.利用代数恒等式
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栙

栚

栛

例如,自由粒子,动量本征态 p暤与 -p暤互为时间反演态.轴对称(对称轴取为z轴)势场中粒子的

角动量(j2,jz)的本征态 j,毟暤与 j,-毟暤互为时间反演态.
例如,它们给出的能谱有相似之处.参阅:A.deShalitand H.Feshbach,TheoreticalNuclear

Physics,Vol.1,NuclearStructure(JohnWiley&Sons),1974,p.289.曾谨言、孙洪洲,原子核结构理论

(上海科技出版社,1987),p.260.
J.Bardeen,L.N.CooperandJ.R.Schrieffer,Phys.Rev.106(1957)162;108(1957)1175.

栜暋令c毻=V毻/U毻,则 0暤暤 (= 暻
氀
U )氀 暻

氀

(1+c毻S+毻 )0暤

暋暋暋 (= 暻
氀
U )氀 [1+暺

毻
c毻S+毻 +暺

毻毺
c毻c毺S+毻S+

毺 +…]0暤

上式[…]中第一项是无粒子的状态,第二项代表有一对粒子的状态,第三项代表有两对粒子的状态…,所以

BCS波函数描述的态的粒子数是不确定的.



[A,BC]= [A,B]+C-B[A,C]+ (4灡6灡6)
[AB,C]=A[B,C]+-[A,C]+B (4灡6灡7)

以及Fermi子产生和湮没算符的基本对易式,容易证明

[n暷毺,S+
毻 ]=2毮毺毻S+

毻

[n毺,S毻]=-2毮毺毻S毻

[S毺,S+
毻 ]= (1-n暷毻)毮毺毻

(4灡6灡8)

由此可以计算出栙

煆N =2暺
毻
V2

毻 (4灡6灡9)

煍H =2暺
毻
毰毻V2

毻 - (G 暺
毻
U毻V )毻

2
(4灡6灡10)

所以
煍H曚曉 煍H -毸煆N = 暺

毻
2(毰毻-毸)V2

毻 - (G 暺
毻
U毻V )毻

2
(4灡6灡11)

条件极值式(4灡6灡5)毮煍H曚=毮煍H-毸毮煆N=0,可表示为

暺
毻

灥煍H曚
灥V毻

毮V毻 =0暋暋暋暋

毮V毻 是任意的,所以

灥煍H曚
灥V毻

=0暋暋(对所有毻) (4灡6灡12)

用式(4灡6灡11)代入上式,得

2(毰毻-毸)V毻- (G 暺
毺
U毺V )毺

灥
灥V毻

(U毻V毻)=0 (4灡6灡13)

由式(4灡6灡3),U毻=(1-V2
毻)1/2,有

灥
灥V毻

(U毻V毻)=U毻+V毻
灥

灥V毻
(1-V2

毻)1/2 = (U2
毻 -V2

毻)/U毻
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栙

煆N =暺
毺

暣暣0 n暷毺 0暤暤= 暺
毺

暣0 暻
毻毻曚

(U毻+V毻S毻)n暷毺(U毻曚 +V毻曚S+毻曚)0暤

=暺
毺

暣0 U毺+V毺S毺)n暷毺(U毺+V毺S+
毺 )0暤= 暺

毺
V2

毺暣0 S毺n
暷

毺S+
毺 0暤

=暺
毺
V2

毺暣0 S毺(S+
毺n
暷

毺+2S+
毺 )0暤=2暺

毺
V2

毺

煍H =暺
毻
毰毻暣暣 n暷毻 0暤暤-G暺

毺毻
暣暣0 S+

毺S毻 0暤暤

=2暺
毻
毰毻V2毻 -G暺

毺毻
暣0 (U毺+V毺S毺)S+

毺 (U毺+V毺S+
毺 )·(U毻+V毻S毻)S毻(U毻+V毻S+毻 )0暤

=2暺
毻
毰毻V2毻 -G暺

毺毻
U毺V毺U毻V毻 =2暺

毻
毰毻V2毻 - (G 暺

毻
U毻V )毻

2



代入式(4灡6灡13),并令

殼=G暺
毻
U毻V毻 (4灡6灡14)

得

2(毰毻-毸)U毻V毻 =殼(U2
毻 -V2

毻) (4灡6灡15)
(殼的物理意义,见后.)上式平方,利用U2

毻+V2
毻=1,得

4(毰毻-毸)2U2
毻V2

毻 =殼2(1-4U2
毻V2

毻)

即

4U2
毻V2

毻[(毰毻-毸)2+殼2]=殼2

令

E毻 = (毰毻-毸)2+殼2 (4灡6灡16)
则得

2U毻V毻 =殼/E毻 (4灡6灡17)
代入式(4灡6灡15),得

U2
毻 -V2

毻 = (毰毻-毸)/E毻 (4灡6灡18)
联合U2

毻+V2
毻=1,可得

U2
毻 = 1

2 1+
毰毻-毸
E[ ]

毻
= 1

2
1+

毰毻-毸
(毰毻-毸)2+殼

é

ë
êê

ù

û
úú2

V2
毻 = 1

2 1-
毰毻-毸
E[ ]

毻
= 1

2
1-

毰毻-毸
(毰毻-毸)2+殼

é

ë
êê

ù

û
úú2

(4灡6灡19)

此即BCS试探波函数,式(4灡6灡2)中的参数U毻 和V毻 的解.其中有两个待定量,即毸
与殼,可由式(4灡6灡4)与式(4灡6灡14)确定.按式(4灡6灡4)与式(4灡6灡9),有

2暺
毻
V2

毻 =N0 (4灡6灡20)

即

暺
毻

1-
毰毻-毸

(毰毻-毸)2+殼
é

ë
êê

ù

û
úú2 =N0 (4灡6灡21)

用式(4灡6灡17)代入式(4灡6灡14),得

1
G = 1

殼暺
毻
U毻V毻 = 1

2暺
毻

1
E毻

(4灡6灡22)

联合式(4灡6灡16),得

1
2暺

毻

1
(毰毻-毸)2+殼2

= 1
G

(4灡6灡23)

对于 给 定 的 Fermi子 体 系 (N0 给 定),根 据 单 粒 子 能 级毰毻 的 分 布 情 况,由

式(4灡6灡21)及式(4灡6灡23)联立求解,可定出毸和殼 的值.然后代入式(4灡6灡19),即
可求出U毻 和V毻,从而定出BCS试探波函数,式(4灡6灡2).
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由式(4灡6灡20)不难理解,V2
毻 表示单粒子能级

踿踿毰毻 被粒子对占据的概率
踿踿踿踿踿踿踿踿踿

,因而

U2
毻=1-V2

毻表示毰毻 能级空着的概率
踿踿踿踿踿踿踿.由式(4灡6灡14)可知,当G曻0(对力消失)时,

殼曻0(殼的物理意义将在后面讨论).此时,按式(4灡6灡19),有

V2
毻 =

1,暋暋毰毻 <毸
0,暋暋毰毻 >{ 毸

(4灡6灡24)

即毰毻<毸的单粒子能级完全被粒子对填满,而毰毻>毸的能级则完全空着.这种分布

称为完全简并的Fermi分布(图4灡6中虚线所示).所以毸具有Fermi能量
踿踿

的意义.
在有对力的情况下(G曎0),Fermi体系的基态 0烅的V2

毻 随毰毻 的分布如图4灡6中

实线所示.G 愈大,V2
毻 偏离完全简并Fermi分布愈厉害.

图4灡6

可以证明,在 0烅态下,粒子数的涨落为

殼N [= (N
暷

-煆N)]2
1/2

= (N2-N2)1/2 =2 暺
毻
U2

毻V2[ ]毻
1/2

=殼 暺
毻

1
(毰毻-毸)2+殼[ ]2

1/2
(4灡6灡25)

它是由于采用BCS方法来处理对力所引起的.当粒子数很大(N0曻曓)时,可证明

殼N/N0曻0,粒子数不确定的问题并不严重.所以BCS方法对于处理金属中电子

的超导现象是一个很成功的理论.
众所周知,用变分法处理体系的基态,相对说来比较容易,而处理激发态则比

较繁琐.Bogoliubov栙 与 Valatin栚 在数学上进一步发展了BCS方法,他们引进了

粒子 准粒子变换(或称Bogoliubov灢Valatin变换),用准粒子激发的概念来方便地

描述超导体的激发谱.令

毩+
毻 =U毻a+

毻 -V毻a焵毻

毩焵毻 =U毻a焵毻+V毻a+
毻 (4灡6灡26)

暋暋 U2
毻 +V2

毻 =1暋暋暋(U毻,V毻 实)
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N.N.Bogoliubov,NuovoCimento7(1958)794.
J.G.Valatin,NuovoCimento7(1958)843.



或简记为

毩+
毻

毩焵

æ

è
ç

ö

ø
÷

毻
=

U毻 -V毻

V毻 U
æ

è
ç

ö

ø
÷

毻

a+
毻

a焵

æ

è
ç

ö

ø
÷

毻

毩+
毻 (毩毻)是准粒子产生(湮没)算符.式(4灡6灡26)之逆为

a+
毻 =U毻毩+

毻 +V毻毩焵毻

a焵毻 =U毻毩焵毻-V毻毩+
毻

(4灡6灡27)

根据Fermi子产生和湮没算符a+
毻 、a毻、a+

焵毻 、a焵毻的基本反对易式,容易证明准粒子产

生和湮没算符也满足同样的反对易式

[毩毻,毩+
毺 ]+=毮毻毺,暋[毩毻,毩毺]+= [毩+

毻 ,毩+
毺 ]+=0

[毩焵毻,毩+
焻毺 ]+=毮毻毺,暋[毩焵毻,毩焻毺]+= [毩+

焵毻 ,毩+
焻毺 ]+=0

(4灡6灡28)

所以变换(4灡6灡26)是一个正则变换
踿踿踿踿.但在此变换下,粒子数与准粒子数不可能同时

踿踿踿踿踿踿踿踿踿踿踿踿踿
守恒
踿踿.引进此正则变换的目的是希望把一个具有二体对相互作用的

踿踿踿踿踿踿踿踿踿踿踿踿Fermi子体系
踿踿踿

近似地简化为一个无相互作用的准粒子体系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,从而可以用准粒子激发来方便地描
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

述体系的激发谱
踿踿踿踿踿踿踿.但在具有确定准粒子数的状态下

踿踿踿踿踿踿踿踿踿踿踿踿踿
,粒子数是不确定的
踿踿踿踿踿踿踿踿.为弥补此

缺陷,可引进一个Lagrange乘子毸,令

H曚=H-毸N (4灡6灡29)
然后在所求出的 H曚的本征态下,让粒子数的平均值 煆N 等于体系的实际粒子数

N0,以确定毸的值(参见式(4灡6灡4)和(4灡6灡21)).
用式(4灡6灡27)代入式(4灡6灡29),并利用式(4灡6灡28)把各项化成正规乘积的形式,得

H曚=U曚+H曚11+H曚20+H曚int (4灡6灡30)
其中U曚是不含准粒子产生和湮没算符的常数项,不影响准粒子的激发谱,H曚11是含

有一个产生和一个湮没算符的项,H曚20是含有2个产生或湮没算符的项,H曚int则为

含有4个准粒子(产生,湮没)算符的项栙,H曚int表示准粒子之间的相互作用.通常假

定 H曚int很微小,予以忽略(从理论上要对此给出一个令人信服的论据是困难的,但
如果仍坚持保留这一项,则准粒子描述的优越性就没有了).计算得出

U曚=暺
毻

(毰毻-毸)2V2
毻 -G暺

毻
V4

毻 - (G 暺
毻
U毻V )毻

2

H曚11=暺
毻

{(毰毻-毸)(U2
毻 -V2

毻)+2GU毻V (毻 暺
毺
U毺V )毺

-GV2
毻(U2

毻 -V2
毻)}(毩+

毻毩毻+毩+
焵毻毩焵毻)

·181·

栙 H曚int= H曚22+H曚31+H曚40

H曚22=-G暺
毺毻

{U2
毺U2毻 +V2

毺V2毻)毩+
毺毩+焻毺毩焵毻毩毻+U毺V毺U毻V毻[2毩+

毺毩+焵毻毩焵毻毩毺+毩+焻毺毩+焵毻毩毻毩毺+毩+焻毺毩+焵毻毩焵毻毩焻毺]}

H曚31=-G暺
毺毻

U毺V毺(U2毻 +V2毻)[毩+焵毻毩焵毻(毩+
毺毩毺+毩+焻毺毩焻毺)+(毩+

毺毩毺+毩+焻毺毩焻毺)毩毻毩焵毻]

H曚40=-G暺
毺毻

U2
毺V2毻(毩+毻毩+焵毻毩+焻毺毩+

毺 +毩毻毩焵毻毩焻毺毩毺)



H曚20=暺
毻

{(毰毻-毸)2U毻V毻-G(U2
毻 -V2

毻 ()暺
毺
U毺V )毺

-2GU毻V3
毻}(毩+

毻毩+
焵毻 +毩焵毻毩毻) (4灡6灡31)

如略去准粒子相互作用 H曚int,并选择U毻 和V毻,使 H曚20=0,则
H曚曋U曚+H曚11 (4灡6灡32)

U曚为常数项,而 H曚11只含一个产生和湮没算符的项,在此近似下,H曚描述的就是一

个独立的准粒子体系
踿踿踿踿踿踿踿踿

(详见下),问题就大为简化了.根据式(4灡6灡31),H曚20=0可表

示为(忽略了 H曚20的大括号{…}中最后一个微小项-2GU毻V3
毻)

(毰毻-毸)2U毻V毻- (G 暺
毺
U毺V )毺 (U2

毻 -V2
毻)=0 (4灡6灡33)

与式(4灡6灡14)同样,令

殼=G暺
毺
U毺V毺 (4灡6灡34)

则

2(毰毻-毸毻)U毻V毻 =殼(U2
毻 -V2

毻) (4灡6灡35)
此式与式(4灡6灡15)全同.再往下,重复前面式(4灡6灡16)-(4灡6灡19)的推导,就可得

出正则变换(4灡6灡26)中的参数U毻 和V毻 的表示式(4灡6灡19).U毻 与V毻 的表示式中

的殼 与毸,同样由式(4灡6灡21)和式(4灡6灡23)定出.
式(4灡6灡31)中的 H曚11项可改写如下[略去 H曚11的大括号{…}中微小的最后一

项,-GV2
毻(U2

毻-V2
毻)]

H曚11=暺
毻

{(毰毻-毸)(U2
毻 -V2

毻)+2G 暺
毺
U毺V( )毺 U毻V毻}(毩+

毻毩毻+毩+
焵毻毩焵毻)

=暺
毻

(毰毻-毸)2

E毻
+殼2

E{ }
毻

(毩+
毻毩毻+毩+

焵毻毩焵毻)= 暺
毻
E毻(毩+

毻毩毻+毩+
焵毻毩焵毻)

(4灡6灡36)
这样,H曚曋U曚+H曚11,除了一个不关紧要的常数项U曚之外,所描述的正是一个无相

踿踿
互作用的准粒子体系
踿踿踿踿踿踿踿踿踿

,E毻[见式(4灡6灡16)]表示准粒子的能量
踿踿踿踿踿踿.

显然,H曚的基态即准粒子真空态
踿踿踿踿踿踿踿踿踿.不难验证,BCS波函数

旤0暤暤= 暻
毻

(U毻+V毻S+
毻 )旤0暤 (4灡6灡37)

正是准粒子真空态
踿踿踿踿踿踿

,满足栙

栙暋例如,

暋暋毩毺 0暤暤=暻
毻曎毺

(U毻+V毻S+毻 )·(U毺毩毺-V毺毩+
焻毺 )(U毺+V毺a+

毺a+
焻毺 )0暤

而

(U毺a毺-V毺a+
焻毺 )(U毺+V毺a+

毺a+
焻毺 )0暤=(U2

毺a毺+U毺V毺a毺a+
毺a+

焻毺 -V毺U毺a+
焻毺 -V2

毺a+
焻毺a+

毺a+
焻毺 )0暤

暋暋暋暋暋暋暋暋暋暋暋暋暋暋暋={U毺V毺[a+
毺a毻+1)a+

焻毺 -a+
焻毺 ]-V2

毺a+
毺a+

焻毺a+
焻毺 }0暤=0暋
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毩毺 0暤暤=0,暋暋毩焻毺 0暤暤=0 (4灡6灡38)

H曚的各种激发态则可表示成准粒子激发的形式.为方便,不妨取准粒子真空态的

能量为能量零点.此时,一准粒子激发态,而毩+
毻0 0烅,相应的能量为E毻0.二准粒子

激发态毩+
毺0毩

+
毻0 0烅和毩+

毻0毩
+
焵毻0 0烅的激发能分别为E毺0+E毻0

和2E毻0.可以证明

毩+
毻0 0暤暤=a+

毻0暻
毻曎毻0

(U毻+V毻S+
毻 )0暤

毩+
毺0毩

+
毻0 0暤暤=毩+

毺0a
+
毻0 暻

毻曎毺0,毻0

(U毻+V毻S+
毻 )0暤

毩+
毻0毩

+
焵毻0 0暤暤= (-V毻0 +U毻0S

+
毻 )暻

毻曎毻0

(U毻+V毻S+
毻0

)0暤

(4灡6灡39)

更多准粒子激发态的表述以及激发能,也可类似给出.应当提到,基于准粒子真空

0暤暤而建立起来的准粒子激发态的上述表示式中,Pauli堵 塞 效 应
踿 踿 踿 踿

(blocking
effect)完全被忽略了(在计算真空态 0暤暤中的U毻 和V毻 时,没有把不配对粒子所堵

塞的单粒子能级毻0,毺0,…排除在外).对于多体系的低激发态(涉及Fermi面附近

的单粒子能级),堵塞效应是非常重要的栙栚.但在 BCS方法中,很难处理堵塞效

应,因为要严格计及堵塞效应,则在不同堵塞下,势必引进不同的准粒子基矢栙 ,从
而把BCS方法的简洁性的优点丢掉了.

暋暋栙 暋D.J.Rowe,NuclearCollectiveMotion,Methuen,1970,p.194;H.MoligueandJ.Dudek,

Phys.Rev.C56(1997)1795.

栚暋J.Y.ZengandT.S.Cheng,Nucl.Phys.A405(1983)1;J.Y.Zeng,T.S.Cheng,L.Cheng

andC.S.Wu,Nucl.Phys.A411(1983)49;A421(1984)125.

出自统计性的考虑
踿踿踿踿踿踿

,偶数个
踿踿踿Fermi子组成的体系的基态用

踿踿踿踿踿踿踿踿踿踿 0暤暤描述
踿踿

,激发态

则用偶数准粒子激发态来描述.例如毩+
毺毩+

毻 0暤暤,毩+
毻毩+

焵毻 0暤暤表示二准粒子激发态,

而毩+
毺毩+

毻毩+
氁毩+

氂 0暤暤,…描述4准粒子激发态.对于奇数个
踿踿踿Fermi子组成的体系

踿踿踿踿踿踿
,则

用奇数准粒子激发态来描述.例如,一准粒子态毩+
毻 0暤暤,毩+

焵毻 0暤暤,…,三准粒子态

毩+
毺毩+

毻毩+
氁 0暤暤,….

不难看出,偶数个与奇数个
踿踿踿踿踿踿踿Fermi子组成的体系的低激发能谱有截然不同的

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
特征
踿踿.对于偶数粒子体系,二准粒子激发态毩+

毻0毩
+
焵毻0 0暤暤与基态 0暤暤的能量差为

2E毻0 =2 (毰毻0 -毸)2+殼2 >2殼 (4灡6灡40)
对于最靠近Fermi面的单粒子能级毰毻0

,毰毻0-毸 烆殼.可见,与无对力时的低激发能
踿踿踿踿踿踿踿踿踿踿

量
踿

(~ 毰毻0-毸 )相比,二准粒子的能量
踿踿踿踿踿踿踿2E毻0

要大得多(2E毻0>2殼烅2毰毻0-毸 ),形成

一个配对能隙
踿踿踿踿

(pairingenergygap).
与此截然不同,奇数Fermi子体系的低激态(包括基态)是各种不同的一准粒

子态.两个一准粒子态毩+
毺 0暤暤与毩+

毻 0暤暤的能量差为

E毺 -E毻 =殼 [1+(毰毺 -毸)2/殼2]1/2-[1+(毰毻-毸)2/殼2]1/2
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曋殼 1+1
2

(毰毺 -毸)2

殼
é

ë
êê

ù

û
úú2 - 1+1

2
(毰毻-毸)2

殼
é

ë
êê

ù

û
úú2

=1
2殼

(毰毺 -毸)2-(毰毻-毸)2

= 毰毺 -毰毻
毰毺 -毸 + 毰毻-毸

2殼
< 毰毺 -毰毻 (4灡6灡41)

与无对力时的低激发能量 毰毺-毰毻 相比,E毺-E毻 反而更小了.即不仅没有能
踿踿踿踿踿

隙
踿

,反而比无对力时更加密集了
踿踿踿踿踿踿踿踿踿踿踿踿.所以奇数粒子体系的内部激发谱的谱形与偶

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
数粒子体系截然不同
踿踿踿踿踿踿踿踿踿.这种能谱奇偶差在原子核的低激发谱中表现得十分

明显.栙

栙暋A灡BohrandB灡R灡Mottelson,NuclearStructure,vol灡栻 Deformation(Benjamin,London,1975).

栚暋A.Bohr,B.R.MottelsonandD.Pines,Phys.Rev.110(1958)936.

栛暋S.T.Belyaev,Mat.Fys.Medd.Dan.Vid.Selsk.31(1959)No.11.

L.S.KisslingerandR.A.S旿rensen,Mat.Fys.Medd.Dan.Vid.Selsk,32(1960)No.12.

S.G.NilssonandO.Prior,Mat.Fys.Medd.Dan.Vid.Selsk;32(1960)No.16.

栜暋D.J.Rowe,NuclearCollectiveMotion,Methuen,1970,p.194.

BCS的金属超导性的理论提出后不久,Bohr,Mottelson& Pines根据对丰

富的实验现象的分析,指出原子核内核子之间存在很强的对力
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而核子之间这种

相干对关联
踿踿踿踿踿

(coherentpairingcorrelation)导致了原子核的
踿踿踿踿踿踿踿

“超导性
踿踿踿

暠栚 .对关联最

突出的表现是原子核的一系列性质都表现出奇偶差
踿踿踿

(odd灢evendifference),如核
踿

质量与结合能
踿踿踿踿踿踿

、能谱形状
踿踿踿踿

、转动惯量
踿踿踿踿

等.原子核的超导性对于阐明原子核低激发
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

态的许多重要性质
踿踿踿踿踿踿踿踿

,是必不可少的
踿踿踿踿踿踿.例如,原子核基带的转动惯量的实验值为什

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
么远小于刚体值
踿踿踿踿踿踿踿

(只有刚体值的1/3~1/2左右)? 这可以从准粒子低激发谱中

的能隙得以说明.又例如,相邻偶偶核基态(“超导态暠)之间的粒子对转移反应

(pair灢transferreaction)[(p,t),(t,p)反应等]截面特别大,这是很强的相干对关

联的表现.栙 原子核超导性的提出,是核结构理论发展中的一个重要里程碑.随
后,人们把 BCS方法和准粒子概念移植到原子核理论中来栛 ,并取得重要的

成果.
对说明金属的超导性,毫无疑问,BCS理论是一个非常成功和漂亮的理论.

BCS方法被移植到原子核结构理论中来,在取得重要成果的同时,也应指出它的

严重缺陷.问题在于,原子核内的核子数(曋102),特别是决定低激发态
踿踿踿踿

性质的价核

子的数目(曋10),是不太大的.因此,BCS方法中粒子数不守恒以及它带来的一系

列问题,例如过多的假态
踿踿踿踿踿

(spuriousstates)出现
踿踿

,都应认真对待.特别是前面已提到

的不配对粒子的堵塞效应
踿踿踿踿踿踿踿踿踿踿

(blockingeffect),尽管它对低激发态性质有很重要影

响,但在BCS方法中却很难恰当地处理它栜 ,因为不同的堵塞能级,将导致不同的
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准粒子基.因此,对于建立在BCS方法基础上得出的关于原子核性质的结论,要十

分小心,其中有一些重要结论还有待认真研究.栙~栞 例如,设准粒子真空态 0暤暤,一
准粒子激发态毩+

毺0 0暤暤和毩+
毻0 0暤暤,二准粒子激发带毩+

毺0毩
+
毻0 0暤暤的能量分别为0,

E毺0
,E毻0

和E毺0毻0
,则E毺0毻0=E毺0+E毻0.但实验资料系统分析表明,准粒子能量的这种

踿踿踿踿踿踿踿踿
相加性并不很好成立
踿踿踿踿踿踿踿踿踿

,这说明准粒子之间的相互作用必须考虑.更为明显的是原
踿

子核的转动惯量的相加性在实验上并不成立
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.实验表明,质量数A=150~190的

稀土核和A>225的锕系核都具有稳定的轴对称变形,在它们的低激发谱中观测到

大量的极有规律的转动带.这些转动带分别建立在不同的准粒子激发态之上.设准粒

子真空态 0暤暤,一准粒子态毩+
毺0 0暤和毩+

毻0 0暤暤,二准粒子态毩+
毺0毩

+
毻0 0暤暤上建立起来的转

动带的转动惯量分别记为J0,J(毺0),J(毻0)和J(毺0,毻0),则按BCS理论,有栙

R=
(J(毺0)-J0)+(J(毻0)-J0)

J(毺0,毻0)-J0
=1

而系统分析实验表明栜 ,R>1.此外,实验还发现,变形原子核的转动惯量存在系统的

奇偶差毮J(=J奇A核 -J0,J0 是偶偶核基带转动惯量),按BCS方法估算(见上页文献

栙),毮J/J0曋15%.但实验分析发现,毮J/J0 有很大幅度涨落.这表明堵塞效应要认

真考虑.用严格考虑堵塞效应的粒子数守恒方法,对推转壳模型的计算结果,对实验

观测到的毮J/J0 的大幅度涨落给出了较好的说明栛 .配对能隙殼对于不配对粒子数

(seniority数)s(即诸塞效应)和转动角频率氊的依赖关系,都只有在对力的粒子数

守恒(particle灢numberconserving,PNC)计算方法中得到可靠的阐明.栞

栙暋J.Y.ZengandT.S.Cheng,Nucl.Phys.A405(1983)1.

栚暋C.S.WuandJ.Y.Zeng,Phys.Rev.Lett.66(1991)1022.

栛暋J.Y.Zeng,Y.A.Lei,T.H.Jin,andZ.J.Zhao,Phys,Rev.C50(1994)746.

栜暋S.X.LiuandJ.Y.Zeng,Phys.Rev.C66(2002)067301.

栞暋X.Wu,Z.H.Zhang,J.Y.Zeng,andY.A.Lai,Phys.Rev.C83(2011)034323.

习暋暋题

4灡1暋设全同Fermi子体系在轴对称势场中运动.单粒子能级毰毻 为二重简并,毰毻 能级上的两

个简并态分别用毻,焵毻标记.令

S+
毻 =a+

毻a+
焵毻 ,暋暋S毻 =a焵毻a毻,暋暋n暷毻=a+

毻a毻+a+
焵毻a焵毻

S+
毻 (S毻)代表毰毻 能级上一对粒子的产生(湮没)算符,n暷毻表示毰毻 能级上的粒子数算符.证明

[S毺,S+
毻 ]= (1-n暷毺)毮毺毻

[n暷毺,S+
毻 ]=2S+

毺毮毺毻

[n毺,S毻]=-2S毺毮毺毻

暋暋4灡2暋同上题.设粒子之间有对力作用,Hamilton量为

H = 暺
毻
毰毻(a+

毻a毻+a+
焵毻a焵毻)-G暺

毺毻
S+

毺S毻

G为对力强度.设体系只有一对粒子,求其能量本征值(真空态能量取为0).
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提示暋分两类状态,即
(a)两个粒子“不配对暠,分别处于不同单粒子能级上,用a+

毺a+
毻 0暤描述(毺曎毻),能量

为毰毺+毰毻.

(b)两个粒子“配对暠,用 氉暤=A+ 0暤= 暺
毻
c毻S+

毻 0暤描述,代入 H 氉暤=E 氉暤,利用[H,

A+ ]0暤=HA+ 0暤=EA+ 0暤以及上题给出的对易式,证明能量本征值E由下式确定:

暺
毻

1
E-2毰毻

=- 1
G

暋暋4灡3暋设Fermi子体系在中心力场中运动.单粒子能级用毰j 表示,j为粒子的角动量,单粒

子态记为a+
jm 0暤,m=j,j-1,…,-j+1,-j,能级为(2j+1)重简并.考虑有一对粒子处于毰j

能级上,角动量耦合为J=0,记为 jj00暤.试用产生算符把 jj00暤表示出来.
答

jj00暤= 1
毟j

暺
m>0

a+
jma+

j煆m 0暤暋暋(毟j =j+1/2)

a+
j煆m = (-1)j-ma+

j-m,暋暋a+
j煆m 0暤是a+

jm 0暤的时间反演态.

暋暋4灡4暋同上题,令

S+
j = 1

毟j
暺
m>0

a+
jma+

j煆m ,暋暋Sj = 1
毟j

暺
m>0

aj煆majm

n暷j= 暺
m
a+

jmajm = 暺
m>0

(a+
jmajm +a+

j煆maj煆m )

暋暋证明

[n暷j,S+
j ]=2S+

j ,暋暋[nj,Sj]=-2Sj

[Sj,S+
j ]=1-n暷j/毟j

试与Bose子对易关系比较.

4灡5暋同4灡3题.(a)设毰j 能级上有两对Fermi子,证明归一化的波函数可表示为

1
2(1-1/毟j)

(S+
j )2 0暤

(b)设毰j 能级上有k对粒子(k曑毟j),证明归一化的波函数可表示成

k!暻
k-1

毻=0
1- 毻

毟( )[ ]
j

-1/2
(S+

j )k 0暤

暋暋4灡6暋同4灡3题.设粒子之间还有对力作用,Hamilton量为

H = 暺
jm
毰ja+

jmajm - G
4暺

jj曚
S+

jSj曚

设体系由一对粒子组成.其配对态的一般形式为

A+ 0暤= 暺
j
cjS+

j 0暤

利用第4题证明了的关系式,证明能量本征值E由下式确定:

暺
j

毟j

E-2毰j
=- 1

G

暋暋提示暋计算[H,A+ ],代入[H,A+ ]0暤=HA+ 0暤=EA+ 0暤.[参阅J.H昳gaasen灢Feld灢

man,Nucl.Phys.28(1961)258.]

4灡7暋同4灡3题.设只有一条单粒子能级毰j.令
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Sm+ = (-1)j+ma+
jma+

j-m

Sm- = (Sm+)+= (-1)j+maj-majm

Sm0 = 1
2

(a+
jmajm +a+

j-maj-m -1)

暋暋证明

[Sm+,Sm-]=2Sm0

[Sm0,Sm+]=Sm+

[Sm0,Sm-]=-Sm-

与角动量的对易关系式比较,
[j+,j-]=2jz,暋暋[jz,j+]=j+,暋暋[jz,j-]=-j-

(Sm+ ,Sm- ,Sm0)称 为 准 自 旋 (quasispin).[参 阅 A.K.Kerman,Annalsof Physics,12
(1961),300.]

对于轴对称势场中的Fermi子体系(第1题),亦可类似处理.令

S毻+ =a+
毻a+

焵毻 ,暋暋S毻- = (S毻+)+=a焵毻a毻暋暋暋

S毻0 = 1
2

(a+
毻a毻+a+

焵毻a焵毻-1)= 1
2

(n暷毻-1)

证明

[S毺+,S毻-]=2S毺0毮毺毻

[S毺0,S毻暲]=暲S毺暲毮毺毻

暋暋4灡8暋设中心力场只有一条单粒子束缚能级毰j(为方便,取毰j=0).设有 N 个 Fermi子处于

此能级上(N曑2j+1),粒子之间有对力作用,Hamilton量表示为

H =-G 暺
m,m曚>0

a+
jma+

j煆maj煆m曚ajm曚暋暋(G>0)

简记为

H =-G 暺
m,m曚>0

a+
ma+

煆ma煆mam曚

求此 N 粒子系的能谱.
提示暋令

S+= 暺
m>0

a+
ma+

煆m ,暋暋S-= (S+)+ 暋暋暋暋暋

S0 = 1
2

(N
暷

-毟),暋暋N
暷

= 暺
m>0

(a+
mam +a+

煆ma煆m),暋暋毟=j+1/2

证明

[S+,S-]=2S0,暋[S0,S+]=S+,暋[S0,S-]=-S-

而

H =-GS+S-=-G(S2 -S2
0 +S0)

S称为准自旋(quasispin).
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第5章暋路 径 积 分

继20世纪20年代中期 Heisenberg的矩阵力学和Schr昳dinger的波动力学提

出之后,Feynman在20世纪40年代提出了量子力学的另一种理论形式,他称之

为路径积分(pathintegral)栙~栜 .这个理论的核心是如何去构造量子力学中的传播
踿踿踿踿踿踿踿踿踿踿踿踿踿

子
踿

(propagator).传播子包含了量子体系的全部信息
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.不同于Schr昳dinger波动力

学处理此问题的方案(见5灡1节),Feynman的路径积分理论把传播子直接与经典
踿踿踿踿踿踿踿踿踿

力学中的作用量
踿踿踿踿踿踿踿

(作为粒子坐标的函数
踿踿踿踿踿踿踿踿踿

)联系起来
踿踿踿踿.

栙暋R.P.Feynman,Ph.D.thesis,PrincetonUniv.,1942.APrincipleofLeastActioninQuantum

Mechanics.

栚暋R.P.Feynman,Rev.Mod.Phys.20(1948)367.Space灢TimeApproachtoNon灢relativisticQuan灢

tum Mechanics.

栛暋R.P.FeynmanandA.R.Hibbs,QuantumMechanicsandPathIntegral,McGraw灢Hill,1965.

栜暋R.P.Feynman,NobelLectureinPhysics,1965,TheDevelopmentoftheSpace灢TimeViewof

QuantumElectrodynamics,刊于 Science153(1966)699灢708;或见PhysicsToday,1966,Aug.p.31.

如果说 Heisenberg的矩阵力学是正则形式下经典力学的量子对应
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(把经典
踿踿踿

Poisson括号换为量子对易式
踿踿踿踿踿踿踿踿踿

,见2灡2节),Schr昳dinger的波动力学则与经典力学
踿踿踿踿踿踿踿踿踿踿踿

中的
踿踿 Hamilton灢踿Jacobi

方程有密切的关系
踿踿踿踿踿踿踿踿

(2灡3节).概括起来.它们与经典力学的
踿踿踿踿踿踿踿踿

Hamilton形式有渊源关系
踿踿踿踿踿踿踿.与此不同,Feynman的路径积分理论则与经典力学的

踿踿踿踿踿踿踿踿踿踿踿踿踿
Lagrange形式

踿踿
(通过作用量
踿踿踿踿踿

)有很密切的关系
踿踿踿踿踿踿踿.其优点之一是易于从非相对论形式

踿踿踿踿踿踿踿踿踿
推广到相对论形式
踿踿踿踿踿踿踿踿

,因为作用量是一个相对论性不变量.所以路径积分理论对于场

量子化有其优越性.Feynman路径积分理论是现代量子场论(量子规范场理论)和
量子引力场理论的出发点.它的另一个优点是把含时间

踿踿踿踿
(time灢dependent)问题和

踿踿踿
不含时间
踿踿踿踿

(time灢independent)问题纳于同一个理论框架中来处理
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.路径积分理论形

式在统计物理、凝聚态物理、粒子物理和核物理理论中已得到广泛应用.另外,通过

Feynman路径积分理论可以更形象地研究量子力学与经典力学的关系,并使人们

对于经典力学的基本规律(如最小作用原理)有了更深刻的理解(见5灡2节).
当然,人们看问题应力求全面一些.事实上,Heisenberg的矩阵力学

踿踿踿踿
(量子力
踿踿踿

学的一种代数形式
踿踿踿踿踿踿踿踿

),Schr昳dinger的波动力学
踿踿踿踿

[量子力学的微分方程形式或局域性

描述(localdescription)],与Feynman的路径积分理论
踿踿踿踿踿踿

[量子体系的一种整体性描
踿踿踿踿踿踿踿踿踿踿踿

述
踿

(globaldescription)],是彼此等价的
踿踿踿踿踿踿.它们各有优点.在处理具体问题时,可根

据问题的侧重点来选用较为方便的理论形式.
路径积分理论的基本思想是采用不同于Schr昳dinger波动力学的新方案来构
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造传播子,把它与经典力学中的作用量直接联系起来.为此,在5灡1节中先回顾在

Schr昳dinger波动力学中如何构造传播子,以及传播子的基本性质.在5灡2节中介

绍路径积分的基本思想.在5灡3节中介绍 Feynman的计算传播子的多边折线道

(polygonalpaths)方案.在5灡4节中讨论Feynman的路径积分理论与Schr昳dinger
波动方程等价.在5灡5节中分别给出常用的在位形空间(configurationspace)和相

空间(phasespace)中计算传播子的公式.作为应用,在5灡6节中用路径积分理论来

讨论 Aharonov灢Bohm效应.关于路径积分理论的详细论述,可参阅前引Feynman
& Hibbs的书.路径积分理论的近期进展及其在各领域中的应用,可参阅有关综

述性文献或专著栙~栜 .

栙暋D .C.KhandekarandS.V.Lawande.Phys.Reports137(1986)115,Feynmanpathintegrals:

someexactresultsandapplications.

栚暋P.D.Mannheim,Am.J.Phys.51(1983)328,ThePhysicsbehindPath灢integralsinQuantumMe灢

chanics.

栛暋L.S.Schulman,TechniquesandApplicationsofPathIntegrals,WileyInterscience,NewYork,

1981.

栜暋D.C.Khandekas,S.V.LewandeandK.V.Bhagwat,PathIntegralMethodandtheirAppl灢

ication,WorldScientific,1993.

5灡1暋传暋播暋子

先回顾一下Schr昳dinger波动力学中的传播子(propagator)概念(卷栺,2灡2灡2
节).按Schr昳dinger波动力学,一个量子体系状态 氉(t)暤的演化由Schr昳dinger方

程给出

i淈灥
灥t氉(t)暤=H 氉(t)暤 (5灡1灡1)

H 为体系的 Hamilton量.以下假设 H 不显含t.按式(5灡1灡1),体系在时刻t曞的状

态 氉(t曞)暤,可由时刻t曚(曑t曞)的状态 氉(t曚)暤如下确定:

氉(t曞)暤=exp[-iH(t曞-t曚)/淈]氉(t曚)暤 (5灡1灡2)
如采用坐标表象,则

暣r曞氉(t曞)暤= 暣r曞 exp[-iH(t曞-t曚)/淈]氉(t曚)暤

=曇d3x曚暣r曞 exp[-iH(t曞-t曚)/淈]r曚暤暣r曚氉(t曚)暤

或表示成

氉(r曞t曞)=曇d3x曚K(r曞t曞,r曚t曚)氉(r曚t曚) (5灡1灡3)

其中

K(r曞t曞,r曚t曚)= 暣r曞 exp[-iH(t曞-t曚)/淈]r曚暤 (5灡1灡4)
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称为传播子.

1灡 传播子的物理意义

设氉(r曚t曚)=毮(r曚-r0),即t曚时刻粒子处于坐标本征态,本征值为r0 点,由式

图5灡1

(5灡1灡3)可得氉(r曞t曞)=K(r曞t曞,r0t曚).为方便,不妨在

此把r0 换记为r曚,即t曚时刻粒子位于r曚点,则t曞时刻

粒子在r曞点的波幅为氉(r曞t曞)=K(r曞t曞,r曚t曚).由此,我
们可以得出传播子的物理意义如下:设粒子在初时

踿踿踿踿踿踿
刻
踿t曚处于空间

踿踿踿踿r曚处(位置本征态),则K(r曞t曞,r曚t曚)表示
踿踿

在以后某时刻
踿踿踿踿踿踿t曞(曒t曚)粒子处于空间

踿踿踿踿踿踿r曞点的概率波幅
踿踿踿踿踿踿

(probabilityamplitude)(见图5灡1).
当然,粒子在t曚时刻的量子态不一定是位置本

征态,一般用氉(r曚t曚)描述.在这种情况下,t曞时刻粒

子处于r曞点的概率波幅氉(r曞t曞)由

曇K(r曞t曞,r曚t曚)氉(r曚t曚)d3x曚

给出,此即式(5灡1灡3).式(5灡1灡4)是传播子在坐标表象中的表示式.在能量表象中,
即用 H(不显含t)的本征态 n暤为基矢的表象,

H n暤=En n暤 (5灡1灡5)
则式(5灡1灡4)可表示为

K(r曞t曞,r曚t曚)=暺
nn曚

暣r曞n暤暣n exp[-iH(t曞-t曚)/淈]n曚暤暣n曚r曚暤

=暺
nn曚

氉n(r曞)exp[-iEn(t曞-t曚)/淈]毮nn曚氉*
n曚 (r曚)

=暺
n
氉*

n (r曚t曚)氉n(r曞t曞) (5灡1灡6)

其中

氉n(r曞t曞)=氉n(r曞)exp(-iEnt曞/淈)
显然,由式(5灡1灡6)可看出,当t曞=t曚=t时,

K(r曞t,r曚t)= 暺
n
氉*

n (r曚)氉n(r曞)=毮(r曚-r曞) (5灡1灡7)

例暋自由粒子.

Hamilton量为 H=p2/(2m),对于三维自由粒子,能级的简并度为无穷大.考虑到动量p为

守恒量,能量本征态可以表示成守恒量完全集p(px,py,pz)的共同本征态,即能量为p2/(2m)

的诸简并态可以用动量本征值p予以区分开来,即

氉p(rt)= 1
(2毿淈)3/2expip·r-p2

2m
æ
è
ç

ö
ø
÷t

é

ë
êê

ù

û
úú淈

=氉p(r)exp(-ip2t/(2m)淈) (5灡1灡8)
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传播子可表示为

K(r曞t曞,r曚t曚)=暣r曞 exp[-iH(t曞-t曚)/淈]r曚暤

=曇d3p暣r曞 p暤暣p exp[-ip2(t曞-t曚)/(2m淈)]r曚暤

=曇d3p氉p(r曞)e-ip2(t曞-t曚)/(2m淈)暣p r曚暤

=曇d3p氉*
p (r曚)eip2t曚/(2m淈)·氉p(r曞)e-ip2t曞/(2m淈)

=曇d3p氉*
p (r曚t曚)氉p(r曞t曞)

= 1
(2毿淈)3曇d3pexp i

淈 p·(r曞-r曚)-p2

2m
(t曞-t曚[ ]{ })

积分后可得

K(r曞t曞,r曚t曚)= m
2毿淈i(t曞-t曚[ ])

3/2

exp im(r曞-r曚)2
2淈(t曞-t曚[ ]) (5灡1灡9)

利用毮函数性质,可以证明,当(t曞-t曚)曻0时,上式右边曻毮(r曚-r曞),这与式(5灡1灡7)一致.

我们注意到,对于一个经典自由粒子,Lagrange量L=T(动能)=1
2mv2 为守恒量,因而作

用量[附录 A灡1,式(A灡1灡11]

Scl(r曞t曞,r曚t曚)=曇
t曞

t曚
Ldt= 1

2mv2(t曞-t曚)= m
2

(r曞-r曚)2
(t曞-t曚) (5灡1灡10)

所以,式(5灡1灡9)右边的指数因子可表示成exp[iScl(r曞t曞,r曚t曚)/淈].由此,可以得出一个印象,量
踿

子力学中的传播子可能与经典力学中的作用量有密切关系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

练习暋对于一维谐振子,V(x)=m氊2x2/2,证明

K(x曞t曞,x曚t曚)= m氊
2毿淈isin氊( )T

1/2

exp im氊
2淈sin氊T

[(x曚2 +x曞2)cos氊T-2x曚x曞{ }]
(5灡1灡11)

T= (t曞-t曚)

暋暋对于三维各向同性谐振子,V(r)=m氊2r2/2,只需把上式中x曚曻r曚,x曞曻r曞,x曚x曞曻r曚·r曞,即
可得出其传播子K(r曞t曞,r曚t曚).与附录 A灡1的练习2比较,观察一下传播子与作用量的关系.

2灡 传播子的基本性质

1)传播子的组合规则(combinationrule)
按式(5灡1灡3)

氉(r曞t曞)=曇d3x曚K(r曞t曞,r曚t曚)氉(r曚t曚)

我们可以设想把传播过程分得更细一些(见图5灡2).设想t1 时刻(t曚<t1<t曞)粒子

态为氉(r1,t1),则

氉(r曞t曞)=曇d3x1K(r曞t曞,r1t1)氉(r1t1)

而氉(r1t1)与氉(r曚t曚)有下列关系:

氉(r1t1)=曇d3x曚K(r1t1,r曚t曚)氉(r曚t曚)
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图5灡2

由此得

氉(r曞t曞)=犽d3x曚d3x1K(r曞t曞,r1t1)

·K(r1t1,r曚t曚)氉(r曚t曚)
与式(5灡1灡3)相比,可知

K(r曞t曞,r曚t曚)=曇d3x1K(r曞t曞,r1t1)

·K(r1t1,r曚t曚)暋暋暋暋暋暋暋
(5灡1灡12)

此即传播子的组合规则.
还可以进一步推广,设想把(t曚,t曞)分成N 段,

t0 =t曚,t1,t2,…,tN-1,tN =t曞
粒子相应的坐标为

r曚,r1,r2,…,rN-1,rN =r曞
在给定r曞、r曚情况下,每一个rj(j=1,…,N-1)可以在全空间中变动,这样

K(r曞t曞,r曚t曚)=曇…曇d3x1d3x2…d3xN-1K(r曞t曞,rN-1tN-1)

·K(rN-1tN-1,rN-2tN-2)…K(r1t1,r曚t曚) (5灡1灡13)

暋暋2)传播子满足的方程

按照上面阐述的传播子的物理意义,K(rt,r曚t曚)(看成r,t的函数)乃是一种特

殊的波函数,指明粒子在t曚时刻处于空间r曚点.所以它应满足Schr昳dinger方程

i淈灥
灥tK

(rt,r曚t曚)= -淈2

2m

殼

2+V(r,t[ ])K(rt,r曚t曚)

(t>t曚) (5灡1灡14)
即

i淈灥
灥t+淈2

2m

殼

2-V(r,t[ ])K(rt,r曚t曚)=0暋暋(t>t曚)

到此,对于t<t曚,尚未定义K(rt,r曚t曚).从因果律来考虑,如定义

K(rt,r曚t曚)=0暋暋(t<t曚) (5灡1灡15)
是很自然的.显然t<t曚,K(rt,r曚t曚)=0满足Schr昳dinger方程.但t=t曚时刻,并不

满足Schr昳dinger方程,因此一般说来,这样定义的传播子在t=t曚时可能出现不连

续变化.按前面给出的传播子定义,当t=t曚时[见式(5灡1灡7)]

K(rt,r曚t)=毮(r-r曚) (5灡1灡16)
所以K(rt,r曚t曚)满足下列微分方程:

i淈灥
灥t+淈2

2m

殼

2-V(r,t[ ])K(rt,r曚t曚)=i淈毮(r-r曚)毮(t-t曚)(5灡1灡17)

此方程右边可理解为一种“点源暠(pointsource)的影响.可以看出,K(rt,r曚t曚)正是

Schr昳dinger方程的一类 Green函数.
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5灡2暋路径积分的基本思想

下面介绍Feynman路径积分的基本思想栙.设A 点为粒子源(图5灡3).在B
点放置一个探测器,对粒子进行探测.设想在A 与B 之间放置一个多孔屏(屏上开

图5灡3

有一系列小孔C1,C2,…).从经典力学来看,
若粒子在位置A 处的动量已给定,则它往后

运动的轨道也随之完全确定.如它的动量合

适,则有可能通过屏上某一小孔Ck,尔后在B
点被观测到(即Ck 处于粒子运动轨道上,否
则粒子不能经过Ck 孔).如果从A 点发射出

的粒子的动量有一个分布,则粒子有一定的

概率经过Ck 而在B 点被观测到.在B 点被测

得的总概率为

P(B,A)= 暺
k
P(BCkA) (5灡2灡1)

其中P(BCkA)表示粒子从A 点出发,经过Ck

孔而在B 点被测得的概率.按经典力学概念,
由于通过屏上不同孔而达到

踿踿踿踿踿踿踿踿踿踿B 点的事件是不相容
踿踿踿踿踿踿踿踿

的,所以式(5灡2灡1)中各概率是
踿踿踿

相加的
踿踿踿.

现在从量子力学的观点来分析.考虑到粒子 波动两象性,按照态叠加原理,粒
子从A 点出发到B 点的概率波幅

踿踿踿踿
(probabilityamplitude)为

K(B,A)= 暺
k
氉(BCkA) (5灡2灡2)

其中氉(BCkA)表示只有
踿踿

孔Ck 打开的情况下,粒子(从A 点出发,经过Ck 孔)在B
点出现的概率波幅.按波函数的统计诠释,粒子在B 点被测到的概率为

P(B,A)= K(B,A)2 = 暺
k
氉(BCkA)

2
(5灡2灡3)

暋暋现在设想屏上开的小孔愈来愈多,最后就等于没有设置这个屏.此时粒子经过

屏上所有各点而达到B 点的概率波幅都应考虑进去.我们还可以设想,在A 和B
之间重重叠叠地设置了无限多个屏,每个屏上又都开了无限多个小孔(这相当于一

个屏也没有设置),于是粒子从A 点出发经过一切可能的中介点(即经过一切可能
踿踿踿踿踿踿

的路径
踿踿踿

)而达到B 点的概率波幅都应考虑在内.设r(t)代表从A 到B 的一条可能

的路径,则粒子从A 出发而在B 点出现的概率波幅(即传播子)为

K(B,A)= 暺
所有r(t)

氉(r(t)) (5灡2灡4)
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其中氉(r(t))代表粒子经过路径r(t)而到达B 点的概率波幅.式(5灡2灡4)表示不同
踿踿

路径所贡献的波幅以相同权重相加起来
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,但相位可以不同
踿踿踿踿踿踿

(见下),从而会出现干涉

现象.
Feynman路径积分理论的基本假定是如下构造传播子

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
:

K(B,A)=C 暺
所有道路

exp{iS[r(t)]/淈} (5灡2灡5)

其中

S[r(t)]=曇
tB

tA
L(r,r·,t)dt (5灡2灡6)

代表粒子沿路径r(t)从A 到B 的作用量,L 是粒子的Lagrange量,C 为适当的归

一化常数.考虑到S的量纲是角动量,在式(5灡2灡5)的相因子中加上了淈,使相因子

变成无量纲.注意,这里的路径
踿踿踿踿踿r(t)并不限于要求作用量

踿踿踿踿踿踿踿踿踿S取极值的经典轨道
踿踿踿踿踿踿踿踿

,而
踿

是包括从
踿踿踿踿A 到

踿B 的一切可能的通道
踿踿踿踿踿踿踿踿.于是粒子在B 点被测到的概率为

P(B,A)= K(B,A)2 = C 2 暺
所有路径

exp{iS[r(t)]/淈}
2

(5灡2灡7)

实际上,由于各种可能的路径是连续变化的,而且不可数,所以式(5灡2灡7)中的求和

应化为对所有连续变化的路径
踿踿踿踿踿踿踿踿踿踿r(t)进行积分

踿踿踿踿.这就是路径积分名称的由来.如何计

算这个路径积分,是一个困难的数学问题.在5灡3节中将介绍Feynman提出的多

边折线道方案(polygonalpathsscheme).可以证明,按Feynman的路径积分理论

得出的传播子,与从Schr昳dinger波动力学理论所得结果完全相同.还可以更普遍

地证明Feynman路径积分理论与Schr昳dinger波动方程等价.特别是,可以从路径

积分的思路,导出Schr昳dinger方程(见5灡4节).
在进行路径积分的具体计算之前,我们先对路径积分的物理含义进行一些讨

论.这对于更深入理解经典力学中的最小作用原理是很有启发的.
在经典力学的Lagrange理论形式中,最小作用原理是作为第一原理

踿踿踿踿踿踿踿踿踿踿踿踿踿
(或假定)

出现的
踿踿踿.虽然无数的实验已经证明在宏观物质世界中它是千真万确的,但在经典力

学理论框架中,不能去追问:粒子为什么只选择走使
踿踿踿踿踿踿踿踿踿踿S 取极值(毮S=0)的路径

踿踿踿
,而
踿

不允许走其他路径
踿踿踿踿踿踿踿踿

(毮S曎0)? 人们只能说:“自然界规律本来就如此!暠(或者说“上
帝就是如此安排的暠).但试问:如果不允许粒子对每一条路径都去“试探暠一下,它
如何能判断走哪一条道“最佳暠?

按照Feynman的观点,粒子走各种道路的可能性都是存在的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.这是否违反了

经过无数实践检验的最小作用原理? 否.不仅如此,它还对最小作用原理提供了更
踿踿踿踿踿踿踿踿踿踿踿踿踿

自然的说明
踿踿踿踿踿

,从而更深刻地认识了最小作用原理
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.按照路径积分理论,从

踿A 到
踿B 的

踿
各轨道均应一视同仁
踿踿踿踿踿踿踿踿踿

(等权
踿踿

)地考虑
踿踿踿

,但沿不同轨道所贡献的概率波幅的相位不同
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,
因而会导致干涉现象
踿踿踿踿踿踿踿踿踿.设从A 到B 的某一轨道相应的作用量为S,而与之相邻的

另一轨道相应的作用量记为S+毮S(见图5灡4).一般说来,对宏观上可以区分的两
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条轨道来讲,毮S烅淈,即相位差毮S/淈烅1,所以相邻诸轨道的贡献,彼此相消很厉害.
但在使

踿S取极值
踿踿踿

(毮S=踿0)的一条轨道
踿踿踿踿踿

(与它相应的作用量为Scl)的邻域的诸轨道,
在准到一级小O(毮S)下,作用量(曋Scl+O(毮S)2)是相同的,因而相位相同

踿踿踿踿.这些相
踿踿踿

邻轨道的贡献
踿踿踿踿踿踿

,由于相干叠加
踿踿踿踿踿踿

(coherentsuperposition),将使总的概率波幅不仅不
踿踿踿踿踿踿踿踿踿踿踿

抵消
踿踿

,反而大大加强
踿踿踿踿踿踿.这就是为什么宏观粒子总是沿最小作用原理所指示的轨道而

运动的量子力学说明.
按照Feynman的观点,微观世界中的干涉和衍射诸现象,均可得到自然的说

明.例如,粒子从A 到B,如在路旁有一个障碍物C(图5灡5),它就会影响到在B 处

测得粒子的概率.因为当C存在时,凡通过C的道路都因受阻而被排除,因而到达

B 点的总的概率波幅就与障碍物C 不存在的情况有所不同.表现出来,就是衍射

现象.与此相反,如果象经典粒子那样,粒子只走毮S=0所规定的一条轨道,则只

要C不横亘在轨道上,就不会对粒子有影响,即不会产生衍射现象.

图5灡4 图5灡5

5灡3暋路径积分的计算方法

按Feynman路径积分的假定,传播子[见5灡2节,式(5灡2灡5)]

K(r曞t曞,r曚t曚)=C 暺
所有路径

exp{iS[r(t)]/淈} (5灡3灡1)

其中

S[r(t)]=曇
t曞

t曚
L(r,r·,t)dt

是依赖于粒子轨道r(t)的泛函.注意,这里并不要求这些轨道使S取极值,而是包

括在给定初点和终点[r(t曚)=r曚,r(t曞)=r曞]下的一切可能的轨道
踿踿踿踿踿踿踿.每一条轨道对传
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播子做等权贡献,但各有不同的相位曍S[r(t)].由于各种轨道是连续变化的,所以

式(5灡3灡1)中的求和应化为下列泛函积分:

K(r曞t曞,r曚t曚)=曇exp{iS[r(t)]/淈}D[r(t)] (5灡3灡2)

这里曇D[r(t)]就是表示对给定初终点
踿踿踿踿踿踿

[r(t曚)=r,r(t曞)=r曞]下的一切连续变化的
踿踿踿踿踿踿踿踿踿

可能轨道求积分
踿踿踿踿踿踿踿.Feynman提出如下的一个多边折线道(polygonalpaths)的简单

计算方案,见图5灡6,即把路径积分作为多维空间Riemann积分的极限栙.

图5灡6
将时间间隔(t曞-t曚)做N 等分,令毰=(t曞-t曚)/N(N 是一个很大的正整数,最

后取极限N曻曓,毰曻0),
t0 =t曚,t1,t2,…,tN-1,tN =t曞
tj-tj-1 =毰,暋暋j=1,2,…,N

相应的粒子坐标rj=r(tj)(j=1,2,…,N-1)的变化范围是(-曓,+曓),而
r(t0)=r(t曚)=r曚,r(tN)=r(t曞)=r曞

保持固定.N 是很大的正整数.这样,作用量(沿多边折线道)可表示为

SN[r(t)]=毰暺
N

j=1
L

rj+rj-1

2
,rj-rj-1

毰
,j

æ

è
ç

ö

ø
÷毰 (5灡3灡3)

而

曇D[r(t)]曻CN曇暻
N-1

j=1
d3xj (5灡3灡4)
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CN 应恰当选择,使N曻曓(毰曻0)时积分的极限存在.这样,传播子可表示为

KN(r曞t曞,r曚t曚)=CN曇exp i
淈SN[r(t{ })]暻

N-1

j=1
d3xj, (5灡3灡5)

K(r曞t曞,r曚t曚)=lim
N曻曓
毰曻0

KN(r曞t曞,r曚t曚).

一维自由粒子的传播子

按上述方案,把时间间隔(t曞-t曚)分成 N 等分(N曻曓),先计算无穷小段xj,

tj曻xj+1,tj+1的作用量.考虑到自由粒子(V=0)的动量守恒,在无穷小段中的作用

量为(与经典轨道的计算结果相同,参见附录 A灡1)

S[xj+1tj+1,xjtj]=m
2

xj+1-xj

tj+1-t
æ

è
ç

ö

ø
÷

j

2

·(tj+1-tj)= m
2毰

(xj+1-xj)2

(5灡3灡6)
因此

K(x曞t曞,x曚t曚)=lim
N曻曓
毰曻0

CN曇
+曓

-曓
dx1…曇

+曓

-曓
dxN-1exp im

2淈毰暺
N-1

j=0

(xj+1-xj)[ ]2

(5灡3灡7)
利用积分公式

曇
+曓

-曓
dxexp[毩(x1-x)2+毬(x2-x)2]= -毿

毩+毬
exp

毩毬
毩+毬

(x1-x2)
é

ë
êê

ù

û
úú

2

(5灡3灡8)
式(5灡3灡7)右侧依次积分,如取(详细讨论见下节)

CN = [m/(2毿淈i毰)]N/2 (5灡3灡9)
则最后可得

K(x曞t曞,x曚t曚)= m
2毿淈i(t曞-t曚[ ])

1/2

expim
2淈

(x曞-x曚)2
(t曞-t曚[ ]) (5灡3灡10)

推广到三维自由粒子

K(r曞t曞,r曚t曚)= m
2毿淈i(t曞-t曚[ ])

3/2

expim
2淈

(r曞-r曚)2
(t曞-t曚[ ]) (5灡3灡11)

与Schr昳dinger波动方程的计算结果相同[见5灡1节,式(5灡3灡9)].

练习1暋对于一维谐振子,L=1
2mx

·2-1
2m氊2x2,计算其传播子.

答

K(x曞t曞,x曚t曚)= 2m
2毿淈isin氊( )T

1/2

exp im氊
2淈sin氊T

[(x曞2 +x曚2)cos氊T-2x曞x曚{ }]

暋暋暋暋暋暋暋暋暋 T=(t曞-t曚) (5灡3灡12)

对于三维各向同性谐振子,只需把x曚曻r曚,x曞曻r曞,x曞x曚曻r曞·r曚.
(与5灡1节p.191练习的计算结果比较.)
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p灡188所引Feynman& Hibbs书中还给出了很多具体例子的传播子的计算.例如,V=a+
bx+cx2+dx·+exx·形式的势场中粒子的传播子的计算.

练习2暋计算线性势V(x)=Fx(F为常量)中粒子的传播子.
答暋经典粒子的作用量为

S[x曞t曞,x曚t曚]= m
2

(x曞-x曚)2
(t曞-t曚) - F

2
(t曞-t曚)(x曞+x曚)- F2

24m
(t曞-t曚)3

K(x曞t曞,x曚t曚)= m
2毿淈i(t曞-t曚)exp

i
淈S[x曞t曞,x曚t曚{ }] (5灡3灡13)

暋 暋 参 见 B.R. Holstein,Topicsin Advanced Quantum Mechanics,Addison灢Wesly,

1992,p.23~24.

5灡4暋Feynman路径积分理论与Schr昳dinger
波动方程等价

5灡4灡1暋从Feynman路径积分到Schr昳dinger波动方程

暋暋在Schr昳dinger波动力学中,用波函数
踿踿踿

描述粒子的量子态.如一维粒子,用

氉(x,t)表征粒子在时刻t出现于x 点的概率波幅(并不问其过去历史如何
踿踿踿踿踿踿踿踿踿踿

).传播
踿踿

子
踿

则直接给人以更细致的信息,K(xt;x曚t曚)表示一种特定的概率波幅,即指明粒子

在t曚时刻位于x曚点,而在t时刻出现于x 点的概率波幅.两者关系如下:

氉(x,t)=曇K(xt;x曚t曚)氉(x曚,t曚)dx曚 (5灡4灡1)

事实上,人们对粒子过去状态的细节并无兴趣,只需用氉(x,t)就足以描述粒子的

状态了.粒子过去的历史情况已反映在氉(x,t)中.尽管人们忘记了过去历史,只要
踿踿

知道某时刻
踿踿踿踿踿t粒子的波函数

踿踿踿踿踿踿氉(x,t),根据Schr昳dinger方程,就可以知道以后任何
踿踿踿踿踿踿踿踿踿

时刻粒子状态
踿踿踿踿踿踿.由于Schr昳dinger方程的形式比传播子满足的方程简单一些,所以

人们通常还是习惯与Schr昳dinger方程打交道,采用氉(x,t)这种描述方式.
Feynman路径积分理论的特点是采用完全不同的方案来建立传播子

踿踿踿
,把它与
踿踿踿

经典力学中的作用量直接联系起来
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.下面我们来讨论路径积分理论与Schr昳dinger
波动方程的等价性.为简单起见,仍以一维粒子来讨论.

考虑t+毰(毰曻0+ )时刻粒子的状态氉(x,t+毰),它与t时刻粒子的状态氉(y,t)
有下列关系:

氉(x,t+毰)=曇
+曓

-曓
K(x,t+毰;y,t)氉(y,t)dy (5灡4灡2)

考虑到毰曻0+ ,在此无穷小的时间间隔中,按照Feynman的假定,传播子可表示成

K(x,t+毰;y,t)=Cexp i毰
淈L

x+y
2

,x-y
毰

,æ

è
ç

ö

ø
÷

é

ë
êê

ù

û
úút (5灡4灡3)

C待定.设粒子在一维势场V(x,t)中运动,

L= 1
2mx·2-V(x,t) (5灡4灡4)
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则式(5灡4灡3)可表示成

氉(x,t+毰)=C曇
+曓

-曓
ex {p i毰é

ë
ê
ê淈
m
2

x-yæ

è
ç

ö

ø
÷

毰

2

-V
x+y

2
,æ

è
ç

ö

ø
÷

ù

û
ú
ú }t 氉(y,t)dy暋暋(5灡4灡5)

令

x=y-毲 (5灡4灡6)
即y=x+毲,而x-y=-毲,(x+y)/2=x+毲/2,所以

氉(x,t+毰)=C曇
+曓

-曓
exp i毰

淈
m毲2

2毰2 -V x+毲
2

,æ

è
ç

ö

ø
÷

é

ë
êê

ù

û
úú{ }t 氉(x+毲,t)d毲(5灡4灡7)

上式被积函数中的指数因子exp[im毲2/(2淈毰)],当毰曻0+ 时,随毲变化而迅速振荡,
积分的贡献主要来自毲曋0区域(即y曋x邻域).因此,我们把上式中被积函数对毲
作 Taylor展开(视毰、毲为无穷小),得

氉(x,t)+毰
灥氉
灥t

=C曇
+曓

-曓
exp

im毲2

2
æ

è
ç

ö

ø
÷

淈毰
1-i毰

淈V(x,t[ ])

· 氉(x,t)+毲
灥氉
灥x

+毲2

2
灥2氉
灥x2 +

é

ë
êê

ù

û
úú… d毲 (5灡4灡8)

当毰曻0,毲曻0,忽略一切高级无穷小项并要求上式成立,则可得

氉(x,t)=C曇
+曓

-曓
exp

im毲2

2
æ

è
ç

ö

ø
÷

淈毰
d毲氉(x,t)

即

C曇
+曓

-曓
exp

im毲2

2
æ

è
ç

ö

ø
÷

淈毰
d毲=1

由此得

C= m/(2毿淈i毰) (5灡4灡9)
再利用积分公式

曇
+曓

-曓
exp

im毲2

2
æ

è
ç

ö

ø
÷

淈毰 毲d毲=0

曇
+曓

-曓
exp

im毲2

2
æ

è
ç

ö

ø
÷

淈毰 毲2d毲=i淈毰
m

式(5灡4灡8)可化为

氉(x,t)+毰
灥氉
灥t

=氉(x,t)-i毰
淈V氉(x,t)+i淈毰

2m
灥2

灥x2氉(x,t)

即

i淈灥
灥t氉

(x,t)= -淈2

2m
灥2

灥x2 +æ

è
ç

ö

ø
÷V 氉(x,t) (5灡4灡10)

这正是一维粒子的Schr昳dinger方程.这样就证明了Feynman的路径积分理论与

Schr昳dinger方程的等价性.
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*5灡4灡2暋Feynman路径积分提出的历史简介

稍仔细介绍一下Feynman提出路径积分理论的历史栙栚是颇有启发的.这个

理论是他在Princeton大学,在J.A.Wheeler指导下的博士论文中提出的.他当

时着手研究光子和电子的量子理论的含义.他认识到Lagrange量可能是解决此问

题的关键.在 Nassau灢Tavern举办的一次学术会议上,他碰到来自欧洲的 Herbert
Jehle教授.他问Jehle是否知道有什么人把Lagrange量引进量子力学中来? 第二

天,Jehle告诉他,Dirac有过这样的工作栛.
为了解Dirac的工作,要简单回顾一下波动光学中的 Huygens原理:当给了传

播过程中光波的一个波前(wavefront),则可以把该波前上的任何一点作为波源,
它们所发出的相干的子波(wavelet)叠加起来,就可构成下一时刻的波前.数学上,

Huygens原理可以表示成下列积分方程形式:

氉(x曞t曞)=曇dx曚K(x曞t曞,x曚t曚)氉(x曚t曚) (5灡4灡11)

K(x曞t曞,x曚t曚)称为“核暠(kernel)或传播子.Dirac的文章中提到,在量子力学中,这

个“核暠类似(analogous)于exp(iS/淈),其中S=曇Ldt是粒子的作用量.

Feynman阅读了Dirac的文章后,询问Jehle,“analogous暠是什么意思? 是否

是指“相等暠(equal)? Jehle回答说:“否.暠Feynman说:“让我来试一下,如果是指

‘相等暞,会有什么结果.暠这就是他的路径积分理论的发轫.

图5灡7

Feynman有很好的数学功底.他了解J.Bernoulli
的局域原理(localprinciple)栜.此原理的要点是:“任何

踿踿
曲线
踿踿

,如在整体上具有某种极小性质
踿踿踿踿踿踿踿踿踿踿踿踿踿

,则在局域上也具
踿踿踿踿踿踿踿

有这种性质
踿踿踿踿踿

暠[Anycurvewhichhasaminimumproperty
globally(inthelarge)musthavethesamepropertylo灢
cally(inthesmall)].如图5灡7所示,设在一个垂直平面

上给定A 和B 两点,一个物体从A 沿一条滑道滑到B.
试找出需时最短的滑道.设ACEDB 是这样的滑道,则

CED 曲线也是从C 到D 需时最短的滑道.这易于从反

证法来说明,即假设不是CED,而是CFD 是从C 到D
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D.Derbes,Am.J.Phys.64(1996)881,Feynman狆sderivationoftheSchr昳dingerequation.
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需时最短的滑道.这样,从A 到B 沿ACFDB 所需时间将短于沿ACEDB 道.这与

假设矛盾.
Bernoulli的局域原理使积分方程问题(求A 到B 所需时间最短)化为一个微

分方程,这可能使问题求解容易一些.事实上,分析力学中的 Hamilton最小作用

原理(见附录 A.1)—“Naturechooses,outofaninfiniteofpaths,theonethat

minimizesS暠,就是局域原理在经典力学中的一种体现.这里S=曇
t曞

t曚
Ldt.在最简单

的情况下,L=T-V,T 是粒子动能,V 是势能,L 是 Lagrange量.从 Hamilton最

小作用原理毮S=0,即可导出Lagrange方程(见附录 A灡1).
Feynman也是按照类似的思路来考虑传播子的问题,考虑一个粒子在很短时

间殼t=毰(毰曻0)内从y点到x 点的传播子.在此短时间过程中,动能和势能的平均

值为Tav=1
2m(x-y)2/毰2,Vav=V 1

2
(x+yæ

è
ç

ö

ø
÷),所以

S曋 1
2m(x-y)2/毰-V 1

2
(x+yæ

è
ç

ö

ø
÷)毰 (5灡4灡12)

如Feynman的最初想法正确,则传播子(取t曚=t,t曞=t+毰,毰曻0+ )

K(x,t+毰;y,t)曋exp
im(x-y)2

2淈毰
-i毰

淈V 1
2

(x+yæ

è
ç

ö

ø
÷

é

ë
êê

ù

û
úú

) (5灡4灡13)

上式对毰作 Taylor展开

K(x,t+毰;y,t)曋exp
im(x-y)2

2
é

ë
êê

ù

û
úú淈毰

1-i毰
淈V 1

2
(x+yæ

è
ç

ö

ø
÷)+O(毰2[ ])

代入式(5灡4灡11),

氉(x,t+毰)曋曇
+曓

-曓
exp

im(x-y)2

2
é

ë
êê

ù

û
úú淈毰

1-i毰
淈V 1

2
(x+yæ

è
ç

ö

ø
÷)+O(毰2[ ])氉(y,t)dy

(5灡4灡14)
考虑到上式中指数因子的迅速振荡(因Planck常量淈值很小,而且毰曻0),对积分

有贡献的区域只限于(y-x)=毲曻0,所以

氉(x,t+毰)曋曇exp
im毲2

2
æ

è
ç

ö

ø
÷

淈毰
1-i毰

淈V x+毲æ

è
ç

ö

ø
÷

é

ë
êê

ù

û
úú2 氉(x+毲,t)d毲 (5灡4灡15)

利用氉(x+毲,t)=氉(x,t)+毲
灥氉(x,t)

灥x
+1

2毲2灥2氉(x,t)
灥x2 +…,代入上式,略去O(毲2)

项,并根据积分公式曇
+曓

-曓
e-毩x2

dx= 毿/毩,则可得出

氉(x,t)曋 2毿i淈毰
m 氉(x,t) (5灡4灡16)

Feynman由此发现他原来的猜想并不完全正确.即这里的“核暠K 并不等于
踿踿踿eiS/淈,

而只是成比例
踿踿踿踿踿

(proportional).他发现,如取
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K =CeiS/淈,暋暋C= m
2毿淈i毰

(5灡4灡17)

就不会出现矛盾.这就是式(5灡4灡9)中取C= m/(2毿淈i毰)的理由.

*5灡4灡3暋量子理论发展历史的反思

简单回顾一下量子理论的发展线索(见表5灡1),对于理解量子理论的实质以及

对今后发展的展望,都是有益的.在量子理论的发展过程中,人们对于实物粒子(m曎
0)的动力学规律与对光(辐射)运动规律的认识,是相辅相成、并行而交替上升的.

量子理论发轫于Planck(1900)的黑体辐射理论.为了说明黑体辐射能量密度

随频率的变化规律(Planck公式),Planck提出:黑体吸收或发射辐射时,采取一种

不连续的量子形式.Einstein(1905)进一步提出了光量子(lightquantum)的概念.
他基于特殊相对论的考虑,提出光量子能量E 和动量p 与辐射频率毻和波长毸 有

下列关系:

E=h毻,暋暋p=h/毸 (5灡4灡18)
这样,人们就更深入地揭示了光(辐射)的粒子和波动两象性,两者通过式(5灡4灡18)
相联系,而式中出现了一个普适常数h(Planck常数).此时,人们对于光的本质的

认识深度,走在了前头,反过来必然促进人们对实物粒子运动规律的认识.在已经

建立起来的经典力学中,实物粒子运动有确切的轨道,力学量是连续变化的,它们随

时间的演化遵守Laplace的决定论.Bohr(1913)为了说明原子的稳定性和原子线状光

谱的规律性,提出原子能量(以及角动量)的不连续性,定态以及定态之间的量子跃迁

等重要概念.但原子能量为什么是不连续的? 为什么束缚定态能量只能取某些离散

值? deBroglie(1923)类比光具有波动和粒子两象性,提出实物粒子也具有波动性(物
质波)

毻=E/h,暋暋毸=h/p (5灡4灡19)
式中E 和p 是实物粒子的能量和动量.之后,人们自然要去探寻物质粒子波动的

规律,这是Schr昳dinger完成的(1926).Schr昳dinger方程是描述粒子波动的一种局

域性(local)理论,并且是非相对论性的.相应的相对论性波动方程有Klein灢Gordon
方程(描述自旋为0,但m曎0的粒子)和 Dirac方程(描述自旋为1/2的粒子).它
们与19世纪提出的光的电磁辐射场理论,即 Maxwell方程(描述自旋为1,m=0
的粒子,即光子)的地位相当,都是局域性理论.而在此之前已建立的波动光学理论

(基于 Huygens原理)中,人们已经发展了光波的整体性(global)理论.
在波动力学(Schr昳dinger,deBroglie)和矩阵力学(Heisenberg等)提出20多

年后,Feynman提出了量子力学的第三种理论形式———路径积分理论.这个理论

的核心是如何去构造传播子,是粒子波动理论的一种整体性理论(globaltheory),
其地位与 Huygens波动光学理论在光学理论中的地位相当.(构造传播子的Feyn灢
man原理相当于 Huygens原理.)
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表5灡1暋光学与力学理论发展的关系

这里有两个问题值得思考:其一,为什么光的波动性远在实物粒子波动性被人

揭示之前就已为人们认识到? 其二,为什么粒子波动的整体性理论在局域性理论

(Schr昳dinger)提出20多年后才出现?
光的波动性能够较早被人们认识到,与光子是Bose子以及光子静质量为0有

密切的关系.由于光子为Bose子,可以有大量光子处于同一个量子态,因而有宏观

的体现(见卷栺,2灡2灡1节,7灡5节).由于光子的静质量为0,表现为光的波长没有什

么限制(对于实物粒子,其Compton波长毸=淈/mc往往很短,不易为人们觉察到).
在历史上,恰好是可见光部分(毸曋4000~7000痄)首先为人们觉察到,并进行了广

泛的研究,这是可以理解的.由于实验技术上的困难,实物粒子(首先是电子)的波

动性直到20世纪20年代末才被人们观察到.在此之前当然不可能出现与波动光
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学相当的实物粒子的整体性波动理论.但在波动力学建立之后
踿踿踿踿踿踿踿踿踿

,为什么人们未能立
踿踿踿踿踿踿踿踿

即着手去探索它所相应的整体性理论
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而一直到
踿踿踿踿40年代这种理论才被

踿踿踿踿踿踿踿踿J.A.
Wheeler一个年轻的研究生

踿踿踿踿踿踿踿踿Feynman提出
踿踿

,这是很值得人们反思的
踿踿踿踿踿踿踿踿踿踿.

随着近代物理的发展,物理学家已清楚地认识到光和实物粒子(m曎0)都是物

质存在的不同形式.两方面的理论研究已逐渐融合在一起.然而在人们面前,还有

一个广阔无垠和光怪陆离的必然王国在等待探索.物质世界是无限的,人们对它的

认识也应是无限的.

5灡5暋位形空间和相空间的路径积分

以下按照路径积分理论来具体计算传播子.为了数学表述简单起见,考虑一维

势场V(x)中运动的粒子,Hamilton量表示为

H = p2

2m+V(x) (5灡5灡1)

按5灡1节,式(5灡1灡4),传播子为

K(x曞t曞,x曚t曚)= 暣x曞 exp[-iH(t曞-t曚)/淈]x曚暤 (5灡5灡2)
以下分别在位形空间(configurationspace)和相空间(phasespace)中给出传播子

的路径积分表达式栙.

5灡5灡1暋位形空间中的路径积分

下面来计算位形空间中的传播子.与5灡3节相同,把时间间隔(t曞-t曚)作 N
等分

t0 =t曚,t1,t2,…,tj-1,tj,…,tN =t曞暋暋暋
tj-tj-1 =毰,暋(t曞-t曚)=N毰
x(t0)=x(t曚)=x曚,暋x(tN)=x(t曞)=x曞

显然,
e-iH(t曞-t曚)/淈 = e-i毰H/

( )
淈 N (5灡5灡3)

利用恒等式[见2灡5节,式(2灡7灡66)],对两个算符A 和B,设[A,B]与A 和B 都对

易,则
eA+B =eAeBe-[A,B]/2 (5灡5灡4)

可得

exp(-i毰H/淈)=exp -i毰
淈

p2

2m
+V(xæ

è
ç

ö

ø
÷

é

ë
êê

ù

û
úú)

=exp -i毰
淈

p2

2
æ

è
ç

ö

ø
÷

m
·exp -i毰

淈V(x[ ])+O(毰2) (5灡5灡5)
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暋暋当毰曻0时,O(毰2)项可略去.把式(5灡5灡4)代入式(5灡5灡3),并在N 个因式之间

插入(N-1)个单位式(identity)

I=曇
+曓

-曓
dxj xj暤暣xj ,暋暋j=1,2,…,N-1 (5灡5灡6)

于是传播子(5灡5灡2)可以表示为

K(x曞t曞,x曚t曚)= 暣x曞=xN 暻
N-1

j=1曇
+曓

-曓
dxj

·exp - i毰
2m淈p

æ

è
ç

ö

ø
÷

2 ·exp -i毰
淈V(x[ ]) xN-1暤暣xN-1

exp - i毰
2m淈p

æ

è
ç

ö

ø
÷

2 ·exp -i毰
淈V(x[ ])· xN-2暤暣xN-2

…

exp - i毰
2m淈p

æ

è
ç

ö

ø
÷

2 ·exp -i毰
淈V(x[ ]) x1暤暣x1

exp - i毰
2m淈p

æ

è
ç

ö

ø
÷

2 ·exp -i毰
淈V(x[ ]) x0 =x曚暤 (5灡5灡7)

式中

暣xj exp - i毰
2m淈p

æ

è
ç

ö

ø
÷

2 exp -i毰
淈V(x[ ]) xj-1暤

=暣xj exp -i毰
2m淈p

æ

è
ç

ö

ø
÷

2 xj-1暤exp -i毰
淈V(xj-1[ ])

= m
2毿淈i

æ

è
ç

ö

ø
÷

毰
1/2

·exp
im(xj-xj-1)2

2
é

ë
êê

ù

û
úú淈毰
·exp -i毰

淈V(xj[ ]) (5灡5灡8)

这里利用了自由粒子的传播子的计算公式[见5灡1节,式(5灡1灡9)].
把式(5灡5灡8)代入式(5灡5灡7),可得出

K(x曞t曞,x曚t曚)

= m
2毿淈i

æ

è
ç

ö

ø
÷

毰
1/2

· 暻
N-1

j=1曇
+曓

-曓

m
2毿淈i

æ

è
ç

ö

ø
÷

毰
1/2

dx[ ]j ·exp 暺
N

j=1

im(xj-xj-1)2

2淈毰
-i毰

淈V(xj-1
é

ë
êê

ù

û
úú)

(5灡5灡9)
当毰曻0时,(xj-xj-1)/毰曋x·

j,于是式(5灡5灡9)右边最后一个因式化为

exp i毰
淈

1
2mx·2

j -V(xj[ ]{ }) =exp i毰
淈L(xj,x·

j[ ]) (5灡5灡10)

因而式(5灡5灡9)化为

K(x曞t曞,x曚t曚)=曇D[x(t)]·exp i
淈曇

t曞

t曚
dtL(x,x·æ

è
ç

ö

ø
÷) (5灡5灡11)

式中
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曇D[x(t)]=lim
N曻曓
毰曻0

m
2毿淈i

æ

è
ç

ö

ø
÷

毰
1/2

·曇暻
N-1

j=1

m
2毿淈i

æ

è
ç

ö

ø
÷

毰
1/2

dxj (5灡5灡12)

此即位形空间中的路径积分.

5灡5灡2暋相空间中的路径积分

按式(5灡5灡1)~(5灡5灡5),传播子K(x曞t曞,x曚t曚)可以写成如下形式:

暣xN =x曞 exp -i毰
2m淈p

æ

è
ç

ö

ø
÷

2 ·exp -i毰
淈V(x[ ]

掯 掲掱梺梺梺梺梺梺 梺梺梺梺梺梺
)·exp -i毰

2m淈p
æ

è
ç

ö

ø
÷

2 ·exp -i毰
淈V(x[ ]

掯 掲掱梺梺梺梺梺梺梺 梺梺梺梺梺梺梺
)

N个因式暋

… x0 =x曚暤 (5灡5灡13)

在上式中相邻两个指数算符因式之间依次插入

I=曇dxj xj暤暣xj ,暋暋j=1,2,…,N-1 (5灡5灡14)

I=曇dpj pj暤暣pj ,暋暋j=1,2,…,N (5灡5灡15)

xj暤与 pj暤分别是粒子坐标x 和动量p 的本征态,而暣xj pk暤=eipkxj/ 2毿淈.此
时,式(5灡5灡13)中每一个指数算符因式都作用在它的本征态上,可以很容易给出其

表示式.例如,以N=3为例,式(5灡5灡13)化为

犿
+曓

-曓
dp3dp2dp1犽

+曓

-曓
dx2dx1暣x3 exp - i毰

2m淈p
æ

è
ç

ö

ø
÷

2 p3暤

暣p3 exp -i毰
淈V(x[ ]) x2暤·暣x2 exp - i毰

2m淈p
æ

è
ç

ö

ø
÷

2 p2暤

暣p2 exp -i毰
淈V(x[ ]) x1暤·暣x1 exp - i毰

2m淈p
æ

è
ç

ö

ø
÷

2 p1暤

暣p1 exp -i毰
淈V(x[ ]) x0暤

=犿
+曓

-曓
dp3dp2dp1犽

+曓

-曓
dx2dx1·ex {p - i毰

2m淈
(p2

3+p2
2+p2

1)

-i毰
淈

[V(x2)+V(x1)+V(x0 })]·暣x3旤p3暤暣p3旤x2暤暣x2旤p2暤暣p2旤x1暤

暣x1旤p1暤暣p1旤x0暤
1
2毿

æ

è
ç

ö

ø
÷

淈

6

犿
+曓

-曓
dp3dp2dp1犽

+曓

-曓
dx2dx1

·ex {p - i毰
2m淈

(p2
3+p2

2+p2
1)+i

淈
[p3(x3-x2)+p2(x2-x1)

暋暋+p1(x1-x0)]-i毰
淈

[V(x3)+V(x2)+V(x1 })] (5灡5灡16)

推广到一般情况,式(5灡5灡13)可化为
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K(x曞t曞,x曚t曚)

=曇
(x曞,t曞)

(x曚,t曚)
D[p(t)]D[x(t)]ex {p 暺

N

j=
[

1

-i毰
2m淈p

2
j +i

淈pj(xj-xj-1)-i毰
淈V(xj-1 ] })

(5灡5灡17)

暋暋式中

曇
(x曞,t曞)

(x曚,t曚)
D[p(t)]D[x(t)]=

1
2毿

æ

è
ç

ö

ø
÷

淈

2N

犽
+曓

-曓
…曇暻

N

j=1
暻
N-1

k=1
dpjdxk (5灡5灡18)

当N曻曓,毰曻0时,xj-xj-1曋x·
j毰,因而,式(5灡5灡17)可化为

K(x曞t曞,x曚t曚)=曇D[p]D[x]·exp i
淈曇

t曞

t曚
[px·-H(x,p)]d{ }t

=曇D[p]D[x]·exp i
淈曇

t曞

t曚
L(x,x·)d[ ]t (5灡5灡19)

此即用相空间中的路径积分来计算传播子的公式.

5灡6暋AB(Aharonov灢Bohm)效应

在经典电动力学中,电磁矢势和标势只是作为描述和计算电磁场强度的一个

方便的数学工具而引进的.诚然,在经典力学的 Hamilton正则形式和Lagrange理

论形式中,对于荷电粒子的描述,的确要出现矢势和标势.但在荷电粒子的基本动

力学方程中

m d
dtv= qE+q

c
v暳

æ

è
ç

ö

ø
÷B (5灡6灡1)

只有粒子所在地域(local)的电场强度E(r,t)和磁场强度B(r,t)出现,而矢势和标

势并不出现.
与此不同,量子力学中(无论是Schr昳dinger波动力学形式,Heisenberg矩阵

力学形式,或者Feynman路径积分形式),描述荷电粒子在电磁场中的动力学方程

中都会出现粒子所在地域的(local)矢势 A(r,t)和标势氄(r,t).Aharonov和

Bohm栙首先认识到电磁矢势和标势的深刻的物理含义.他们指出,在电磁场强度
踿踿踿踿踿踿

为
踿0·的区域中

踿踿踿踿
(但矢势和标势并不为
踿踿踿踿踿踿踿踿踿0·)运动的两束相干的荷电粒子

踿踿踿踿踿踿踿踿踿踿踿踿
,波函数会发
踿踿踿踿踿

生不同的相位变化
踿踿踿踿踿踿踿踿.因此,当两束粒子重新会聚后,就会出现干涉现象.不久,果然

在实验中观测到了这种干涉现象栚.后来人们称之为 AB效应
踿踿

栛.Furry和 Ram灢
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栚

栛

Y.AharonovandD.Bohm,Phys.Rev.115(1959)485.
R.G.Chambers,Phys.Rev.Lett.5(1960)1.
例如,M.PeskinandA.Tonomura,TheAharonov灢Bohmeffect,LectureNotesinPhysics,vol.

340,Springer灢Verlag,Berlin,1989.



sey栙 还从量子力学理论本身的自洽性来论证了 AB效应的正确性.下面简单介绍

一下两种形式的 AB效应,即磁 AB效应和电 AB效应.
Feynman的路径积分理论现今已被广泛应用来处理各种物理现象,例如 AB

效应、量子 Hall效应等.作为路径积分理论的一个重要应用,下面用路径积分理论

来分析 AB效应.先讨论磁 AB效应.
磁 AB效应实验的示意图,如图5灡8所示.它实质上是一个双缝干涉实验.与

通常双缝干涉实验不同之处,仅在于双缝装置的后面(图中斜线所示区域)安放一

条很细的长螺管,管内部有磁场B曎0,垂直纸面向上.在螺管外面有矢势A(采用

Coulomb规范),如图中圆圈所示.

图5灡8暋磁 AB效应示意图

取自Shankar的教材栚

在通常的双缝干涉实验中,粒子从源S 发出后,经过双缝后,在屏上会合,会
观测到干涉现象.按照路径积分理论5灡2节,描述双缝干涉的波函数为

氉(r)曋氉P1
(r)+氉P2

(r) (5灡6灡2)

氉P1
和氉P2

分别是经历路径P1 和P2 的贡献.
下面来讨论磁 AB效应(图5灡8)栙 .按照路径积分理论,由于Lagrange量L 中

的(v·A)项[本书末附录 A灡1,式(A灡1灡11)],沿每一条路径上的波函数将出现一

个额外的因子

exp
iq
淈c曇

t

t0

(v·A)dé

ë
êê

ù

û
úút曚 =exp

iq
淈c曇

r

S
A·dræ

è
ç

ö

ø
÷曚 (5灡6灡3)

因此描述磁 AB效应(图5灡8)的波函数为

氉(r)曋氉P1
(r)exp

iq
淈c曇P1

A·dræ

è
ç

ö

ø
÷曚 +氉P2

(r)exp
iq
淈c曇P2

A·dræ

è
ç

ö

ø
÷曚 (5灡6灡4)

把右侧两项的一个共同因子提出后,上式可改写成
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栙

栚

W.H.FurryandN.F.Ramsey,Phys.Rev.,118(1960)623.
R.Shankar,PrinciplesofQuantum Mechanics,2nd.ed.,p.497~499;K.GottfriedandT.M.

Yan,QuantumMechanics.Fundamentals,2nd.ed.,p.196~198.



氉(r)曋(共同因子)氉P1
(r)+氉P2

(r)exp
iq
淈c曈A·dræ

è
ç

ö

ø
÷

é

ë
êê

ù

û
úú曚

=(共同因子)氉P1
(r)+氉P2

(r)exp
iq毜
淈

æ

è
ç

ö

ø
÷

é

ë
êê

ù

û
úúc

(5灡6灡5)

式中

毜=曈A·dr曚=曇(

殼

暳A)·ds=曇B·ds (5灡6灡6)

是通过细螺管的磁通.在磁 AB效应中,由于细螺管内磁场B 的存在,通过P1 和

P2 两条路径的波函数有一个相差,毮毤=q毜/淈c.在一般情况下,其干涉花样将不同

于通常的双缝干涉,这一点已为实验所证实.
磁AB效应实验表明,尽管在粒子所经历的路径P1 和P2 上及它们邻域(处于

细螺管外)中,B=0,但A曎0.由于矢势A 的存在,双缝干涉花样将不同于通常的

双缝干涉花样,在实验上是可以观测的,所以矢势A 是有物理意义的.但应强调,
尽管矢势A是与规范有关,但实验观测到的双缝干涉花样的变化,只依赖于螺管

内的磁通毜,它不依赖于矢势
踿踿踿踿踿踿A 所采用的规范

踿踿踿踿踿踿.
注意:当细螺管内的磁通毜 满足条件q毜/(淈c)=2n毿(n整数)时,双缝干涉花

样就与平常的双缝干涉实验中的观测结果相同.换言之,当磁通1Gs=10-4T
毜=n毜0,暋暋毜0 =2毿淈c/q=4灡14暳10-7Gs·cm2 (5灡6灡7)

就会出现上述现象.毜0 称为磁通量子
踿踿踿踿

(fluxquantum).随磁通
踿踿踿毜 的变化

踿踿踿
,相差
踿踿毮毤

(因而双缝干涉花样
踿踿踿踿踿踿

)也随之变化
踿踿踿踿踿.磁通变化的周期为

踿踿踿踿踿踿踿踿毜0=2毿淈c/q,这已在实验中

观测到.关于磁 AB效应的更深刻的物理含义,可参阅 Aharonov灢Bohm 的原始文

献和有关的评述性文献栙.

图5灡9暋电 AB效应

其次用路径积分理论来分析电 AB效应,如示意图5灡9所示.设入射荷电q的

粒子束经过双缝后,分别经历两条路径P1 和P2,然后在观测屏汇集.在粒子经历

的两条路径上,分别放置两个Faraday筒(空心金属圆柱形筒,筒内无电场),筒上

静电势分别为毤1 和毤2,电势差为殼毤=毤2-毤1.由于荷电粒子经历的路径上有静电

势毤的存在,Lagrange量L中出现一项-q毤[见本书末附录A灡1,式(A灡1灡11)],波
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栙 例如,M.P.Silverman,Am.J.Phys.61(1993)No.6,p.514~523;Y.AharonovandD.Rohrli灢
ch,QuantumParadoxes,曥4灡4(Wiley灢VCH).



函数中将出现一个因子exp -
iq
淈曇

t

毤dæ

è
ç

ö

ø
÷t .设荷电粒子通过Faraday筒所需时间为

氂,则经历两条路径的荷电粒子的波函数有一个相差

毮=
q氂
淈

殼毤 (5灡6灡8)

由于技术上的困难,这种电 AB效应尚未在实验上观测到.

附录暋规范不变性

1灡 经典力学中的规范不变性

暋暋在经典电动力学中,电磁场矢势A(r,t)与标势氄(r,t)如作以下变换:

A(r,t)曻A曚(r,t)=A(r,t)+

殼

f(r,t)

氄(r,t)曻氄曚(r,t)=氄(r,t)- 灥
c灥tf

(r,t)
(1)

式中f(r,t)是任意的非奇异函数,电磁场强度

E=-

殼

氄- 灥
c灥tA

B =

殼

暳A
(2)

显然保持不变,此即电磁场的规范不变性.
以下考虑荷电q、质量为 M 的粒子在电磁场中的运动.

1)Newton力学形式

在 Newton方程中

M d2

dt2r=q E+ 1
cv暳( )B (3)

只出现E和B,其规范不变性是很明显的.

2)Lagrange力学形式

荷电粒子的Lagrange量为

L(r,v,t)= 1
2Mv2 -q 氄(r,t)- 1

cv·A(r,t[ ]) (4)

A与氄 出现在L 中,所以L与规范有关.但把L代入Lagrange方程

灥L
灥r- d

dt
灥L
灥( )v =0 (5)

可得出

d
dt Mv+ q

c[ ]A =-q

殼

氄+ q
c

殼

(v·A)

利用

d
dtA = 灥

灥tA+(v·

殼

)A

殼

(v·A)=v暳(

殼

暳A)+(v·

殼

)A=v暳B+(v·

殼

)A
可得
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M d
dtv=q E+ 1

cv暳( )B (6)

与式(3)相同,也与规范无关.
3)Hamilton力学形式

粒子运动状态用正则坐标r(t)和正则动量p(t)描述.正则动量定义为

p=灥L
灥v = Mv+ q

c
A =毿+ q

c
A (7)

毿=Mv称为机械动量.粒子的 Hamilton量定义为

H =v·p-L

=v· Mv+ q
c

æ
è
ç

ö
ø
÷A - 1

2Mv2 +q 氉- 1
cv·( )A

=1
2Mv2 +q氄 (8)

即

H = 1
2M p- q

c
æ
è
ç

ö
ø
÷A
2

+q氄 (9)

正则方程表示为

r· = 灥
灥p

H(r,p,t),暋暋p
·
=- 灥

灥rH(r,p,t) (10)

由此也可以得出

Mr·· =q E+ q
c

v暳æ
è
ç

ö
ø
÷B (11)

与式(3)同,也与规范选取无关.
在规范变换下,坐标r与机械动量毿保持不变

r曚(t)=r(t),暋暋毿曚(t)=毿(t) (12)

机械角动量

毇=r暳毿= Mr暳v (13)

也保持不变

毇曚(t)=毇(t) (14)

但正则动量显然与规范有关,p=Mv+q
c

A,p曚=Mv+q
c
A曚,所以

p曚=p+ q
c

殼

f(r,t) (15)

Hamilton量一般也与规范有关,

H = 1
2M p- q

c
æ
è
ç

ö
ø
÷A
2

+q氄

H曚= 1
2M p曚- q

c
Aæ

è
ç

ö
ø
÷曚
2

+q氄曚= 1
2M p- q

c
æ
è
ç

ö
ø
÷A
2

+q 氄- 1
c

灥
灥t( )f

所以

H曚= H- q
c

灥
灥tf

(16)

只当 H 不显含t情况,可取A和氄 与t无关,因而可取灥f/灥t=0,此时氄曚(r)=氄(r),而

·112·



H曚= H (17)

Hamilton量(即能量)为守恒量栙 .

栙暋即使在此情况下,q氄 可以理解为荷电粒子的静电势能,Lagrange量中的另一项 q
c

v ·A 并不能理

解为静磁势能,因为Lorentz力q
c
v暳B总是垂直于v,对粒子不做功.这表现在 Hamilton量中

H = 1
2M毿2+q氄= 1

2Mv2+q氄

只有一项机械动能和一项静电势能.

栚暋TheFeynmanLecturesonPhysics,Vol.3.,QuantumMechanic,p.21~25.Addison灢Wesley,1965.

栛暋C.Cohen灢Tannoudji,B.DiuandF.Falo暓e,QuantumMechanics,JohnWiley&Sons,1977.

2灡 量子力学中的规范不变性

在量子力学中,粒子坐标和动量算符(采用坐标表象)分别为

暋暋暋暋暋暋暋暋暋暋暋暋暋r
暷

=r,暋p
暷

=-i淈

殼

(18)

在经典力学中,粒子坐标不随规范变换而变[见式(12)],正则动量则与规范有关[见式(15)].试

问,量子力学中的动量算符,是否与经典力学中正则动量一样,随规范不同而异?

通常的做法是,不管采用什么规范,正则动量算符与坐标算符都不随规范而异,即

暋暋暋暋暋暋暋暋暋r
暷

曚=r
暷,暋p

暷曚=p
暷

=-i淈

殼

(19)

在Feynman的书中栚 对这种做法的物理考虑,作了分析.在理论上应如何理解?

问题的关键在于,量子力学中的波函数和算符本身都不是直接观测的物理量
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,观测的只是
踿踿踿踿踿

力学量
踿踿踿

(算符
踿踿

)在一定波函数描述的量子态下的平均值
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

、本征值
踿踿踿

(允许值
踿踿踿

)及相应的概率分布
踿踿踿踿踿踿踿踿.与踿

经典力学量直接对应的并不是算符本身
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而是算符的平均值
踿踿踿踿踿踿踿踿.因此,与式(12)和式(15)相似,在

量子力学中要求:在规范变换下坐标和正则动量的平均值满足下列关系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

栛 :
暣氉曚(t)r

暷

曚 氉曚(t)暤= 暣氉(t)r氉(t)暤暋暋暋 (20)

暣氉曚(t)p
暷曚 氉曚(t)暤= 暣氉(t)p

暷

+ q
c

殼

f(r,t)氉(t)暤 (21)

式中 氉(t)暤和 氉曚(t)暤是同一个量子态在两个规范下的表示[两个规范通过f(r,t)相联系,见式

(1)].注意,上两式中 p
暷曚=p

暷=-i淈
殼

[见式(19)].氉曚(t)暤与 氉(t)暤是什么关系才能保证式

(20)和(21)成立? 令

氉曚(t)暤=Tf 氉(t)暤

Tf
+ Tf =TfTf

+=1
(22)

Tf 代表与规范变换(1)相联系的一个幺正变换.按照式(20)和式(22),要求

Tf
+ r

暷

Tf =r
暷 (23)

即[Tf,r暷]=0,Tf 与r暷 对易.考虑到Tf 的幺正性,在坐标表象中

Tf =ei氈(r,t)暋暋[氈(r,t)为实] (24)

代入式(21),得

e-i氈p
暷曚ei氈 =p+ q

c

殼

f
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利用p
暷

曚=p
暷

=-i淈

殼

,上式左边=-i淈

殼

+淈

殼

氈,由此得淈

殼

氈=q
c

殼

f,所以

氈(r,t)= q
淈cf

(r,t)+f0(t) (25)

如不涉及态随时间的演化
踿踿踿踿踿踿踿踿踿踿踿

,可以略去f0(t),则

氈(r,t)= q
淈cf

(r,t) (26)

而

Tf =exp
iq
淈cf

(r,t[ ]) (27)

所以在坐标表象中的波函数在两种规范下的关系为

氉曚(r,t)=exp
iq
淈cf

(r,t[ ])·氉(r,t) (28)

暋暋上述结论也可以根据Schr昳dinger方程的形式在规范变换下保持不变而得出,即要求

i淈灥
灥t氉曚

(r,t)= 1
2M p暷曚- q

c
Aæ

è
ç

ö
ø
÷曚
2

+q氄[ ]曚 氉曚(r,t) (29)

式中p
暷曚=-i淈

殼

.利用

i淈灥
灥t氉曚-q氄曚氉曚=exp

iq
淈c

æ
è
ç

ö
ø
÷f · i淈灥

灥t氉+q( )氄氉

-i淈

殼

- q
c

Aæ
è
ç

ö
ø
÷曚 氉曚=exp

iq
淈c

æ
è
ç

ö
ø
÷f · -i淈

殼

- q
c

æ
è
ç

ö
ø
÷A 氉

-i淈
殼

- q
c

Aæ
è
ç

ö
ø
÷曚
2

氉曚=exp
iq
淈c

æ
è
ç

ö
ø
÷f · -i淈

殼
- q

c
æ
è
ç

ö
ø
÷A
2

氉

式(29)化为

暋暋暋暋暋暋暋暋暋i淈灥
灥t氉= 1

2M p
暷

- qæ
è
ç

ö
ø
÷

c

2

+q[ ]氄 氉,暋p
暷

=-i淈

殼

(30)

这表明,如果波函数按照式(28)变换,则Schr昳dinger方程的形式在规范变换下保持不变.
应该提到,尽管动量算符表示式不随规范而变

踿踿踿踿踿踿踿踿踿踿踿踿踿
(p
暷

曚=p
暷

=-i淈

殼

),它的矩阵元则随规范而
踿踿踿踿踿踿踿踿踿踿

异
踿.例如

曇d3r氉曚1* (r,t)p
暷

曚氉曚2(r,t)

=曇d3r氉曚*
1(r,t)(-i淈

殼

)氉曚2(r,t)

=曇d3r氉*
1 (r,t)exp -

iqf
淈

æ
è
ç

ö
ø
÷

c
(-i淈

殼

)exp
iqf
淈

æ
è
ç

ö
ø
÷

c 氉2(r,t)

=曇d3r氉*
1 (r,t)(-i淈

殼

)氉2(r,t)+曇d3r氉*
1 (r,t) q

c

殼

f(r,t[ ])氉2(r,t)

=曇d3r氉*
1 (r,t)p暷氉2(r,t)+曇d3r氉*

1 (r,t) q
c

殼

f(r,t[ ])氉2(r,t) (31)

与正则动量不同,在规范变换下,机械动量毿暷=p
暷-q

c
A=-i淈

殼

-q
c

A 将改变为

毿暷曚=-i淈

殼

- q
c

A曚(r,t)=-i淈

殼

- q
c

[A(r,t)+

殼

f(r,t)]
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= 毿暷- q
c

殼

f(r,t) (32)

但其平均值不随规范而异(与经典力学中机械动量一样).
类似,Hamilton算符一般也随规范而异,因为

暋暋暋暋暋暋暋暋暋H
暷

= 1
2M p

暷

- q
c

A(r,t[ ])
2

+q氄(r,t),暋p
暷

=-i淈

殼

(33)

H
暷

曚= 1
2M p

暷

曚- q
c

A曚(r,t[ ])
2

+q氄曚(r,t),暋p
暷

曚=-i淈

殼

= 1
2M p

暷

- q
c

A(r,t[ ])
2

+q氄(r,t)- q
c

灥
灥tf

(r,t)曎 H
暷

(34)

只当电磁场不随时间变化的情况下,可以取A和氄 保持与t无关,因而灥f/灥t=0灡此时 H
暷

曚=H
暷

,

即 H
暷

(守恒量)与规范无关.
从Schr昳dinger方程形式的规范不变性来看

i淈灥
灥t 氉曚(t)暤= H

暷

曚 氉曚(t)暤 (35)

上式左边为

i淈灥
灥t 氉曚(t)暤=i淈灥

灥tTf 氉(t)暋暋 式中Tf =exp
iq
淈c

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷f

=- q
c

灥f
灥t

Tf 氉(t)暤+Tfi淈灥
灥t 氉(t)暤=- q

c
灥f
灥t

Tf 氉(t)暤+TfH
暷

氉(t)暤

暋 =- q
c

灥f
灥t

Tf 氉(t)暤+TfH
暷

T+
fTf 氉(t)暤= - q

c
灥f
灥t+TfH

暷

T+æ
è
ç

ö
ø
÷

f 氉曚(t)暤

与式(35)右边比较,得

H
暷

曚=- q
c

灥f
灥t

+TfH
暷

T+
f (36)

利用

Tf氄(r,t)T+
f =氄(r,t)暋暋暋暋暋暋暋暋暋暋暋暋

Tf p
暷

- q
c

A(r,t[ ])
2

T+
f =Tf -i淈

殼

- q
c
A(r,t[ ])

2

T+
f

= -i淈

殼

- q
c
A(r,t)- q

c

殼

f(r,t[ ])
2

= p
暷

- q
c
A曚(r,t[ ])

2

可得

H
暷

曚= 1
2M p- q

c
A曚(r,t[ ])

2

+q 氄(r,t)- 1
c

灥f(r,t)
灥[ ]t

= 1
2M p- q

c
A曚(r,t[ ])

2

+q氄曚(r,t) (37)

与式(34)相同.
Hamilton量的平均值与规范变换的关系为

暣氉曚 H
暷

曚 氉曚暤= 暣氉 T+
fH
暷

曚Tf 氉暤
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利用式(36),有

暣氉曚旤H
暷

旤氉曚暤= 暣氉 H- q
c

灥f
灥t 氉暤 (38)

与经典力学中相应的关系式(16)相同.

3灡 路径积分理论的规范不变性

在经典力学中,荷电q的粒子在电磁场中的Lagrange量表示为(见附录 A灡1)

L= 1
2mv2 -q氄+ q

c
v·A (39)

相应的作用量为(从r曚t曚曻r曞t曞)

S[r(t)]=曇
t曞

t曚
dt 1

2mv2 -q氄+ q
c

v·æ
è
ç

ö
ø
÷A (40)

在规范变换(1)下,S变为

S曻S曚=S+ q
c曇

t曞

t曚
dtv·

殼

f+ 灥
灥t( )f (41)

利用
d
dtf = 灥

灥tf+(v·

殼

)f

得

S曚=S+ q
c

[f(r曞,t曞)-f(r曚,t曚)] (42)

但按最小作用原理进行变分时,初终点位置是固定不变的(见附录 A灡1).因此,毮S曚=0与毮S=0
给出的结果是相同的.这就是经典力学中的规范不变性.下面来讨论Feynman的路径积分理论

的规范不变性.
在Feynman路径积分理论中,传播子是如下构成的:

K(r曞t曞,r曚t曚)=C 暺
所有路径

exp[iS/淈] (43)

容易看出,在规范变换下

K 曻K曚=Kexp
iq
淈c

[f(r曞t曞)-f(r曚,t曚{ })] (44)

但

K(r曞t曞,r曚t曚)= 暣r曞 U(t曞,t曚)r曚暤 (45)

其中U(t曞,t曚)是描述态演化的算子,

氉(t曞)暤=U(t曞,t曚)氉(t曚)暤

可以看出,规范变换(1)相当于坐标本征矢作如下变换:

r暤曻exp -iqf
淈

æ

è
ç

ö

ø
÷

c
r暤暋暋暋暋暋 (46)

而波函数氉(r)=暣r 氉暤曻

氉曚(r)=exp[iqf(r,t)/(淈c)]氉(r) (47)

即只产生一个相位变化.这在讨论Schr昳dinger方程的规范不变性时已得到过[见式(28)].在此

变化下,粒子的空间密度分布和流密度显然不改变.对其他可观测量的观测概率分布的分析,要
复杂一些,但也可以证明它们具有规范不变性.
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在只有常磁场(不依赖时间t),如取A=A(r),氄=0,则含时Schr昳dinger方程为

i淈灥
灥t氉= 1

2M p
暷

- q
c

æ
è
ç

ö
ø
÷A
2

氉 (48)

如氉作以下相位变换:

氉=exp[-iqf(r)/(淈c)]氉曚 (49)

式中f(r)取得使

殼

f(r)=-A(r),则不难证明

i淈灥
灥t氉曚= 1

2mp
暷2氉曚 (50)

即矢势在方程中消失灡从不含矢势的Schr昳dinger方程,到有矢势A(r)出现的Schr昳dinger方

程,相应的波函数从氉曚曻氉,即出现了一个相因子

exp[-iqf(r)/淈c]=exp
iq
淈c曇

r

A(r曚)·dr[ ]曚 (51)

人们有时把exp
iq
淈c曇

r

A(r曚)·dr[ ]曚 称为 Dirac因子.
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第6章暋量子力学中的相位

杨振宁先生在纪念Schr昳dinger诞辰100周年的文章栙中,一开头就引用了

Dirac的一段重要的话栚:
“问题在于,不对易性是否真是量子力学新概念的主体? 我过去一直认为答案

是肯定的.但最近我开始怀疑这一点.我想,从物理观点来说,不对易性可能并非唯

一重要的观念,或许还存在某些更深层的观念,而某些通常的概念在量子力学中或

许还需要作一些更深刻的改变.暠Dirac进一步讨论了这个问题,并得出结论:“所
以,如果有人问,量子力学的主要特征是什么? 现在我倾向于说,量子力学的主要

踿踿踿踿踿踿踿
特征并不是不对易代数
踿踿踿踿踿踿踿踿踿踿

,而是概率幅的存在
踿踿踿踿踿踿踿.后者是全部原子过程的基础.概率幅

是与实验相联系的,但这只是问题的一部分.概率幅的模方是我们能观测的某种

量,即实验者所测量到的概率,但除此以外还有相位,它是模为1的数,它的变化不

影响模方.但这个相位是极其重要的
踿踿踿踿踿踿踿踿

,因为它是所有干涉现象的根源
踿踿踿踿踿踿踿踿踿踿踿

,而其物理含
踿踿踿踿踿

义是极其隐晦难解的
踿踿踿踿踿踿踿踿踿.所以可以说,Heisenberg与Schr昳dinger的真正天才在于他

们发现了包含相位这个物理量的概率幅的存在.相位这个物理量很巧妙地隐藏在

大自然中.正是由于它隐藏得如此巧妙,人们才未能更早建立起量子力学.暠
杨振宁先生还提到,人们对于Dirac的见解也许有不同的看法,即究竟是引入

不对易代数重要,还是引入包含相位的概率幅重要.但无论如何,对于物理学家描

述自然来讲,两者都很重要则是毫无疑义的
踿踿踿踿踿踿踿踿踿踿踿踿踿.

6灡1暋量子态的常数相位不定性

在量子力学教材中讲述波函数的统计诠释时,考虑到对于概率分布,要紧的是

相对概率分布
踿踿踿踿踿踿

,所以波函数有一个整体的常数因子不定性
踿踿踿踿踿踿踿踿踿踿

(见卷栺,2灡1灡2节),即|

氉暤与C|氉暤(C为常数)描述的是同一个量子态
踿踿踿踿踿踿

,因为在|氉暤和C|氉暤态下,所有力学量

的测量结果的概率分布和平均值都不变.即使考虑到归一化条件,暣C氉|C氉暤=
C 2 暣氉|氉暤= C 2=1,C=ei毩(毩为实常数),波函数还有一个整体的常数相因子

踿踿踿踿踿踿踿踿
的不定性
踿踿踿踿.
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特别应当提到,量子力学中任何力学量
踿踿踿踿踿F

暷

(不显含时)的本征态都有常数相因
踿踿踿踿踿踿踿踿踿踿

子不定性
踿踿踿踿.假设力学量(算符)F

暷

的本征方程为

F
暷

氉n暤=Fn 氉n暤 (6灡1灡1)

|氉n暤和Fn 分别表示本征态和本征值.显然,在本征态作相位变换|氉n暤曻|焿氉n暤=ei毩n

|氉n暤下,|焿氉n暤仍是F
暷

的本征态(且属于同一本征值Fn),

F
暷 焿氉n暤=Fn 焿氉n暤 (6灡1灡2)

本征态的相位不定性表现在,以这些本征态为基矢的表象中,各种力学量的矩阵元
踿踿踿踿踿踿踿

的相位不定性
踿踿踿踿踿踿.

一个最常见例子,即角动量(j
暷

2,j
暷

z)的共同本征态(取淈=1)

j
暷2 jm暤=j(j+1)jm暤

j
暷

z jm暤=mjm暤 (6灡1灡3)

j=0,1,2,…;1/2,3/2,5/2,…

m =j,j-1,…,-j
在给定j值的(2j+1)维(m=j,j-1,…,-j)子空间中,j

暷
2和j

暷

z的矩阵(只有对角

元,实)是完全确定的,
暣jm j

暷2 jm曚暤=j(j+1)毮mm曚 (6灡1灡4)

暣jm j
暷

z jm曚暤=m毮mm曚

但与j
暷

z不对易的算符j
暷

x和j
暷

y等的矩阵表示就有相位不定性.当 jm暤曻 j寛m暤=ei毩m

jm暤,j
暷

2和j
暷

z的矩阵元不改变,但j
暷

x与j
暷

y的矩阵元就会改变,例如

暣j寛m j
暷

x j寛m曚暤=e-i(毩m-毩m曚)暣jm j
暷

x jm曚暤 (6灡1灡5)
事实上,在角动量的代数理论中(见卷栺,10灡2节),根据角动量算符的基本对易式

j
暷

xj
暷

y-j
暷

yj
暷

x=ij
暷

z,…,只能给出j
暷

x与j
暷

y或j
暷

暲 =j
暷

x暲ij
暷

y的矩阵元的模方为

暣jm曚 j
暷

暲 jm暤2 =毮m曚,m暲1(j暲m+1)(j熀m) (6灡1灡6)

通常取如下相位规定:即j
暷

暲 的矩阵元为实,也就是取j
暷

x矩阵元为实,而j
暷

y矩阵元

为纯虚数

暣jm暲1j
暷

x jm暤= 1
2

(j暲m+1)(j熀m)

暣jm暲1j
暷

y jm暤= i
2

(j暲m+1)(j熀m)
(6灡1灡7)

例如,Pauli矩阵(氁z 表象)就符合此规定

氁x =
0 1æ

è
ç

ö

ø
÷

1 0
,氁y =

0 -iæ

è
ç

ö

ø
÷

i 0
,氁z =

1 0
0 -

æ

è
ç

ö

ø
÷

1
(6灡1灡8)

与本征态的相位不定性相关,在量子态的叠加原理中,尽管叠加系数有相位改

变,其模方是不变的.例如,在F 表象中
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氉暤= 暺
n

氉n暤暣氉n 氉暤 (6灡1灡9)

当表象的基矢作常数相因子变换 氉暤曻 焿氉n暤=ei毩n 氉n暤时,

氉暤= 暺
n

焿氉n暤暣焿氉n旤氉暤 (6灡1灡10)

叠加系数暣焿氉n 氉暤=ei毩n暣氉n 氉暤有相位改变,但 暣焿氉n 氉暤2= 暣氉n 氉暤2,即测得F 的

取值的概率分布及平均值并不改变.
此外,量子力学中的一个表象是以某一组对易力学量完全集的共同本征态作

为基矢.由于本征态的常数相位不定性,任何两个表象之间的幺正变换的矩阵元就
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

具有常数相位不定性
踿踿踿踿踿踿踿踿踿.例如,两个角动量的耦合表象与非耦合表象之间的幺正变换

的矩阵元,即Clebsch灢Gordan系数,暣j1m1j2m2|jm暤在取适当的相位规定[见卷栺,

10灡4节,式(10灡4灡17)与式(10灡4灡20)]后,就为实数(称为Condon灢Shortley约定).
这种取法有很多方便之处.例如,幺正变换U 及其逆变换U-1如取为实,则U- =
U+ =煋U,变换系数可以用相同的符号,如暣j1m1j2m2|jm暤=暣jm|j1m1j2m2暤.3个角

动量耦合的Racah系数或6j灢系数,以及4个角动量耦合的9j灢系数(见6灡4节),通
常也都取为实数.

6灡2暋含时不变量,Lewis灢Riesenfeld(LR)相

6灡1节讨论了量子态的常数相位不定性,特别是不含时对易力学量完全集

的共同本征态的常数相位不定性,以及不同表象之间的幺正变换矩阵元的常数

相位不定性.对于显含时力学量
踿踿踿踿踿踿

,其本征态依赖于时间t.在适常条件下(见下),
它的本征态也具有含时相位不定性

踿踿踿踿踿踿踿踿踿踿踿踿踿.这种含时相位不定性可以用来处理量子态

随时演化的问题.本节将介绍Lewis& Riesenfeld(LR)的含时不变量理论和 LR
相的概念栙.

对于 Hamilton量不含时的体系(具有时间均匀性),能量是守恒量.设力学量

F
暷

不显含t,考虑到dF
暷

/dt=[F
暷

,H
暷

]/i淈+灥F
暷

/灥t=[F
暷

,H
暷

]/i淈,若[F
暷

,H
暷

]=0,则称

F为体系的守恒量,它与 H
暷

可以有共同本征态.设包含 H 在内的一组守恒量完全

集的共同本征态记为 n毻暤,

H
暷

n毻暤=En n毻暤 (6灡2灡1)

毻标记诸简并态.处理这类体系的量子态随时间演化的问题比较简单.设体系初态

氉(0)暤给定,不妨用 n毻暤展开

氉(0)暤= 暺
n毻
Cn毻 n毻暤 (6灡2灡2)

Cn毻=暣n毻氉(0)暤由初态
踿踿踿|氉(0)暤决定

踿踿
,则t时刻量子态可表示成
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氉(t)暤= 暺
n毻
Cn毻e-iEnt/淈 n毻暤= 暺

n毻
Cn毻 n毻,t暤 (6灡2灡3)

式中

n毻,t暤=e-iEnt/淈 n毻暤 (6灡2灡4)
是一个定态波函数.注意,在式(6灡2灡3)中,展开系数Cn毻不依赖于时间

踿踿踿踿踿踿t.
对于 H 显含时的体系,能量不是守恒量,不存在严格的定态.这种体系的量子

态随时间的演化,比较复杂.在处理含时谐振子问题时,Lewis与 Riesenfeld详细

讨论了含时不变量
踿踿踿踿踿

(time灢dependentinvariant),并用它代替
踿踿踿踿 Hamilton量

踿
(非守恒
踿踿踿

量
踿

)的地位来处理量子态随时间演化
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

的问题.

设含时力学量I
暷

(t)+ =I
暷

(t),(灥I
暷

/灥t曎0),满足

dI
暷

dt = 1
i淈

[I
暷

,H
暷

]+灥I
暷

灥t =0 (6灡2灡5)

则称I
暷

(t)为含时不变量.显然,[I
暷

,H
暷

]曎0,所以I
暷

与H
暷

不能有共同本征态.所以

对于 H
暷

不含时体系(H
暷

为守恒量),这种含时不变量并无多大研究的价值,它只适
踿踿

合用以研究
踿踿踿踿踿 H

暷踿

含时的体系
踿踿踿踿踿.

设包含含时不变量I
暷

(t)在内的一组守恒量[其中必无
踿踿踿踿 H

暷

(t)]完全集的共同本

征态记为 毸毷,t暤,

I
暷

(t)毸毷,t暤=毸毸毷,t暤 (6灡2灡6)

毸(实)是I
暷

(t)的本征值(一般依赖于t),毷标记简并态,毸毷,t暤满足正交归一化条件

暣毸曚毷曚,t毸毷,t暤=毮毸曚毸毮毷曚毷 (6灡2灡7)
以下证明:

(1)含时不变量的本征值不随时间改变
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,即

d毸/dt=0 (6灡2灡8)
证暋式(6灡2灡6)对t微分,得

灥I
暷

灥t 毸毷,t暤+I
暷 灥

灥t毸毷,t暤=d毸
dt毸毷,t暤+毸灥

灥t毸毷,t暤 (6灡2灡9)

左乘暣毸毷,t (注意I
暷

+ =I
暷

,毸为实数),得

d毸
dt= 暣毸毷,t灥I

暷

灥t 毸毷,t暤 (6灡2灡10)

用含时不变量条件(6灡2灡5)对 毸毷,t暤运算,利用式(6灡2灡6),得

i淈灥I
暷

灥t 毸毷,t暤+I
暷

H
暷

毸毷,t暤-毸H
暷

毸毷,t暤=0 (6灡2灡11)

左乘暣毸曚毷曚,t ,得

i淈暣毸曚毷曚,t灥I
暷

灥t 毸毷,t暤+(毸曚-毸)暣毸曚毷曚,tH
暷

毸毷,t暤=0 (6灡2灡12)
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对于毸曚=毸(但毷曚=毷或毷曚曎毷均可),有

暣毸毷曚,t灥I
暷

灥t 毸毷,t暤=0 (6灡2灡13)

代入式(6灡2灡10),即得d毸/dt=0.
(2)毸毷,t暤一般不满足含时

踿踿踿踿踿踿踿Schr昳dinger方程
踿踿.

用d毸/dt=0代入式(6灡2灡9),得

(毸-I
暷

)灥
灥t毸毷,t暤=灥I

暷

灥t 毸毷,t暤

左乘暣毸曚毷曚,t ,并利用式(6灡2灡12),得

(毸-毸曚)暣毸曚毷曚,t 灥
灥t毸毷,t= 暣毸曚毷曚,t灥I

暷

灥t 毸毷,t暤

= (毸-毸曚)暣毸曚毷曚,tH
暷

毸毷,t暤/i淈 (6灡2灡14)
所以,当毸曎毸曚时,

i淈暣毸曚毷曚,t 灥
灥t毸毷,t暤= 暣毸曚毷曚,tH

暷

毸毷,t暤 (6灡2灡15)

但毸曚=毸时,上式不一定成立.否则,根据 毸毷,t暤的完备性,就意味着 毸毷,t暤满足含

时Schr昳dinger方程

i淈灥
灥t毸毷,t暤=H

暷

毸毷,t暤

(3)设I
暷

不含对
踿踿踿t微商的算符

踿踿踿踿踿
,毸毷,t暤作为

踿踿I
暷

(t)的本征态
踿踿踿踿

,则有含时相位不
踿踿踿踿踿踿

定性
踿踿.所以 毸毷,t暤可作一个适当的含时相变换,令

焿毸毷,t暤=ei毩毸毷(t) 毸毷,t暤暋暋[毩毸毷(t)为实] (6灡2灡16)

焿毸毷,t暤仍保持为I
暷

(t)的正交归一的本征态,且本征值不变,

I
暷

(t)焿毸毷,t暤=毸焿毸毷,t暤 (6灡2灡17)
尽管一般说来,毸毷,t暤不满足 Schr昳dinger方程,我们可以找到合适的相位

踿踿踿踿踿踿踿踿踿
毩毸毷(t),使

踿
焿踿毸毷,t暤满足含时

踿踿踿踿Schr昳dinger方程
踿踿

i淈灥
灥t

焿毸毷,t暤=H
暷 焿毸毷,t暤 (6灡2灡18)

用式(6灡2灡16)代入式(6灡2灡18),得

-淈毩·
毸毷 毸毷,t暤+i淈灥

灥t毸毷,t暤=H
暷

毸毷,t暤

左乘暣毸毷曚,t ,得

淈毩·
毸毷毮毷毷曚 = 暣毸毷曚,t i淈灥

灥t-Hæ

è
ç

ö

ø
÷

暷

毸毷,t暤 (6灡2灡19)

当毷曎毷曚时,要求上式右边为0,即要求在给定毸的子空间中可以把(i淈灥/灥t-H
暷

)对

角化.这个要求是可以做到的,因为(i淈灥/灥t-H
暷

)为厄米算符.
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当毷曚=毷时,式(6灡2灡19)化为

淈毩·
毸毷 = 暣毸毷,t i淈灥

灥t-Hæ

è
ç

ö

ø
÷

暷

毸毷,t暤

对t积分,得[取毩毸毷(0)=0]

毩毸毷(t)=曇
t

0
dt曚暣毸毷,t曚i灥

灥t曚-H
暷

(t曚)
淈 毸毷,t曚暤 (6灡2灡20)

结论是 毸毷,t暤曻 焿毸毷,t暤=ei毩毸毷(t) 毸毷,t暤后,焿毸毷,t暤就 满 足 含 时
踿 踿 踿 踿 Schr昳dinger方 程

踿 踿
(6灡2灡18),毩毸毷(t)由式(6灡2灡20)给出,此即LR相.

考虑到 焿毸毷,t暤=ei毩毸毷(t) 毸毷,t暤满足Schr昳dinger方程,并且构成正交归一完备

基,所以该体系的任何满足Schr昳dinger方程的量子态 氉(t)暤,总可以用 焿毸毷,t暤来
展开,此时展开系数不再依赖于时间

踿踿踿踿踿踿踿踿踿踿踿
,

氉(t)暤= 暺
毸毷
C毸毷 焿毸毷,t暤= 暺

毸毷
C毸毷ei毩毸毷(t) 毸毷,t暤 (6灡2灡21)

上式中毩毸毷(t)由式(6灡2灡20)给出,而C毸毷不依赖于
踿踿踿踿t,由初态确定

踿踿踿踿踿
C毸毷 =e-i毩毸毷(0)暣毸毷,0氉(0)暤= 暣毸毷,0氉(0)暤暋暋[因已取毩毸毷(0)=0]

(6灡2灡22)
比较式(6灡2灡3)与式(6灡2灡21),可以看出,焿毸毷,t暤伴演的角色,与 n毻,t暤相当.

设 氉(0)暤= 毸0毷0,0暤,则C毸毷=毮毸毸0毮毷毷0
,而

氉(t)暤=ei毩毸0毷0
(t) 毸0毷0,t暤 (6灡2灡23)

式中

毩毸0毷0
(t)=曇

t

0
dt曚暣毸0毷0,t曚i灥

灥t曚-H
暷

(t曚)
淈 毸0毷0,t曚暤 (6灡2灡24)

即与初态一样,体系仍然处于含时不变量的同一个本征态.在一般情况下,如

氉(0)暤= 暺
毸毷
C毸毷 毸毷,0暤 (6灡2灡25)

则

氉(t)暤= 暺
毸毷
C毸毷ei毩毸毷(t) 毸毷,t暤 (6灡2灡26)

毩毸毷(t)由式(6灡2灡20)给出.

6灡3暋突发近似与绝热近似

对于 Hamilton量含时的体系,能量是非守恒量,不存在严格的定态.体系的

量子态随时间的演化 氉(t)暤是一个比较困难的问题,除了少数特殊情况下可以

严格求解外,在多数情况下,人们常用含时微扰论来处理,这已在卷栺,12灡2节

中讨论过了.下面讨论两种极端情况下的近似解法.一种极端情况是突发作用,
即 Hamilton量H(t)只在一个极短的时间间隔毰内发生变化(“极短的时间间隔暠
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的确切含义见下),即突发近似(suddenapproximation).另一种极端情况是绝热

作用,即H(t)随时间的变化足够缓慢(“足够缓慢暠的确切含义,见6灡3灡2节),即
绝热近似(adiabaticapproximation).这两种近似方法,可以作为含时微扰论近似

方法的补充.

栙暋这里假定 H曚有限
踿踿.对于毮函数型的相互作用,体系的状态会发生改变,见下面例2.

栚暋R.Shankar,PrinciplesofQuantum Mechanics,2nd.ed.,p.477,“AninstantaneouschangeinH

producesnoinstantaneouschangein 氉暤.Nowthelimit毰曻0isunphysical暠.指出式(6灡3灡3)成立的条件是

“Hchangesoveratimethatisverysmallcomparedtothenaturaltimescaleofthesystem暠.

栛暋按类氢原子估算,电子动能平均值=-E=毺e4Z2

2淈2 (对1s轨道,n=1).设电子速度为v,则 1
2毺v2曋

毺e4Z2/2淈2,所以v曋Ze2/淈=Z毩c(毩=e2/淈c=1/137为精细结构常数).

6灡3灡1暋突发近似

设体系 Hamilton量是在极短时间间隔毰内突然发生变化(毰曻0+ )

H曚(t)=
H曚, 旤t旤<毰/2
0, 旤t旤>毰/{ 2

暋暋(毰曻0+) (6灡3灡1)

设 H曚有限
踿踿

,按含时Schr昳dinger方程,体系的初、末态有下列关系:

氉(毰/2)-氉(-毰/2)= 1
i淈曇

+毰/2

-毰/2
H曚(t)氉(t)dt

毰曻0
曻
+

0 (6灡3灡2)

即末态与初态相同

氉(毰/2)=氉(-毰/2) (6灡3灡3)
即对于突发

踿踿
(瞬时
踿踿

,但有限
踿踿踿

)的作用
踿踿踿

,体系的状态还来不及改变
踿踿踿踿踿踿踿踿踿踿踿

,所以体系还保持停
踿踿踿踿踿踿踿踿

留在初始状态
踿踿踿踿踿踿

栙 .这里所谓“极短的时间间隔毰暠的确切含义是指毰远小于体系的自
踿踿踿踿踿踿踿

然时间尺度
踿踿踿踿踿

栚 .下面讨论几个例子.

例1暋毬衰变

考虑原子核(Z,N)毬曻
-

(Z+1,N-1)过程.过程中释发出一个高速运动电子(速度v~c),

过程持续时间为T曋a/Zc,a为Bohr半径,a/Z为原子序数为Z 的原子n=1壳(1s)的最可几半

径.原子中1s轨道的特征时间
踿踿踿踿

为栛氂曋(a/Z)/(Z毩c)(毩曋1/137).显然,T/氂曋毩Z,对于不太重的原

子,T/氂烆1.在此短暂过程中,毬- 衰变前原子中一个 K 壳电子(1s电子)的状态是来不及改变

的,即维持在原来状态.但由于原子核电荷已经改变
踿踿踿踿踿踿踿踿踿踿踿

,原来状态并不能维持为新原子的能量本征
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

态
踿.特别是,不能维持为新原子的1s态.试问有多大概率处于新原子的1s态? 设K 电子波函数

表为

氉100(Z,r)= Z3

毿a( )3

1/2

e-Zr/a (6灡3灡4)

按照波函数统计诠释,测得此K 电子处于新原子的1s态的概率为
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P100= 暣氉100(Z+1)氉100(Z)暤2 =Z3(Z+1)3
毿2a6 (4毿)2曇

曓

0
e-(2Z+1)r/ar2dr

2

= 1+ 1( )Z
3

1+ 1
2( )Z

-6

曋1- 3
4Z2暋暋(1烆Z烆137) (6灡3灡5)

例如,Z=10,P100曋0灡9932.
例2暋氢原子处于基态,受到脉冲电场E(t)=E0毮(t)作用,E0 为常数.试用微扰论(一级近

似)计算电子跃迁到各激发态的概率以及仍停留在基态的概率.
[参阅:钱伯初,曾谨言灡《量子力学习题精选与剖析》,第三版,13.2题.]

提示:氢原子态用 nlm暤描述.基态(1s)为 100暤.设电场沿Z 轴方向.按微扰论计算,经过

脉冲电场作用后,电子从基态跃迁到 nlm暤态的概率为Pn= eE0( )淈
2

暣n10暤z 100暤2,这里已

考虑选择定则 殼l=1,殼m=0.经过计算,电子从基态跃迁到各激发态的概率总和为

暺nPn = (毷a)2,暋毷=e毰0/淈 (6灡3灡6)

仍停留在1s态的概率为1-(毷a)2.
此题还可以严格求解(见上引钱伯初,曾谨言的书,13.3题).计算结果:电子仍停留在基态

的概率为

P= (1+毷2a2/4)-4 (6灡3灡7)

当电场很弱时(毷a烆1),上式给出P曋1-(毷a)2,与微扰论的计算结果一致,而(毷a)2 正是电子跃

迁到各激发态的概率总和.当毷a曻0时,电子将完全停留在基态.
例3暋质量为 M 的粒子处于宽度为L 的一维无限深势阱中的基态.按半经典估计,粒子运

动的自然时间尺度
踿踿踿踿踿踿

为T=ML2/毿淈(见6灡3灡2节).设势阱宽度在极短时间间隔氂烆T 内,突然对

称地变为2L.计算粒子处于新的一维无限深方势阱的基态的概率.
[参阅上页所引Shankar的书,练习题6灡2灡1和18灡2灡3.答:(8/3毿)2.]

例4暋在势阱V(x)=1
2m氊2x2-fx中的粒子处于基态.设t=0时刻,线性势-fx突然撤

掉,求粒子处于谐振子势1
2m氊2x2 的第n激发态的概率Pn.

Pn =e-毸毸n

n! ,暋毸=f2/2m氊3淈 (6灡3灡8)

(参阅Shankar的书,练习题18灡2灡5.)

6灡3灡2暋量子绝热定理及成立条件

按照量子力学基本原理,量子态 氉(t)暤随时间的演化遵守Schr昳dinger波动

方程

i淈灥
灥t氉(t)暤=H(t)氉(t)暤 (6灡3灡9)

它是含 氉(t)暤对时间一次微商
踿踿踿踿踿踿

的方程,对于给定
踿踿踿踿 H(t)和体系初态

踿踿踿踿踿 氉(0)暤,则以后
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t>0时刻体系的状态
踿踿踿踿踿 氉(t)暤就唯一确定

踿踿踿踿踿
栙 .对于 H 不显含t的体系,能量为守恒

量,Schr昳dinger方程(6灡3灡9)的求解比较容易,在6灡2节中已讨论过了.下面讨论

H(t)作绝热变化情况下,量子态随时间的演化 氉(t)暤的求解.

栙在很多量子力学经典著作中都对此有明确表述.还可以参阅:

W.H.Zurek,Phys.Today,Oct.1991,p.36~44,文中提到:“Statesofquantumsystemsevolveac灢

cordingtothedeterministiclinearSchr昳dingerequationi淈 灥
灥t 氉暤=H 氉暤.Thatis,jutasinclassicalmechan灢

ics,giventheinitialstateofthesystemanditsHamiltonianH,onecancomputethestateatarbitrarytime.

Thisdeterministicevolutionof 氉暤hasbeenverifiedincarefullycontrolledexperiments.暠又例如,J.Maddox,

Nature,362(1993),693,“...theSchr昳dingerequationisaperfectlydeterministicequationexactlycompara灢

bletotheequationofmotionofaclassicalmechanicalsystem,...暠

栚R.Shankar,Principlesof Quantum Mechanics,2nd.ed.,p.478~481.Plenum Press,New

York,1994.

栛W.DitrichandM.Router,ClassicalandQuantumDynamics,2nded.(1992),p.303.

栜B.R.Holstein,Am.J.Phys.57(1989)714,eq(24).

设 H(t)的瞬时(instantaneous)本征方程为

H(t)n(t)暤=En(t)n(t)暤 (6灡3灡10)

n(t)暤是包含 H(t)在内的一组力学量完全集的共同本征态,n是一组完备的量子

数,En(t)为瞬时能量本征值,一般要随时间变化.在6灡2节中讨论LR相时已强调

指出,作为含时力学量(假设不含对t微商算符),H(t)的瞬时本征态
踿踿踿踿踿 n(t)暤具有含

踿踿踿
时相位不定性
踿踿踿踿踿踿.

设体系初态处于 H(0)的某一给定的瞬时本征态

氉(0)暤= m(0)暤 (6灡3灡11)
试问:在t>0时刻,氉(t)暤=? 众所周知,对于 Hamilton量含时的体系,能量不守

恒,不存在严格的定态,体系会发生量子跃迁.一般说来,氉(t)暤应该表示为所有
踿踿

n(t)暤的相干叠加
踿踿踿踿踿

氉(t)暤= 暺
n
an(t)exp -i

淈曇
t

0
En(t曚)d[ ]t曚 n(t)暤 (6灡3灡12)

上式中 an(t)2 表示在t时刻测得体系处于 n(t)暤态的概率.一般情况下,

氉(t)暤很难求解.但如果 H(t)随时间变化足够缓慢
踿踿踿踿

,则可以用量子绝热定理来

处理.
量子绝热定理说栚~栜 :设体系 Hamilton量 H(t)随时间变化足够缓慢

踿踿踿踿
,初态为

氉(0)暤= m(0)暤,则t>0 时 刻 体 系 将 保 持 在 H (t)的 相 应 的 瞬 时 本 征 态

m(t)暤上.
定理成立的条件是什么? 也就是说:H(t)随时间变化“足够缓慢暠的确切含义

是什么? 从绝热定理的物理内容来讲,就是要求式(6灡3灡12)中所有n曎m 项的

an(t)2 非常小,an(t)2烆1,即从 m(0)暤态到所有
踿踿踿 n(t)暤(n曎m)态的跃迁可以

踿踿踿踿踿踿
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忽略
踿踿

,因 而 体 系 才 可 能 保 持 在
踿 踿 踿 踿 踿 踿 踿 踿 m(t)暤态

踿.能 保 证 这 一 点 的 条 件,将 在 后 面

式(6灡3灡23)中给出.在此之前,先从物理直观图像来分析“H(t)随时间变化足够缓
踿踿踿

慢
踿

暠的确切含义.

1灡 半经典图像栙

考虑质量为M 的粒子在宽度为L(t)的一维无限深方势阱中运动,阱宽L(t)
随时间缓慢变化(阱壁缓慢移动).阱内粒子动量和速度的量级为

p曋 淈
L

,暋v= p
M 曋 淈

ML
(6灡3灡13)

粒子在阱内运动的周期(即粒子运动的特征时间
踿踿踿踿

)

T 曋 L
v 曋 ML2

淈
(6灡3灡14)

所谓“阱壁缓慢移动暠是指在粒子运动的一周期T 内阱宽的变化 殼L=T L
·

烆
L,即

ML2

淈 L
·

/L= L
·

/淈
ML= L

·
/v烆1 (6灡3灡15)

即阱壁移动的速度
踿踿踿踿踿踿踿 L

·
非常缓慢
踿踿踿踿

,比阱内粒子运动速度
踿踿踿踿踿踿踿踿踿v小得多

踿踿踿
(L

·
/v无量纲

踿踿踿
),

这就是经典物理中阱壁绝热移动的含义.

2灡 量子力学的估算

一个量子体系处于能级Ei,量子态随时间变化的特征时间
踿踿踿踿

为

T 曋 1
氊min

= 淈
Ef -Ei min

(6灡3灡16)

氊min是体系从初态i到一切可能末态f 的跃迁相应的频率氊fi= Ef-Ei /淈中的

最小值.对于一维无限深方势阱,En(t)=毿2淈2n2/2ML2(t),n=1,2,3,…

T 曋 1
氊min

= 淈
Ef -Ei min

曋 ML2

淈
(6灡3灡17)

与式(6灡3灡14)的半经典估算一致.阱壁移动的特征时间
踿踿踿踿氂[即 Hamilton量 H(t)随

时间变化快慢的特征时间]为

氂=氊-1 曋L/L
·

(6灡3灡18)
所以绝热变化条件可以表述为栚栛
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T/氂= L
·

/ 淈æ

è
ç

ö

ø
÷

ML 烆1,暋 或氊/氊min 烆1 (6灡3灡19)

这与半经典估计式(6灡3灡15)一致,它表示体系 Hamilton量 H(t)缓慢变化的频率

氊远小于体系的特征频率氊min.Mostafazadeh把无量纲量
踿踿踿踿毬=氊/氊min称为绝热参量

踿踿踿踿
(adiabaticparameter),而绝热定理近似成立的条件就是毬烆1,而当无量纲参量

毬曻0时,量子绝热定理就精确成立.

3灡 量子绝热定理成立条件

把式(6灡3灡12)代入Schr昳dinger方程(6灡3灡9),并利用式(6灡3灡10),得

i淈暺
n
a·

n(t)exp -i
淈曇

t

0
En(t曚)d[ ]t曚 n(t)暤

+i淈暺
n
an(t)exp -i

淈曇
t

0
En(t曚)d[ ]t曚 n·(t)暤=0

用暣m(t)左乘上式(取标积),得

a·m=-暺
n
anexp -i

淈曇
t

0
[Em(t曚)-En(t曚)d[ ]t曚 暣mn·暤

=-am暣m m·暤-暺
n曎m

anexp -i
淈曇

t

0
[Em(t曚)-En(t曚)d[ ]t曚 暣mn·暤

(6灡3灡20)
上式即 氉(t)暤的展开系数an(t)所满足的联立方程组,一般求解是很困难的.绝热

定理成立的条件是:式(6灡3灡12)中只需保留n=m 一项,即式(6灡3灡20)右边所有

n曎m的项可以略去.式(6灡3灡20)对t积分后,即可求出展开系数am(t)(无量纲)栙.
在绝热一级近似下,n曎m 项可以略去的条件为下列无量纲参量

毬= 淈暣mn·暤
Em -En

烆1暋(对所有n曎m) (6灡3灡21)

上式左边即绝热参量
踿踿踿踿.上式的物理意义是,体系的瞬时本征态随时间变化的频率,

比体系的内禀特征频率 (Em-En)/淈 要小得多.
瞬时能量本征态方程(6灡3灡10)对t微分,得

灥H
灥t n(t)暤+H n·(t)暤=灥En

灥t n(t)暤+En n·(t)暤

用暣m(t)左乘,(m曎n),得

m 灥H
灥t n +Em暣mn·暤=En暣mn·暤

所以
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暣m n·暤= m 灥H
灥t n (En -Em)暋(n曎m) (6灡3灡22)

联合式(6灡3灡21)和式(6灡3灡22),可以看出,当下列无量纲绝热参量
踿踿踿踿踿踿踿毬远小于1,即

毬= 淈暣mn·暤
En -Em

=
淈 m 灥H

灥t n
(En -Em)2

暋
烆1暋(对所有n曎m) (6灡3灡23)

栙 D.Bohm,QuantumTheory(1951),p.500.

栚 Y.AharonovandJ.Anandan,Phys.Rev.Lett.58(1987)1593.

栛 孙昌璞,张芃灡量子力学新进展灡第二辑灡北京:北京大学出版社,2001.21~86.

成立时,量子绝热定理就近似成立,这条件在很多文献中已明确给出栙~栛 .而在极

限情况下,

暺
n曎m

淈暣mn·暤
En -Em

= 暺
n曎m

淈 m 灥H
灥t n (En -Em)2 曻0 (6灡3灡24)

量子绝热定理就精确成立.在这种情况下,含时Schr昳dinger方程(6灡3灡9)的解,在
给定的初态条件(6灡3灡11)氉(0)暤= m(0)暤下,可以表示为

氉(t)暤=am(t)exp -i
淈曇

t

0
Em(t曚)dt曚 m(t)暤 (6灡3灡25)

式(6灡3灡23)中,暣mn
·暤= m 灥H

灥t n (En-Em),(n曎m),表征 H(t)随时间

变化快慢的频率,而 (En-Em)/淈 则表征处于 m(t)暤态的体系内禀特征频率(作
为参照).式(6灡3灡23)表征无量纲量毬烆1,其物理意义非常清楚,即当此条件满足

时,体系从瞬时能量本征态 m(0)暤跃迁到所有n曎m 的瞬时能量本征态 n(t)暤的
概率就可以忽略,因而能保证体系保持在与 m(0)暤相应的瞬时能量本征态

m(t)暤,见图6灡1.当条件(6灡3灡23)满足时,式(6灡3灡25)就是体系的一个好的绝热

近似解,而在极限情况式(6灡3灡24)满足时,式(6灡3灡25)所示 氉(t)暤就是体系的一个

精确解.所以式(6灡3灡24)就是量子绝热定理成立条件的确切表述.

图6灡1
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从式(6灡3灡23)可以看出,在能级接近简并的情况下,即在Em 能级邻近存在另

外一条能级En,则量子绝热近似解就很差
踿踿踿踿踿踿踿踿踿踿

,体系将有可观的概率跃迁到相邻能级

En 上去.在能级简并的情况下
踿踿踿踿踿踿踿踿

,量子绝热定理就完全失效
踿踿踿踿踿踿踿踿踿踿踿

,体系在时刻t的波函数

就不能表示成式(6灡3灡25).
到此,对量子力学中常用的几个近似方法的适用条件作一个比较是有益的.在

各种近似方法中,往往涉及某些物理量的大小,或它们随空间或时间变化的快慢

等,在这里都必须有一个参照
踿踿踿踿踿踿踿

,因此各种近似成立的条件往往用一个无量纲参量
踿踿踿踿踿

来

表征(见表6灡1,第二列).

表6灡1暋几个常用近似的适用条件

近似方法 适用条件

非相对论近似 v/c烆1,v是物体运动速度,c是真空中光速.

非简并态微扰论
暣n H曚 m暤
E(0)

m -E(0)
n

烆1,n曎m,H曚是微扰,E(0)
n 和 n暤是 H0 的本征值和本征态.

WKB近似
毸

2[E-V(x)]
dV
dx 烆1,暋毸=淈/ 2m[E-V(x)]是质量为 m 的粒子在缓变化势

场V(x)中的deBroglie波长.

量子绝热近似 淈暣n 灥H/灥t m暤
(En-Em)2 = 淈暣n m·暤

Em-En
烆1,n曎m.

6灡3灡3暋量子绝热近似解,绝热相

设体系 H(t)随时间变化足够缓慢,能保证绝热近似条件式(6灡3灡23)或式

(6灡3灡24)满足,并且在初始(t=0)时刻体系处于非简并瞬时本征态 氉(0)暤=
m(0)暤.在此情况下,式(6灡3灡20)中只保留第一项(n=m 项),即

a·m =-暣m m·暤am (6灡3灡26)
上式积分,并考虑到初条件an(0)=毮nm,得

am(t)=exp -曇
t

0
暣m m·暤d[ ]tam(0) (6灡3灡27)

所以在初条件(6灡3灡11)氉(0)暤= m(0)暤和绝热近似条件(6灡3灡23)成立的情况下,
式(6灡3灡12)解 氉(t)暤中所有n曎m 项都可以忽略[见式(6灡3灡25)],

氉(t)暤=ei[毩m(t)+毭m(t)] m(t)暤 (6灡3灡28)
式中

毩m(t)=-1
淈曇

t

0
Em(t曚)dt曚 (6灡3灡29)

毭m(t)=i曇
t

0
暣m(t曚)m·(t曚)暤dt曚 (6灡3灡30)
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毩m(t)即大家熟悉的动力学相
踿踿踿踿

,它只依赖于瞬时本征能量
踿踿踿踿踿踿踿踿踿踿踿Em(t)随时间的变化

踿踿踿踿踿踿.在
H 不含时情况下,Em 不随t变化,毩m(t)=-Emt/淈.与毩m (t)不同,毭m (t)依赖于

暣m m
·暤=暣m H

·
n暤/(En-Em),即毭m(t)依赖于能量本征态

踿踿踿踿踿踿踿踿 m(t)暤及其随时间变
踿踿踿踿

化的快慢
踿踿踿踿

栙栚.利用瞬时本征态的归一化条件,可以证明栛暣m m
·暤为虚数,所以毭m(t)

为实数.由于毭m (t)具有与毩m (t)不同的特性,并且是在绝热近似下求解含时

Schr昳dinger方程时出现的,Moore把毭m(t)称为绝热相
踿踿踿

(adiabaticphase).本书采

用 Moore的称谓.
在此,有两点必须注意:

(1)在6灡2节讨论含时不变量时已指出,含时不变量(设不含灥
灥t

算符)的本征态

具有含时相因子的不定性.与此相似,含时 Hamilton量H(t)的瞬时本征态也具有

含时相因子的不定性.例如,式(6灡3灡28)所示 氉(t)暤,或 m(t)暤,或 氄(t)暤=ei毩m(t)

m(t)暤等,都满足瞬时能量本征方程(6灡3灡10),即它们都是 H(t)的瞬时能量本征

态,且瞬时能量本征值都是Em(t).
(2)设 初 始 时 刻 体 系 处 于 某 一 非 简 并 瞬 时 本 征 态,例 如,式 (6灡3灡11),

氉(0)暤= m(0)暤,则 在t(曒0)时 刻 的 量 子 态 氉(t)暤由 式 (6灡3灡28)给 出.式

(6灡3灡28)中的绝热相因子ei毭m(t)是必不可少的.不含绝热相因子的波函数

氄(t)暤=ei毩m(t) m(t)暤=exp -i
淈曇

t

0
Em(t曚)d[ ]t曚 m(t)暤 (6灡3灡31)

尽管它也是 H(t)的瞬时本征态,它是不满足含时
踿踿踿踿踿Schr昳dinger方程的[注].

[注]栜

用式(6灡3灡31)所示 氉(t)暤代入含时Schr昳dinger方程,

i淈灥
灥t 氄(t)暤= H(t)氄(t)暤+e-i

淈曇t
0
Em(t曚)dt曚i淈灥

灥t m(t)暤 (6灡3灡32)

利用瞬时能量本征方程(6灡3灡10)的微分以及瞬时能量本征函数的完备性,可以证明

灥
灥t m(t)暤= 暣m 灥

灥t m暤m(t)暤+暺
n曎m

暣n 灥H
灥t m暤

(Em -En)
n(t)暤 (6灡3灡33)

在绝热近似条件式(6灡3灡23)或式(6灡3灡24)下,上式右侧中的求和项 暺
n曎m

可以略去,但右侧第一项
踿踿踿踿踿

·032·

栙

栚

栛

栜

D.J.Moore,Rhys.Report210(1991)1.
J.Y.ZengandY.A.Lei,Phys.Rev.A51(1995)4415.
利用归一化条件暣m(t) m(t)暤=1,对t微分,得

暣m(t) m·(t)暤+暣m·(t) m(t)暤=0
即

暣m(t) m·(t)暤+暣m(t) m·(t)暤* =0
所以暣m(t) m·(t)暤为纯虚数.

孙昌璞,张芃,私人通信.



是不可忽略的
踿踿踿踿踿踿.一方面,其积分是一个有限量;另一方面,它的大小依赖于 m(t)暤的相位的选

取.例如,当 m(t)暤曻ei毴 m(t)暤时,

暣m 灥
灥t m暤 曻 暣m 灥

灥t m暤+i毴 暋暋 (6灡3灡34)

暣n 灥
灥t m暤 曻 暣n 灥

灥t m暤 ,暋n曎m (6灡3灡35)

从严格数学方面来看,一个微分方程中的各项是否可以忽略,主 要 考 察 其 积 分 形 式
踿 踿 踿 踿 踿 踿 踿 踿 踿.含时

Schr昳dinger方程式(6灡3灡32)积分后,利用式(6灡3灡33),得

i淈 氄(t)暤-i淈 氄(0)暤

=曇
t

0
H 氄(t)暤dt+曇

t

0
e-i

淈曇t
0
Em(t曚)dt曚i淈灥

灥t m(t)暤dt

=曇
t

0
H 氄(t)暤dt+i淈曇

t

0
e-i

淈曇t
0
Em(t曚)dt曚暣m m·暤dt+i淈曇

t

0
e-i

淈曇t
0
Em(t曚)dt曚暺

n曎m

暣n 灥H
灥t m暤

(Em -En)
n(t)暤dt

(6灡3灡36)

式(6灡3灡36)右侧中的求和项 暺
n曎m

,由于n曎m,每一项的大小与相位选取无关[见式(6灡3灡35)],

只要条件式(6灡3灡23)或(6灡3灡24)成立,即可略去.但式(6灡3灡36)右侧n=m 项暣m m
·暤[即绝热相

毭m(t)]是不能略去的,即只有包含了绝热相因子的解式
踿踿踿踿踿踿踿踿踿踿踿踿踿

(6灡3灡28)才满足含时
踿踿踿踿踿Schr昳dinger方程

踿踿
,

这正是绝热相因子出现的动力学起因
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.更详细的讨论可参阅孙昌璞和张芃,《量子力学新进展》

第二辑,p.21~26(北京大学出版社,2001)以及该文所引文献.

6灡4暋Berry几 何 相

以下简单介绍 M.V.Berry (1984)栙的重要工作.考虑一个量子体系,其

Hamilton量 H(R(t))依赖于含时参量R(t),且周期演化
踿踿踿踿

,周期为氂,R(氂)=R(0),

H(R(氂))=H(R(0)).按照量子力学基本原理,体系的量子态 氉(t)暤随时间的演

化,遵守含时Schr昳dinger方程

i淈灥
灥t氉(t)暤=H(R(t))氉(t)暤 (6灡4灡1)

设 H(R(t))的瞬时本征方程为

H(R(t))n(R(t))暤=En(R(t))n(R(t))暤 (6灡4灡2)

En(R(t))为瞬时能量本征值,n(R(t))暤为该体系的包含 H(R(t))在内的一组力

学量完全 集 的 瞬 时 共 同 本 征 态,n 是 标 记 体 系 量 子 态 的 一 组 完 备 量 子 数,
{n(R(t))暤}构成t时刻体系量子态的一组完备基,体系任一量子态 氉(t)暤均可用

这一组完备基展开.
Berry还假定体系的 Hamilton量随时间变化足够缓慢[其确切表述,见6灡3节,

式(6灡3灡24)],量子绝热定理成立.假设体系初始时刻(t=0)处于某一个给定的瞬

·132·
栙 M.V.Berry,Proc.Rcy.Soc.(London)A392(1984)45.



时能量本征态 m(R(0))暤,

氉(0)暤= m(R(0))暤 (6灡4灡3)
则体系 在t 时 刻 的 量 子 态 氉(t)暤为 [见 6灡3 节,式 (6灡3灡28),式 (6灡3灡29),
式(6灡3灡30)]

氉(t)暤=ei[毩m(t)+毭m(t)] m(R(t))暤 (6灡4灡4)

毩m(t)=-1
淈曇

t

0
Em(R(t曚))dt曚 (6灡4灡5)

毭m(t)=i曇
t

0
暣m(R(t曚))m·(R(t曚))暤dt曚 (6灡4灡6)

毩m(t)是通常的动力学相,它依赖于瞬时能量本征值Em(R(t)),毭m(t)称为绝热相

(或称为Berry绝热相),它依赖于瞬时能量本征态 m(R(t))暤及其随时间变化的

快慢 m
·(R(t))暤.Berry文中指出,毭m (t)是由量子态

踿踿踿踿
式(6灡4灡4)要求满足含时

踿踿踿踿踿踿
Schr昳dinger方程式

踿踿踿
(6灡4灡1)所确定的

踿踿踿踿.考虑到R(t)[因而 H(R(t))]随时间周期演

化,Berry强调指出,毭m(t)是不可积的,毭m 不能表示为
踿踿踿踿踿R 的函数

踿踿踿.特别是经过一个

周期氂以后,在参数空间中R(t)画出一个闭合曲线,R(氂)=R(0),但一般说来,

毭m(氂)不等于毭(0).这是Berry的重要发现.

图6灡2

他还指出,毭m(氂)可以表示为参数空间中的一个回路

积分(见图6灡2).

毭m(氂)=i曇
R(氂)

R(0)
dR·暣m(R) 灥

灥R m(R)暤

=曈C
Am(R)·dR=毭m(C) (6灡4灡7)

Am(R)=i m(R) 灥
灥R m(R) (6灡4灡8)

Berry把毭m(氂)记为毭m(C),只要绝热近似成立,毭m(C)不

依赖于C如何行走.利用 m(R)暤的正交归一性,可以证明[注1],Am(R)为实,因而

毭m(C)为实,是可以观测的.Berry把毭m(C)称为“geometricalphasechange暠.后来

人们习惯称毭m(C)为Berry几何相栙,或简称为几何相.
利用Stoke狆s定理,式(6灡4灡7)还可以化为参数空间中的面积分(图6灡2).

毭m(C)=犽
S

灥
灥R暳Am(R[ ])·dS=犽

S

Bm(R)·dS (6灡4灡9)

形式上,Am(R)可看作参数空间
踿踿踿踿

中的“矢势暠,而Bm=灥
灥R暳Am(R)则看成相应的“磁

场强度暠,毭m(C)则代表通过以参数空间中闭曲线C 为边界的曲面S 的“磁通量暠.
可以证明[注2],除了“磁单极暠奇点(出现在能级简并处)外,

·232·
栙 见综述性文献,D.J.Moore,Phys.Report210(1991)1.



殼

·Bm(R)=0 (6灡4灡10)

Bm(R)=灥
灥R暳Am(R)的表示式,见式(6灡4灡11).可以证明[注3],尽管Am(R)依赖于瞬

时能量本征态 m(R)暤的相位的选取,Bm(R)和毭m(C)都与此无关.

[注1]暋利用暣m(R)m(R)暤=1,对参数R微分,得

暣m(R) 灥
灥R m(R)暤+ 灥

灥Rm
(R)m(R) =0

即

暣m(R)暤 灥
灥R m(R)暤+暣m(R) 灥

灥R m(R)暤* =0

所以暣m(R) 灥
灥R m(R)暤为纯虚数,即An(R)为实.

[注2]

Bm(R)=

殼

暳Am(R)=-Im

殼

暳暣m(R)

殼

m(R)暤
利用

殼

暳(ua)=

殼

u暳a+u

殼

暳a,Bn 化为

Bn(R)=-Im暣

殼

m(R)暳

殼

m(R)暤=-Im暺
m曎n

暣

殼

m(R)m(R)暤暳暣m(R)

殼

m(R)暤

再利用

暣m(R)

殼

m(R)暤=
暣m(R) (

殼

H(R))m(R)暤
Em(R)-En(R)

得

Bm(R)=-Im暺
n曎m

暣m(R) (
殼

H(R))m(R)暤暳暣n(R) (
殼

H(R))m(R)暤
(Em(R)-En(R))2 (6灡4灡11)

定义厄米算符

F=-i暺
n

殼

n暤暣n =F+ (6灡4灡12)

则

殼

n暤=iF n暤

i暣m F n暤= 暺
n曚

暣m

殼

n曚暤暣n曚 n暤= 暣m

殼

n暤=
暣m (

殼

H)n暤
(En -Em) (6灡4灡13)

式(6灡4灡11)可表示成

Bm(R)=-Im暺
n曎m

暣m F n暤暳暣n F m暤=-Im暣m F暳F m暤 (6灡4灡14)

所以

殼

·Bm(R)=-Im[暣

殼

m ·(F暳F)m暤+暣m (F暳F)·

殼

m暤

暋+暣m

殼

·(F暳F)m暤]

=-Im[-i暣F·(F暳F)m暤+i暣m (F暳F)·F m暤

暋+暣m (

殼

暳F)·F-F·(

殼

暳F)m暤]
利用

殼

暳F=-i暺
n

殼

n暤暳暣

殼

n =-i暺
n
F n暤暳暣n F =iF暳F

得

殼

·Bm(R)=0暋[Em(R)=En(R)点除外].
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[注3]
按式(6灡4灡8),Am(R)=i暣m(R)

殼

m(R)暤,当 m(R)暤作一个相位变换时,

m(R)暤曻eix(R) m(R)暤

则Am(R)曻Am(R)-

殼

氈,相当于作一个规范变换.但Bm(R)=

殼

暳Am(R)不改变(与规范变换无

关),因而毭m(C)与 m(R)暤的相位选取无关.这一点从式(6灡4灡7)也可以直接看出,因为Am(R)
围绕一个闭合回路C的线积分是与规范无关的栙,且可以不为0.

6灡5暋Aharonov灢Anandan相

Aharonov与 Anandan对Berry几何相理论做了重要推广栚,即放弃了绝热近
踿踿踿踿踿踿

似假定
踿踿踿

,但假定体系的量子态
踿踿踿踿踿踿 氉(t)暤按照

踿踿Schr昳dinger方程周期演化
踿踿踿踿踿踿

,周期为氂(但
并不要求 Hamilton量 H 周期变化)

氉(氂)暤=ei毤 氉(0)暤 (6灡5灡1)
即经历一个周期氂后,量子态回到初态,但有一个相差毤.试作含时相变换

踿踿踿踿踿
氉(t)暤=eif(t) 焿氉(t). (6灡5灡2)

并要求f(氂)-f(0)=毤.这样 焿氉(t)暤在经历一周期后没有相位变化,
焿氉(氂)暤= 焿氉(0)暤 (6灡5灡3)

注意,与 氉(t)暤随时间的演化必须满足
踿踿踿踿踿踿踿踿踿踿Schr昳dinger方程不同

踿踿踿踿
,焿氉(t)暤随时间演化

踿踿踿踿踿
不再遵守
踿踿踿踿Schr昳dinger方程

踿踿.用式(6灡5灡2)代入Schr昳dinger方程

i淈灥
灥t氉(t)暤=-淈f

·

氉(t)暤+eif(t)i淈灥
灥t

焿氉(t)暤=H(t)氉(t)暤 (6灡5灡4)

上式左乘暣氉(t),得

-淈f
·
+暣焿氉(t)i淈灥

灥t
焿氉(t)暤= 暣氉(t) H 氉(t)暤

对t积分一周期,得

f(氂)-f(0)=曇
氂

0
dt 氉(t)-H(t)

淈 氉(t) +曇
氂

0
dt暣焿氉(t)i灥

灥t
焿氉(t)暤

(6灡5灡5)
即

毤=f(氂)-f(0)=毩(氂)+毭(氂) (6灡5灡6)

毩(氂)=曇
氂

0
dt 氉(t)-H(t)

淈 氉(t) (6灡5灡7)

毭(氂)=曇
氂

0
dt暣焿氉(t)i灥

灥t
焿氉(t)暤=毤-毩(氂) (6灡5灡8)

他们把毩(氂)称为动力学相,而把总相位变化毤与动力学相毩(氂)之差毤-毩(氂)=
毭(氂)称为几何相,后来人们也称之为 AA相.
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如果回到Berry讨论过的 H(R(t))随时间绝热地周期变化的情况(周期为

氂),设体系处于 H(R(t))的某一个瞬时本征态 m(R(t))暤,则

毩m(t)=曇
t

0
dt曚 m(t曚)-H(t曚)

淈 m(t曚) =-1
淈曇

t

0
dt曚Em(R(t曚))(6灡5灡9)

与Berry定义的动力学相是一致的[见6灡4节,式(6灡4灡5)],而经历一周期后总相

位变化毤与毩m(氂)之差,毭m(氂)=毤-毩m(氂),则称为几何相.
例1暋一维谐振子

Hamilton量为

H =
p2

2m
+ 1

2m氊2x2 (6灡5灡10)

本征值En=(n+1/2)淈氊,n=0,1,2,…,相应本征态记为 氉n暤.设初态

氉(0)暤=cos毴
2 氉0暤+sin毴

2 氉1暤 (6灡5灡11)

即基态 氉0暤与第一激发态 氉1暤的叠加.参数
踿踿毴刻画两个态的成分与相对相位

踿踿踿踿踿踿踿踿踿踿踿踿踿.例如,毴=0表示

初态处于基态,毴=毿则表示初态处于第一激发态,而毴=毿/2则初态是基态和第一激发态的等权

重、同相的相干叠加.
显然,

氉(t)暤=cos毴
2e-i氊t/2 氉0暤+sin毴

2e-i3氊t/2 氉1暤 (6灡5灡12)

是一个非定态,在经历一周期后(氂=2毿/氊),氉(氂)暤= -氉(0)暤,总相位变化为毤=毿.把式

(6灡5灡12)代入式(6灡5灡7)和式(6灡5灡8),可得

毩(氂)=毿cos毴
毭(氂)=毤-毬(氂)=毿(1-cos毴)

=
0,

毿{ ,暋
对于毴=0或毿暋(定态)

对于毴=毿/2或3毿/2暋(完全非定态) (6灡5灡13)

即对于定态
踿踿踿踿

,AA相为
踿踿0,而对于完全非定态

踿踿踿踿踿踿踿踿
,AA相达到极大值

踿踿踿踿踿踿毿.
事实上,上述结论对于任何两态体系都成立

踿踿踿踿踿踿踿踿踿踿踿.设

H 氉暲暤=暲 E 氉暲暤 (6灡5灡14)

氉暲 暤分别是能量为暲 E 的本征态.设体系初态为

氉(0)暤=cos毴
2 氉-暤+sin毴

2 氉+暤 (6灡5灡15)

则

氉(t)暤=cos毴
2ei E t/淈 氉-暤+sin毴

2e-i E t/淈 氉+暤 (6灡5灡16)

可以看出,经历一个周期氂=毿淈/ E 后,氉(氂)暤=- 氉(0)暤,即总相位变化毤=毿,而

毩(氂)=毿cos毴
毭(氂)=毿(1-cos毴)

=
0, 对于毴=0或毿暋(定态)

毿 对于毴=毿/2或3毿/2暋(完全非定态{ )
(6灡5灡17)

按以上分析可以看出,对于定态
踿踿踿踿

,AA 相恒为
踿踿踿0,而只对于非定态

踿踿踿踿踿踿
,AA 相才可能出现

踿踿踿踿踿踿.对于两个
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定态的叠加所构成的非定态,AA相的大小可以作为刻画非定态性的一个参数.对于完全非定

态(毴=毿/2或3毿/2,两个定态等权重叠加),AA相达到极大值毿.
例2暋平面转子的相干态栙

平面转子的 Hamilton量为

H =-淈2

2I
灥2

灥氄2 (6灡5灡18)

I为转动惯量,能量本征值和本征态为

Em =m2淈2/2I

氉m(氄)= 1
2毿

eim氄,暋m =0,暲1,暲2,… (6灡5灡19)

能级一般为二重简并(m=0除外).
设体系的初态为

暣氄氉(0)暤= 1
2

[氉m(氄)+氉m曚(氄)],暋暋 m曚 曎 m (6灡5灡20)

显然,
暣氄氉(t)暤= 1

2 毿
eim氄-i淈t

2Im
2
+eim曚氄-i淈t

2Im曚
2 (6灡5灡21)

而

暣氄氉(t)暤2 = 1
毿cos2[N(氄-氄c(t))]

N =m-m曚,暋氄c =毟t,暋毟= 淈
2I

(m+m曚)
(6灡5灡22)

可以看出,波包的极大点(对于 N=1情况,只有一个极大点)以匀角速度毟 旋转,不扩散.经历

一个周期后[氂=2毿淈/(Em-Em曚)],总相位变化(设m>m曚)为

毤=-Ec氂/淈+毿,暋Ec = (Em +Em曚)/2 (6灡5灡23)

用式(6灡5灡21)代入式(6灡5灡7)与式(6灡5灡8),可求出

毩(氂)=-Ec氂/淈
毭(氂)=毤-毩(氂)=毿 (6灡5灡24)

例3暋谐振子相干态

设谐振子初态处于(见2灡6灡1节与2灡6灡2节,p.72,(2灡6灡10)式)

暣x 氉(0)暤=氉0(x-x0)=e-毮2/2暺
曓

n=0

毮n

n!氉n(x) (6灡5灡25)

毮=毩x0/ 2,暋毩= m氊/淈=L-1

L表示谐振子的特征长度.初态(6灡5灡25)是无穷多个定态按一定权重的相干叠加.可以求出

暣x 氉(t)暤=毩1/2

毿1/4exp - 1
2

(毩x- 2毮cos氊t)2 -i 1
2氊t- 1

2毮2sin2氊( )[ ]t (6灡5灡26)

暣x 氉(t)暤2 = 毩
毿1/2exp[-毩2(x-xc(t))2] (6灡5灡27)

xc(t)=x0cos氊t
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它描述一个围绕x=0点振荡的波包,不扩散,振幅为x0,频率为氊,与经典谐振子的自然振荡极

为相似.可以看出,在经历一个周期氂=2毿/氊后,暣x 氉(氂)暤=-暣x 氉(0)暤,总相位变化为毤=毿.
用式(6灡5灡25)代入式(6灡5灡7)和式(6灡5灡8),可求出

毩(氂)=2毿(毮2 +1/2)

毭(氂)=毿-毩(氂)=2毿毮2 (6灡5灡28)

=
0, 对于毮=0暋(定态)

毿, 对于毮=1/ 2暋(即x0 =L{ )

这里我们也可以看出,对于定态(毮=0),有毭(氂)=0,而对于x0=L 的相干态,毭(氂)达到极大值

毿.相干态是与经典谐振子的自然振动相应的量子波包,可认为是完全非定态.

一般说来,设体系 Hamilton量不显含t,能量本征方程为 H 氉m暤=Em 氉m暤,
设初态不是定态,而是一些定态的叠加

氉(0)暤= 暺
n
Cm 氉m暤 (6灡5灡29)

Cm = 暣氉m 氉(0)暤
则

氉(t)暤= 暺
m
Cme-iEmt/淈 氉m暤 (6灡5灡30)

将上式代入式(6灡5灡7),可求出动力学相

毩(氂)=-暺
m

Cm
2Em氂/淈=-煀E氂/淈 (6灡5灡31)

煀E 为能量平均值.总相位变化毤由下式给出:

ei毤 = 暺
m

Cm
2e-iEm氂/淈 (6灡5灡32)

而毭(氂)=毤-毩(氂).一般说来,毤曎毩(氂),毭(氂)曎0,除非Cm=毮mn(定态),此时毤=毩
(氂)=-En氂/淈,而毭(氂)=0.

对于 H 含时的体系,即使在绝热近似下,体系也不存在严格的定态,因而 AA
相毭(氂)就可能出现.

附录暋LR含时不变量理论与Berry绝热相和AA相的关系

设体系的 Hamilton量 H(R(t))随时间周期演化,周期为氂,体系在初始时刻处于某给定的

瞬时能量本征态 氉(0)暤= m(R(0))暤,则在绝热近似下体系的量子态[见6灡4节,式(6灡4灡3)~
(6灡4灡6)]为

氉(t)暤=exp - i
淈曇

t

0
Em(R(t))d[ t+i曇

t

0
i暣m(R(t))m·(R(t))暤d ]t m(R(t))暤 (1)

毭m(t)=i曇
t

0
暣m(R(t))m·(R(t))暤dt称为Berry绝热相,依赖于瞬时能量本征态 m(R(t))暤及其随时

间变化的快慢 m
·(R(t))暤.Berry(1984)发现,毭m 不能表示为R的函数,特别是在经历一周期氂后,

尽管R(氂)=R(0),一般说来,毭m(氂)曎毭m(0).毭m(氂)记为毭m(C),称为Berry几何相,是可以观测的.
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Aharonov& Anandan(1987)对Berry的工作做了重要推广,放弃了 Hamilton量绝热演化

的假定(Hamilton量甚至可以不随时间变化
踿踿踿踿踿踿踿踿

),但假定体系的量子态随时间周期演化,从而导出

了 AA相(见6灡5节).
不久,S.S.Mizrahi栙,D.A.Moralis栚 分别研究了LR含时不变量理论与 Berry相和 AA

相的关系.Mizrahi一文的摘要中写道:“Anapproachfortheexactcalculationofthegeometrical
anddynamicalphases,byusingthemethodofLewisandRiesenufeld,ispresented.暠该文在简单

回顾Berry相和 AA相工作后说:“Athirdapproachtoobtainthegeometricalphaseisproposed
hereanditmakesuseofanearlierworkofLewisandRiesenfeld.暠然后讨论了从含时不变量理

论来研究此问题的两个优点:
(i)SincetheLRphaseispartoftheexactsolutionoftheSchr昳dingerequation,thephases

canbecomputedwithouttheadiabatichypothesisandnocorrections,inthesenseofBerry,are
necessary.(ii)WhileinBerry狆sworktheHamiltoniancontainstime灢dependentparameters,inthe

presentapproachthegeometricalphaseexistsevenforHamiltoniansthatdonothaveanexplicit
timedependence,asintheAAapproach.

Morales一文栚 指出:他用LR含时不变量得出的 Lewis相位“isexacteventhoughthesystem
doesnotevolveadiabaticallyintimeandbecomesequaltoBerry狆sresultintheadiabaticlimit暠.

继 Mizrahi和 Morales的工作之后,在20世纪90年代出现了大量文献,它们基于含时不变

量理论,从不同方面讨论了LR相与 Berry相和 AA 相的关系.在 A.Mostafazadeh的专著栛中

对此有详细评述.有兴趣的读者可以参阅此专著及书中所引文献,这里不再详细介绍.但应提

到,所有这些工作,在量子力学基本理论上都基于下列两点:
(1)量子态随时间的演化必须遵守含时

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿Schr昳dinger方程
踿踿.在Berry原始文献中清楚指出,绝

热近似解中的绝热相毭m(t)是为满足含时Schr昳dinger方程所必需的.在 AA 相理论中[见6灡5
节,式(6灡5灡4)~式(6灡5灡8)]也强调了这一点.在含时不变量理论中,LR相毩毸毷(t)也是根据满足

含时Schr昳dinger方程而确定的[见6灡2节,式(6灡2灡18)~式(6灡2灡20)].
(2)含时力学量

踿踿踿踿踿
(不含对时间
踿踿踿踿踿t微商的算符

踿踿踿踿踿
)的本征态有一个含时相因子的不定性
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.例如,含

时不变量I(t)(见6灡2节),或含时 Hamilton量 H(t),都是如此,差别仅在于含时不变量的本征

值毸不随时间改变,d毸/dt=0[6灡2节,式(6灡2灡8)],而含时 Hamilton量 H(t)的本征值En(t)随
时间改变,能量非守恒量,且其本征态是非定态.因此 LR相的表示式与 Berry绝热相的表示式

有所差异.例如,设体系初始时刻处于含时不变量I(t)的某一个确定 的 本 征 态 氉(0)暤=

毸0毷0,0暤,则t时刻体系量子态为[6灡2节,式(6灡2灡23)、式(6灡2灡24)]

氉(t)暤=exp - i
淈曇

t

0
暣毸0毷0,t H(t)毸0毷0,t暤d[ t+i曇

t

0
i暣毸0毷0,t 灥

灥t 毸0毷0,t暤d ]t 毸0毷0,t暤 (2)

比较式(1)和 式 (2),形 式 上 不 同 之 处 在 于,毸0毷0,t暤不 是 H(t)的 本 征 态,而 m(R(t))暤是

H(R(t))的本征态,本征值为Em(R(t)),所以动力学相因子的表示式略异.
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第7章暋角动量理论

7灡1暋量子体系的有限转动栙

7灡1灡1暋量子态的转动,转动算符

先考虑一种特殊的情况,即无自旋粒子绕z轴的转动.设体系绕z轴转过一个

无限小角度毮氄(图7灡1),粒子的角坐标从氄曻氄曚=氄+毮氄,波函数从氉曻氉曚=Rz(毮氄)氉,
试求Rz(毮氄).

图7灡1

显然

氉曚(氄+毮氄)=氉(氄)
即

氉曚(氄)=氉(氄-毮氄)

=氉(氄)-毮氄
灥
灥氄氉

+ 1
2!(毮氄)2 灥2

灥氄2氉+…

=e-毮氄
灥
灥氄氉=e-i毮氄l

暷

z/淈氉
式中

l
暷

z =-i淈灥
灥氄

是轨道角动量l的z分量.这样,无自旋粒子绕z轴旋转

毮氄角的算符可表示成

Rz(毮氄)=e-i毮氄l
暷

z/淈 (7灡1灡1)

l
暷

z即粒子绕z轴旋转的无穷小算符.设体系绕z轴旋转一个有限角毩,它可以看成

体系相继进行一系列无限小角度旋转的总的效果,因而

Rz(毩)=e-i毩l
暷

z/淈 (7灡1灡2)
如果粒子具有自旋,则轨道角动量应代之为总角动量j,即

Rz(毩)=e-i毩jz/淈 (7灡1灡3)
更进一步推广,设粒子绕空间任一方向n旋转一个角度毴,则转动算符可表示成
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R(毴n)=e-i毴n·j/淈 (7灡1灡4)
更普遍讲,设体系的总角量算符为J,则体系绕空间n方向旋转毴角的转动算

符为

R(毴n)=e-i毴n·J/淈 (7灡1灡5)
总角动量J即体系的无穷小转动算符.

7灡1灡2暋角动量本征态的转动,D函数

设体系处于(J2,Jz)的共同本征态氉jm,则把体系沿n方向旋转毴角以后,体系

状态变为(以下为简便,取淈=1)

R(毴n)氉jm =e-i毴n·J氉jm (7灡1灡6)
考虑到[J2,R]=0,可知R氉jm仍为J2 的本征态,

J2R氉jm =RJ2氉jm =j(j+1)R氉jm

但一般说来,Jz 与R 不对易,因而R氉jm一般不再是Jz 的本征态,而是Jz 的各本征

态的叠加,即R氉jm的最一般表示式为

R(毴n)氉jm = 暺
m曚

暣jm曚 e-i毴n·J jm暤氉jm曚 (7灡1灡7)

暣jm曚 e-i毴n·J jm暤表示叠加系数,记为Dj
m曚m(毴n),它是转动算符e-i毴n·J在氉jm (j取

定)张开的2j+1维(子)空间中的矩阵表示,或称之为转动群的(2j+1)维不可约

表示.这样,式(7灡1灡7)可改记为

R(毴n)氉jm = 暺
m曚
Dj

m曚m(毴n)氉jm曚 (7灡1灡8)

习惯上,三维空间的转动用三个Euler角(毩,毬,毭)来描述,见图7灡2.这样,转动

算符可以写成如下相继的三个转动算符之乘积

R=exp(-i毭Jz曞)·exp(-i毬Jy曚)·exp(-i毩Jz) (7灡1灡9)

图7灡2

因为表象的基矢氉jm是(J2,Jz)的共同本征态,为便于计算R 的矩阵元,最好用角
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动量在实验室坐标系(x,y,z)中的分量算符Jx、Jy、Jz 来表示R.为此,利用下列

关系[图7灡2(a)和(b)]:

exp(-i毬Jy曚)=exp(-i毩Jz)·exp(-i毬Jy)·exp(i毩Jz)

exp(-i毭Jz曞)=exp(-i毬Jy曚)·exp(-i毭Jz曚)·exp(i毬Jy曚)

可得

R=exp(-i毬Jy曚)·exp(-i毭Jz曚)·exp(-i毩Jz)

=exp(-i毩Jz)·exp(-i毬Jy)·exp(i毩Jz)·exp(-i毭Jz曚)·exp(-i毩Jz)

但z曚轴即z轴,由此得出

R(毩,毬,毭)=exp(-i毩Jz)·exp(-i毬Jy)·exp(-i毭Jz) (7灡1灡10)

它在 jm暤表象中的矩阵元,记为Dj
m曚m(毩,毬,毭),即

暋Dj
m曚m(毩,毬,毭)

= 暣jm曚 exp(-i毩Jz)·exp(-i毬Jy)exp(-i毭Jz)jm暤

=exp(-im曚毩)暣jm曚 exp(-i毬Jy)jm暤exp(-im毭)

=exp(-im曚毩)dj
m曚m(毬)exp(-im毭) (7灡1灡11)

其中

dj
m曚m(毬)= 暣jm曚 exp(-i毬Jy)jm暤 (7灡1灡12)

而式(7灡1灡7)可表示为

R(毩,毬,毭)氉jm = 暺
m曚
Dj

m曚m(毩,毬,毭)氉jm曚 (7灡1灡13)

这样,计算Dj
m曚m(毩,毬,毭)就归结为计算dj

m曚m(毬).
在给出dj

m曚m (毬)的计算公式之前,先以j=1/2为例,计算d1/2
m曚m (毬).为此,利用J2

y=1/4,可得

暋exp(-i毬Jy)

=1-i毬Jy +
(-i毬)2

2! J2
y +

(-i毬)3
3! J3

y +…

=1- 1
2!

毬( )2
2

+ 1
4!

毬( )2
4

-…+…-2iJy
毬
2 - 1

3!
毬( )2

3

+ 1
5!

毬( )2[ ]
5

-…+…

=cos毬
2 -2iJysin毬

2
所以

1
2m曚 exp(-i毬Jy) 1

2m =cos毬
2毮m曚m -2isin毬

2
1
2m曚 Jy

1
2m

利用Jy 的矩阵元公式,即可求出d1/2
m曚m (毬)的2暳2矩阵元,如表7灡1.

可以证明,在取适当相位规定后,dj
m曚m(毬)为实,其普遍表示式为栙
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dj
m曚m(毬)= [(j+m)!(j-m)!(j+m曚)!(j-m曚)!]1/2

暋·暺
毻

[(-)毻(j-m曚-毻)!(j+m-毻)!·(毻+m曚-m)!毻!]-1

暋· cos毬æ

è
ç

ö

ø
÷

2
2j+m-m曚-2毻

-sin毬æ

è
ç

ö

ø
÷

2
m曚-m+2毻

(7灡1灡14)

上式中整数
踿踿毻的取值应保证各阶乘因式内的数为非负整数

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.
例如,对于j=1,d1

m曚m(毬)的3暳3矩阵元如表7灡2,这是常用到的.

表7灡1暋d1/2
m曚m(B)

暋暋暋m

m曚暋暋暋暋
1/2 -1/2

1/2 cos毬/2 -sin毬/2

-1/2 sin毬/2 cos毬/2

表7灡2暋d1
m曚m(毬)

暋暋m

m曚暋暋暋
1 0 -1

1 1
2

(1+cos毬) - 1
2
sin毬 1

2
(1-cos毬)

0
1
2
sin毬 cos毬 - 1

2
sin毬

-1 1
2

(1-cos毬) 1
2
sin毬 1

2
(1+cos毬)

1灡dj
m曚m(毬)的性质

(1)由于exp(-i毬Jy)为幺正算符,习惯上取矩阵元dj
m曚m (毬)为实数,d+ =

煄d* =煄d=d-1,即d=煄d-1,所以

dj
m曚m(毬)=dj

mm曚(-毬) (7灡1灡15)

按式 (7灡1灡14),当毬曻 -毬 时,左 边 通过sin毬æ

è
ç

ö

ø
÷

2
将 出 现 因 子 (-1)m曚-m+2毻 =

(-1)m曚-m,所以

dj
m曚m(-毬)= (-1)m曚-mdj

m曚m(毬) (7灡1灡16)
再联合式(7灡1灡15)和式(7灡1灡16),得

dj
m曚m(毬)= (-1)m曚-mdj

mm曚(毬) (7灡1灡17)
即矩阵行列互换时,将出现因子(-1)m曚-m.
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(2)按式(7灡1灡14),当m犠-m曚时,dj
m曚m(毬)的表示式不变,所以

dj
m曚m(毬)=dj

-m,-m曚(毬) (7灡1灡18)
联合式(7灡1灡17)与式(7灡1灡18),得

dj
m曚m(毬)= (-1)m曚-mdj

-m曚,-m(毬) (7灡1灡19)

(3)当毬=毿时,cos毬
2=0,这就要求式(7灡1灡14)中cos毬

2
的幂次为0,即2j+

m-m曚-2毻=0,所以毻=j+1
2

(m-m曚).于是式(7灡1灡14)中的阶乘因子化为

(j-m曚-毻)! = -1
2

(m曚+m[ ])!

(j+m-毻)! = 1
2

(m曚+m[ ])!

这就要求m曚+m=0.由此可推导出

dj
m曚m(毿)= (-1)j+m曚毮m曚,-m (7灡1灡20)

再联合式(7灡1灡16)与式(7灡1灡18),得

dj
m曚m(-毿)= (-1)j-m曚毮m曚,-m (7灡1灡21)

(4)考虑到d(毿+毬)=d(毿)d(毬),可得

dj
m曚m(毿+毬)= 暺

m曞
dj

m曚m曞(毿)dj
m曞m(毬)= 暺

m曞

(-1)j+m曚毮m曚,-m曞dj
m曞m(毬)

所以

dj
m曚m(毿+毬)= (-1)j+m曚dj

-m曚,m(毬) (7灡1灡22)
类似还可证明

dj
m曚m(毿-毬)= (-1)j+m曚dj

m曚,-m(毬) (7灡1灡23)

2灡D 函数的性质

1)D 函数的正交归一性

根据转动算符的幺正性,R+ =R-1,其矩阵元有下列关系:
暣jm曚R-1 jm暤= 暣jm曚R+ jm暤= 暣jm R jm曚暤*

即

Dj
m曚m(-毭,-毬,-毩)=Dj*

mm曚(毩,毬,毭) (7灡1灡24)
根据D 函数定义式(7灡1灡11)及dj

m曚m(毬)性质(7灡1灡19),可得

Dj*
m曚m(毩,毬,毭)= (-1)m曚-mDj

-m曚-m(毩,毬,毭) (7灡1灡25)
根据R+R=1,可知

暣jm曚R+Rjm曞暤=毮m曚m曞

插入 暺
m

jm暤暣jm =1(在j取定的子空间中),得

暺
m

暣jm曚R+ jm暤暣jm R jm曞暤= 暺
m

暣jm R jm曚暤* 暣jm R jm曞暤=毮m曚m曞
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即

暺
m
Dj*

mm曚(毩,毬,毭)Dj
mm曞(毩,毬,毭)=毮m曚m曞 (7灡1灡26)

2)D 函数的耦合规则

根据角动量本征态的耦合规则以及角动量本征态在转动下的变换性质,可求

出D 函数的耦合规则.按照两个角动量j1 和j2 的耦合,J=j1+j2

氉jm(1,2)= 暺
m1

暣j1m1j2m-m1 jm暤氉j1m1
(1)氉j2m-m1

(2)

在转动R(毩,毬,毭)作用下,氉jm变成

暋暺
毺
Dj

毺m氉j毺(1,2)

= 暺
m1

暣j1m1j2m-m1 jm暤暺
毺1

Dj1
毺1m1氉j1毺1

(1)暺
毺2

Dj2
毺2m-m1氉j2毺2

(2)

= 暺
m1毺1毺2

暣j1m1j2m-m1 jm暤Dj1
毺1m1D

j2
毺2m-m1暺

j曚

暣j1毺1j2毺2 j曚毺1+毺2暤氉j曚毺1+毺2
(1,2)

左乘暣氉j毺(1,2)(取标积),利用正交性,得

Dj
毺m(毩,毬,毭)

=暺
m1毺1

暣j1m1j2m-m1 jm暤暣j1毺1j2毺-毺1 j毺暤Dj1
毺1m1

(毩,毬,毭)Dj2
毺-毺1,m-m1

(毩,毬,毭)

(7灡1灡27)
类似可求出上式之逆,

暋Dj1
毺1m1

(毩,毬,毭)Dj2
毺2m2

(毩,毬,毭)

= 暺
j

暣j1毺1j2毺2 j毺1+毺2暤暣j1m1j2m2 jm1+m2暤Dj
毺1+毺2,m1+m2

(毩,毬,毭)

(7灡1灡28)
上两式即D 函数的耦合规则,亦称Clebsch灢Gordan系列.

7灡1灡3暋D函数与球谐函数的关系

为了研究D 函数与球谐函数的关系,我们从球谐函数在坐标系转动下的变换

性质入手.在前面,我们讨论态在转动下的变换,采用的是主动
踿踿

(active)描述
踿踿

方式,
即对体系

踿踿
(态矢
踿踿

)进行转动
踿踿踿踿

,而坐标系
踿踿踿

(基矢
踿踿

)保持不动
踿踿踿踿.另外还有一种被动

踿踿
(pas灢

sive)描述方式
踿踿踿踿

,即让坐标系
踿踿踿踿

(基矢
踿踿

)转动
踿踿

,而体系
踿踿

(态矢
踿踿

)保持不动
踿踿踿踿

(但在两个坐标系

中,态矢的表达式并不相同).两种描述方式各有优点.以下不妨采用被动方式来研

究在坐标系转动下球谐函数的变换性质
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.
设有一个坐标系暺(实验室参照系

踿踿踿踿踿踿
),经过转动R(毩,毬,毭)之后,变成坐标系暺曚

(转动参照系
踿踿踿踿踿

).设空间中一个矢量在原来实验室坐标系暺中用r表示,在转动参照

系暺曚中用r曚表示.任何一个标量函数,在原坐标系中表示成氉(r),在转动后的坐标

系中表示成氉曚(r曚),满足
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氉曚(r曚)=氉(r) (7灡1灡29)
在被动描述方式下,若转动算符R 仍表示成式(7灡1灡9),考虑到态矢的变换与坐标

系(基矢)的变换互逆,可知

氉曚=R-1氉暋 或 暋氉=R氉曚 (7灡1灡30)
把函数的宗量写进去(即其在坐标r曚表象中的表示),得

氉(r曚)=R氉曚(r曚)
再利用标量函数性质(7灡1灡29),得

氉(r曚)=R氉(r) (7灡1灡31)
将此式应用于球谐函数,转动算符用D 函数表示出来,则

Ym
l (毴曚,氄曚)= 暺

m曚
Dl

m曚m(毩,毬,毭)Ym曚
l (毴,氄) (7灡1灡32)

注意,宗量(毴,氄)描述的空间方向与(毴曚,氄曚)描述的空间方向完全相同,只不过在不

同坐标系中来看,角度的数值不同而已.关系式(7灡1灡32)在描述分子或原子核的转

动时经常要用到.式(7灡1灡32)左边是球谐函数在随体系一起转动的参照系中的表

示式,而右边 Ym
l (毴,氄)则是球谐函数在实验室参照系中的表示式.

现在考虑一个特殊的转动,即假设在暺参照系中(毴,氄)方向上的某一点,在转

动参考系暺曚中正好落在z曚轴上,并处于x曚z曚平面内,即毴曚=氄曚=0.当氄曚=0时,式

(7灡1灡32)左边之值与m 无关,不妨取m=0.利用Y0
l(0,0)= (2l+1)/4毿,并注意

到上述特殊的转动相应的Euler角为毩=氄,毬=毴,于是式(7灡1灡32)化为

暺
m曚
Dl

m曚0(氄,毴,0)Ym曚
l (毴,氄)= 2l+1

4毿
(7灡1灡33)

试与球谐函数相加定理栙

暺
l

m曚=-l
Ym曚*

l (毴,氄)Ym曚
l (毴,氄)=2l+1

4毿
(7灡1灡34)

比较,可以看出

Dl
m曚0(氄,毴,0)= 4毿

2l+1Ym曚*
l (毴,氄)

即

Dl
m0(毩,毬,0)= 4毿

2l+1Ym*
l (毬,毩) (7灡1灡35)

此即D 函数与球谐函数的关系.利用此关系,从D 函数的耦合规则(7灡1灡28)可得

出球谐函数的耦合规则
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栙 见卷栺,附录四,式(A4灡43)

Pl(cos毴12)= 4毿
2l+1暺

l

m=-l
Ym*

l (毴1,氄1)Ym
l (毴2,氄2)

毴12是(毴1,氄1)和(毴2,氄2)两个方向的夹角,当(毴1,氄1)=(毴2,氄2)时,毴12=0,而Pl(1)=1.



Ym1l1
(毴,氄)Ym2l2

(毴,氄)

=暺
L

(2l1+1)(2l2+1)
4毿(2L+1) 暣l1m1l2m2 Lm1+m2暤暣l10l20L0暤Ym1+m2L (毴,氄)

(7灡1灡36)
注意:上式两侧的各球谐函数的宗量均为(毴,氄),与两个粒子的轨道角动量的耦合

并不是一回事!
利用球谐函数的正交性及式(7灡1灡36),还可得出三个球谐函数乘积的积分公式

暋暋曇d毟Ym3*
l3

(毴,氄)Ym1l1
(毴,氄)Ym2l2

(毴,氄)

=
(2l1+1)(2l2+1)

4毿(2l3+1) 暣l1m1l2m2 l3m3暤暣l10l20l30暤 (7灡1灡37)

练习1暋为方便,有时令

Clm (r
暷)= 4毿

2l+1Ym
l (r

暷) (7灡1灡38)

r
暷

=r/r表示r方向单位矢,则式(7灡1灡36)可改写成

Cl1m1
(r
暷)Cl2m2

(r
暷)= 暺

L

暣l1m1l2m2 Lm1 +m2暤暣l10l20 L0暤CLm1+m2
(r
暷)(7灡1灡39)

练习2暋球谐函数相加定理还可以表示为

暺
+l

m=-l
Clm (r

暷

1)Clm (r
暷

2)=Pl(cos毴12) (7灡1灡40)

此处毴12为r
暷

1与r
暷

2的夹角.当r
暷

1=r
暷

2时(毴12=0),利用Pl(1)=1,即得

暺
+l

m=-l
Clm (r

暷)Clm (r
暷)=1 (7灡1灡41)

由此可看出,满壳组态的空间密度分布是球对称的.

7灡1灡4暋D函数的积分公式

计算积分

K =曇d毟Dj1*
m1k1

(毩,毬,毭)Dj2m2k2
(毩,毬,毭) (7灡1灡42)

这里

曇d毟 曉曇
2毿

0
d毩曇

2毿

0
d毭曇

毿

0
sin毬d毬

利用D 函数耦合规则(7灡1灡28)及式(7灡1灡25),得

K= (-1)m1-k1曇d毟Dj1-m1-k1
(毩,毬,毭)Dj2m2k2

(毩,毬,毭)

= (-1)m1-k1暺
j

暣j1-m1j2m2 jm2-m1暤

暋·暣j1-k1j2k2 jk2-k1暤曇d毟Dj
m2-m1,k2-k1

(毩,毬,毭)
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上式中对毩和毭 的积分为

曇
2毿

0
d毩exp[-i(m2-m1)毩]曇

2毿

0
d毭exp[-i(k2-k1)毭]= (2毿)2毮m1m2毮k1k2

所以

K =(2毿)2(-1)m1-k1毮m1m2毮k1k2暺
j

暣j1-m1j2m1 j0暤

·暣j1-k1j2k1 j0暤曇
毿

0
dj

00(毬)sin毬d毬

而[利用式(7灡1灡35)]

dj
00(毬)=Dj

00(0,毬,0)= 4毿
2j+1Y0

j(毬,0)=Pj(cos毬)

曇
毿

0
dj

00(毬)sin毬d毬=曇
+1

-1
Pj(x)dx=2毮j0

因此

K=8毿2毮m1m2毮k1k2
(-1)m1-k1暣j1-m1j2m1 00暤暣j1-k1j2k1 00暤

=8毿2毮m1m2毮k1k2
(-1)m1-k1

(-1)j1+m1

2j1+1
(-1)j1+k1

2j1+1
毮j1j2

=8毿2毮m1m2毮k1k2毮j1j2
/(2j1+1)

最后得

曇d毟Dj1*
m1k1

(毩,毬,毭)Dj2m2k2
(毩,毬,毭)= 8毿2

2j1+1毮j1j2毮m1m2毮k1k2
(7灡1灡43)

利用D 函数的耦合规则(7灡1灡28)及上式,还可以得出三个D 函数乘积的积分公式

暋曇d毟Dj3*
m3k3

(毩,毬,毭)Dj1m1k1
(毩,毬,毭)Dj2m2k2

(毩,毬,毭)

= 8毿2

2j3+1毮m3,m1+m2毮k3,k1+k2
暣j1m1j2m2 j3m3暤暣j1k1j2k2 j3k3暤 (7灡1灡44)

7灡2暋陀螺的转动

下面考虑刚性陀螺的转动谱.早在20世纪20年代,在研究分子转动谱时就提

出了这个问题,并用量子力学进行了仔细的研究栙.在50年代,原子核的变形及转

动谱被实验证实栚,对称陀螺波函数又被广泛应用于原子核结构理论中.
下面先给出经典力学中陀螺的 Hamilton量,然后进行量子化;之后用代数解法

求解对称陀螺的能量本征值(转动谱)和本征函数;最后讨论非轴对称陀螺的转动谱.
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F.Reiche,Z.Phys.39(1926)444.
A.BohrandB.R.Mottelson,NuclearStructure,Vol.II,NuclearDeformations W.A.Benja灢

min,1975.



7灡2灡1暋陀螺的Hamilton量

陀螺的空间转动有三个自由度,它在空间的位置通常用 Euler角(毩,毬,毭)描
述,即实验室坐标系的x、y、z轴经受用Euler角(毩,毬,毭)描述的转动之后,就与陀

螺的三个惯量主轴(记为1,2,3轴)相重合.一个自由陀螺
踿踿踿踿

(不计及重力场影响)只
有转动能.为清楚起见,把图7灡2所示转动分解成三步,分别画出几个平面图[图

7灡3(a),(b),(c)].

图7灡3
(a)绕z轴旋转毩角(实验室坐标系z轴方向单位矢k);(b)绕y曚轴旋转毬角(y曚轴方暋

向单位矢j曚);(c)绕z曞轴旋转毭角(z曞=z熓=3轴方向单位矢3,随陀螺旋转).

陀螺绕空间方向n(毩,毬,毭)的无穷小转动毮n(毮毩,毮毬,毮毭)可表示成

毮n=毮毩k+毮毬j曚+毮毭3 (7灡2灡1)
由图7灡3可看出

k=cos毬3-sin毬i曞
i曞=cos毭1-sin毭2 (7灡2灡2)

j曚=sin毭1+cos毭2
把式(7灡2灡2)代入式(7灡2灡1),得出毮n用陀螺的3个主轴方向单位矢(1,2,3)表示

的式子:

毮n= (sin毭毮毬-sin毬cos毭毮毩)1+(cos毭毮毬+sin毬sin毭毮毩)2+(cos毬毮毩+毮毭)3
(7灡2灡3)

因此,陀螺的角速度可表示成

氊=毮n
毮t=氊11+氊22+氊33

氊1 =sin毭毬
·
-sin毬cos毭毩

·

氊2 =cos毭毬
·
+sin毬sin毭毩

· (7灡2灡4)

氊3 =cos毬毩
·
+毭·
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此即Euler运动学方程栙.陀螺的转动能T 由下式给出:

T = 1
2

(J1氊2
1+J2氊2

2+J3氊2
3) (7灡2灡5)

J1、J2、J3 表示3个主转动惯量.陀螺角动量I沿3个惯量主轴方向的分量为

Ii =灥T
灥氊i

=Ji氊i,暋i=1,2,3 (7灡2灡6)

因此

T = 暺
3

i=1

I2
i

2Ji
暋暋暋暋暋 (7灡2灡7)

对于对称陀螺(取对称轴为3轴),J1=J2=J,则

T =I2

2J+1
2

1
J3

-1æ

è
ç

ö

ø
÷

J I2
3 (7灡2灡8)

此即经典对称陀螺的 Hamilton量的表示式.
下面来求它在量子力学中的算符表示式.先求角动量I的各分量在坐标表象

中的算符表示式.由图7灡3(a)和(c)可以看出

I3 =-i淈灥
灥毭

,暋Iz =-i淈灥
灥毩

(7灡2灡9)

为了求I2,还需求出Ix 与Iy.由图7灡3(a)、(b)、(c)可看出

Iy曚=-i淈灥
灥毬

=Iycos毩-Ixsin毩

Ix曚=Ixcos毩+Iysin毩

Iz曞=-i淈灥
灥毭=Izcos毬+Ix曚sin毬

=Izcos毬+(Ixcos毩+Iysin毩)sin毬

(7灡2灡10)

由此得出(注意:z曞曉3)

Ixcos毩+Iysin毩=- i淈
sin毬

灥
灥毭+cot毬i淈

灥
灥毩

(7灡2灡11)

联合式(7灡2灡10)与式(7灡2灡11),得

Ix =-i淈 -cos毩cot毬
灥
灥毩-sin毩灥

灥毬
+cos毩

sin毬
灥
灥

æ

è
ç

ö

ø
÷

毭

Iy =-i淈 -sin毩cot毬
灥
灥毩+cos毩灥

灥毬
+sin毩

sin毬
灥
灥

æ

è
ç

ö

ø
÷

毭
(7灡2灡12)

联合式(7灡2灡9)与式(7灡2灡12),得
I2=I2

x +I2
y +I2

z

=-淈2 1
sin2毬

灥2

灥毩2 -2cos毬
sin2毬

灥2

灥毩灥[ 毭+ 1
sin2毬

灥2

灥毭2 + 1
sin毬

灥
灥毬

sin毬
灥
灥

æ

è
ç

ö

ø
÷ ]毬
(7灡2灡13)
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代入式(7灡2灡8),可得出对称陀螺的动能(Hamilton量)的算符表达式

H =T=-淈2

2J
1

sin2毬
灥2

灥毩2 -2cos毬
sin2毬

灥2

灥毩灥[ 毭+
J
J3

+cot2æ

è
ç

ö

ø
÷毬 灥2

灥毭2 + 1
sin毬

灥
灥毬

sin毬
灥
灥 ]毬

=-淈2

2J
1

sin2毬
灥2

灥毩2 -2cos毬
sin2毬

灥2

灥毩灥毭+ 1
sin2毬

灥2

灥毭[ 2+
1

sin毬
灥
灥毬

sin毬
灥
灥毬

+ J
J3

-æ

è
ç

ö

ø
÷1 灥2

灥毭 ]2

(7灡2灡14)

7灡2灡2暋对称陀螺的转动谱的代数解法栙

设陀螺的角动量为I,它在实验室坐标系的三个分量记为Ix、Iy、Iz,它们满足

对易式(取淈=1)
[Ix,Iy]=iIz,暋[Iy,Iz]=iIx,暋[Iz,Ix]=iIy (7灡2灡15)

在随陀螺一起转动的参照系中(三个坐标轴的方向取为陀螺的惯量主轴方向),I
的分量记为I1、I2、I3.可证明它们满足下列对易式栚

[I1,I2]=-iI3,暋[I2,I3]=-iI1,暋[I3,I1]=-iI2 (7灡2灡16)
设陀螺的三个主转动惯量为J1、J2 和J3,则其转动能(即自由陀螺的 Hamil灢

ton量)可表示成[参见式(7灡2灡7)]

H = 暺
3

i=1
I2

i/2Ji (7灡2灡17)

对于对称陀螺(取对称轴为第3轴),J1=J2=J,则

H = 1
2J

(I2
1+I2

2)+ 1
2J3

I2
3 = 1

2JI
2+ 1

2J3
- 1

2
æ

è
ç

ö

ø
÷

JI2
3 (7灡2灡18)

其能谱一般有简并
踿踿踿踿踿踿踿

,这里除了孤立体系所具有的空间转动不变性带来的简并度

(2I+1)之外,还有轴对称陀螺本身的对称性带来的简并.可选择对易守恒量完全
踿踿踿踿踿踿踿
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对称陀螺的能量本征值和本征态的分析解法,即求解对称陀螺波函数(作为Euler角毩,毬,毭的函数)
满足的Schr昳dinger方程的方法,见S.Fl湽gge,PracticalQuantum Mechanics,prob.46.

可以更普遍证明,设a,b为随陀螺运动的矢量,则
(I·a)(I·b)-(I·b)(I·a)=-iI·(a暳b)

证明如下:

暋(I·a)(I·b)-(I·b)(I·a)

= (Ixax+Iyay+Izaz)(Ixbx+Iyby+Izbz)-(Ixbx+Iyby+Izbz)(Ixax+Iyay+Izaz)
例如其中xy部分,利用角动量分量与矢量分量的对易关系,Ixay-ayIx=iaz,Iyax-axIy=-iaz,有

暋IxaxIyby+IyayIxbx-IxbxIyay-IybyIxax

=Ix(Iyax+iaz)by+Iy(Ixay-iaz)bx-Ix(Iybx+ibz)ay-Iy(Ixby-ibz)ax

= (IxIy-IyIx)(axby-bxay)+iIx(azby-bzay)+iIy(bzax-azbx)

=iIz(a暳b)z-iIx(a暳b)x-iIy(a暳b)y
由此可得出

(I·a)(I·b)-(I·b)(I·a)=iI·(a暳b)-iI·(a暳b)-iI·(a暳b)

=-iI·(a暳b)
取a=1,b=2,则a暳b=3,即得式(7灡2灡16).



集
踿I2(H)、Iz、I3 的共同本征态栙 IMK暤来区分各简并态.按照角动量的普遍代数

理论,

I2 IMK暤=I(I+1)IMK暤, I=0,1,2,…

Iz IMK暤=M IMK暤, M =0,暲1,…,暲I
I3 IMK暤=K IMK暤, K =0,暲1,…,暲I

(7灡2灡19)

因此,自由对称陀螺的 H 本征值(转动能)为

EIK =淈2

2JI
(I+1)+淈2K2

2
1
J3

-1æ

è
ç

ö

ø
÷

J
(7灡2灡20)

可以看出,转动能只依赖于
踿踿踿踿踿踿踿 K2,而与 K 的正负号无关,所以能级的简并度为

2(2I+1)(K=0除外).注意,当K 取定(为方便,约定K>0)时

I=K,K+1,K+2,… (7灡2灡21)
相应的诸能级按I(I+1)规律上升,构成一个转动带

踿踿踿
,用
踿K 来标记

踿踿踿
,而同一带中的

各能级则用I来区分.
有时还采用另外一种标记诸简并态的方式,即选择它们为对易守恒量完全集

I2(H)、Iz、I2
3、R1(毿)的共同本征态栚,这里R1(毿)=exp(-i毿I1)是陀螺绕(垂直于

对称轴3轴的)1轴旋转180曘的操作.考虑到I为整数,R1(毿)2=R1(2毿)=1,R1(毿)
的本征值r=暲1,称为旋称

踿踿
(signature).可以证明(取适当相位规定)

R1(毿)IMK暤= (-1)I IM -K暤 (7灡2灡22)

因此 IM暲K暤两个简并态可以代之为 IMKr暤(约定K>0),

IMK,+1暤= 1
2
[IMK暤+(-1)I IM -K暤]

IMK,-1暤= 1
2
[IMK暤-(-1)I IM -K暤]

(7灡2灡23)

它们是 IMK暤和 IM-K暤的相干叠加.容易证明式(7灡2灡23)是R1(毿)的本征态

R1(毿)IMKr暤=rIMKr暤,暋暋r=暲1 (7灡2灡24)

这种标记简并态的方式的优点之一是:在某些情况下,I3 可能不再守恒(K 不再守

恒),但I2
3 仍然守恒,R1(毿)对称性也保持不变,(IM Kr)仍保持为好量子数(即

|K|和r守恒).
对于K=0的转动带,由于 K=(+0)与(-0)是同一个态,不可区分.按式

(7灡2灡23),要求

r=+1时,暋暋I=0,2,4,… (7灡2灡25)

r=-1时,暋暋I=1,3,5,…
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注意,[I3,Iz]=0,参见式(7灡2灡9).

注意:尽管[R1(毿),I3]曎0,但[R1(毿),I2
3]=0.



即按照旋称r的值,K=0的转动带内的能级分成两组(用r=+1和r=-1刻

画).由于某种与r值有关的相互作用,两组能级可能发生相对移动[尽管两组能级

各自仍遵循能级的I(I+1)规律].这种现象在双原子分子和轴对称变形原子核的

转动谱中已系统地观测到.

*7灡2灡3暋非轴对称陀螺的转动谱

非轴对称刚性陀螺的 Hamilton量可表示为

H =毩1I2
1 +毩2I2

2 +毩3I2
3暋暋暋 (7灡2灡26)

毩i =淈2/2Ji,暋暋i=1,2,3
考虑到式(7灡2灡16),可以看出,[I3,H]曎0,K 不再是好量子数.但I2、Iz、R1(毿)仍为守恒量(注

意,[I2
3,R1(毿)]=0).因此选用I2、Iz、I2

3、R1(毿)的共同本征态,记为 IM K r暤为基矢的表象来

求 H 的本征值和本征态是很方便的.
例如,旋称r=+1的转动态(偶偶原子核的低激发转动带多属此情况)可以表示成

氉IMr=+1 = 暺
K曒0

AK IMK,+1暤 (7灡2灡27)

其中[见式(7灡2灡23)]

IMK,+1暤= 1
2(1+毮K0)

[IMK暤+(-1)I IM -K暤]暋暋(K 曒0) (7灡2灡28)

是I2、Iz、I2
3、R1(毿)的归一化本征态(r=+1).在往下计算中,因能级与量子数M 无关,所以略去

M 不记.
下面求r=+1的转动能级.式(7灡2灡26)可改写为

H= 1
2

(毩1 +毩2)(I2 -I2
3)+毩3I[ ]2

3 + 1
2

(毩1 -毩2)(I2
1 -I2

2)

= 1
2

(毩1 +毩2)(I2 -I2
3)+毩3I[ ]2

3 + 1
4

(毩1 -毩2)(I2
++I2

-) (7灡2灡29)

I暲=I1 暲iI2

上式右边第一项[…]在 IMK暤表象中是对角的,而第二项则只有非对角元.因此 H 的对角

元为

暣IK H IK暤= 1
2

(毩1 +毩2)[I(I+1)-K2]+毩3K2 (7灡2灡30)

式(7灡2灡29)右边第二项将引起不同K 态的混合,选择定则为 殼K=暲2.利用对易式(7灡2灡16)可

证明

I暲 IK暤= (I暲K)(I熀K+1)IK 熀1暤 (7灡2灡31)

I2
暲 IK暤= (I暲K)(I熀K+1)(I暲K-1)(I熀K+2)IK 熀2暤 (7灡2灡32)

由此可求出 H 的非对角元(殼K=暲2)

暣IK H IK 暲2暤= 1
4

(毩1 -毩2) (I熀K)(I暲K+1)(I熀K-1)(I暲K+2)

(7灡2灡33)
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按照式(7灡2灡29),并借助于矩阵元公式(7灡2灡28)~(7灡2灡33),可以求出能量本征方程

H氉=E氉 (7灡2灡34)

的本征值E和本征态氉.
以偶偶核低激发转动谱为例.其主要成分为 K=0.按照选择定则(殼K=暲2),式(7灡2灡27)

中对K 求和只需考虑K曑I的偶数,即K=0,2,…,I(I偶)或(I-1)(I奇).对于基态,I毿=0+ ,

r=+1,K 只能取0,所以基态波函数为 IMKr暤= 000+1暤,其能量可取为能量零点,从而可以

求出各转动激发谱.
例暋计算I毿=2+ 能级(r=+1)

波函数

氉2M+1 =A0 2M0,+1暤+A2 2M2,+1暤 (7灡2灡35)

代入方程(7灡2灡34),利用矩阵元公式(7灡2灡30)与(7灡2灡33)可求出

3(毩1 +毩2)A0 + 3(毩1 -毩2)A2 =EA2

3(毩1 -毩2)A0 +(毩1 +毩2 +4毩3)A2 =EA2 (7灡2灡36)

解此齐次方程,只当

E=2(a暲 a2 -3b) (7灡2灡37)

时,方程才有非平庸解.这两条I毿=2+ 的能级分别记为

E2+1 =2(a- a2 -3b),E2+2 =2(a+ a2 -3b)

式(7灡2灡37)中

a=毩1 +毩2 +毩3,暋b=毩1毩2 +毩2毩3 +毩3毩1 (7灡2灡38)

练习1暋证明,H 只有一条I毿=3+ 的能级(r=+1),此能级

E3+ =E2+1 +E2+2 =4a (7灡2灡39)

此关系式与毩1、毩2、毩3 的取值无关,是刚性陀螺转动谱的一般性质.
练习2暋证明,H 有两条I毿=5+ (r=+1)的能级,并证明

E5+1 +E5+2 =5E3+ (7灡2灡40)

7灡3暋不可约张量,Wigner灢Eckart定理

7灡3灡1暋不可约张量算符

在7灡1节中已讨论过,体系的角动量本征态氉jm(j取定,m=j,j-1,…,-j+
1,-j,共2j+1个态),在转动R 作用下,由于[J2,R]=0,转动态R氉jm总可以表示

成这(2j+1)个态的线性叠加,即

R氉jm = 暺
m曚
氉jm曚Dj

m曚m(R) (7灡3灡1)

用群表示的语言来讲,Dj
m曚m(R)函数构成转动群的2j+1维不可约表示,即对应于

每一个转动R,有一个(2j+1)维的矩阵Dj(R).可以证明,这个矩阵是不可约
踿踿踿

的,
即不能通过任何相似变换而化为块对角(blockdiagonal)形式.上式表示,这2j+1
个态所张开的态空间是转动下的一个不变子空间

踿踿踿踿踿.人们称氉jm (m=j,j-1,…,
·352·



-j)按照转动群的
踿踿踿踿踿踿2j+1维不可约表示

踿踿踿踿踿踿Dj 变换
踿踿.凡按照转动群的不可约表示

踿踿踿踿踿踿踿踿踿踿踿Dj

进行变换的各态
踿踿踿踿踿踿踿

,用一个共同的量子数
踿踿踿踿踿踿踿踿踿j来标志

踿踿踿
,而彼此则可用磁量子数
踿踿踿踿踿踿踿踿踿踿m 相区

踿踿
别
踿

,它们组成一个多重态
踿踿踿

(multiplet),多重度为(2j+1).以上即量子态可以按照它
踿踿踿踿踿踿踿踿

们在旋转下的变换性质进行分类
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(多重态
踿踿踿

)的概念
踿踿踿

,亦即按照转动群的不可约表示

进行分类的概念.最简单的多重态即单态
踿踿

(j=0).由于D0(R)=1,R氉00=氉00,即

j=0的量子态是转动不变态
踿踿踿踿踿

(球对称态,或称为各向同性态).
与此相应,体系的力学量

踿踿踿踿踿踿
(算符
踿踿

)也可以按照它们在旋转下的变换性质进行分
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

类
踿

,这就导致不可约张量算符
踿踿踿踿踿踿踿踿踿踿踿

(irreducibletensoroperator)的概念
踿踿踿.其中最简单的

一类算符,即标量
踿踿

(scaler)算符
踿踿

,也称转动不变量
踿踿踿踿踿

,它们满足

[F,R]=0暋暋 即 暋暋RFR-1 =F
一般的算符当然不一定具有如此简单的性质.但也有一些算符,例如粒子的三个坐

标(x,y,z),在转动之下,它们也只在彼此之间变换.而且,如把它们进行适当的线

性组合(见练习1),它们也有与多重态相似的简单变换规律.一般说来,假设有2k
+1个算符Tkq(q=k,k-1,…,-k;k曒0,整数),在转动R 之下,如它们按照下列

简单规律在彼此之间变换

RTkqR-1 = 暺
q曚
Tkq曚Dk

q曚q(R) (7灡3灡2)

则称Tkq构成转动下的一组k阶不可约
踿踿踿

(球)张量算符
踿踿踿踿

栙.
转动群的不可约表示Dj 的(2j+1)个基矢 jm暤(m=j,j-1,…,-j)是J2 和

Jz 的共同本征态(淈=1)

J2 jm暤=j(j+1)jm暤

Jz jm暤=m jm暤 (7灡3灡3)

J暲 jm暤= (j暲m+1)(j熀m)jm暲1暤

= j(j+1)-m(m暲1)jm暲1暤
而J正是无穷小转动的生成元(generator).与此类似,不可约张量算符也可以按

照无穷小转动下算符的性质来定义.设体系旋转一个无穷小角度毰,则(取淈=1)

R(毰)=exp[-i毰·J]曋1-i毰·J (7灡3灡4)

J为体系的总角动量.因此

R(毰)TkqR(毰)-1 曋Tkq -i毰·[J,Tkq] (7灡3灡5)
按式(7灡3灡4)以及D 矩阵定义,式(7灡3灡2)右边等于

暺
q曚
Tkq曚暣kq曚 (1-i毰·J)kq暤=Tkq -i毰·暺

q曚
Tkq曚暣kq曚J kq暤

与式(7灡3灡5)比较,可得
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栙 所谓不可约矩阵表示,即不可能经过任何相似变换而变成块对角的形式.由于Dk 矩阵表示不可约,
在Tkq中不存在一个子集合,在转动下只在子集合的成员之间变换,故称为不可约张量.



[J,Tkq]= 暺
q曚
Tkq曚暣kq曚J kq暤 (7灡3灡6)

再利用角动量算符(Jz,J暲 )的矩阵元公式,可将上式改写成

[Jz,Tkq]=qTkq

[J暲,Tkq]= (k暲q+1)(k熀q)Tkq暲1 (7灡3灡7)

= k(k+1)-q(q暲1)Tkq暲1

凡满足上述对易式的一组算符Tkq(q=k,k-1,…,-k)就定义为一组k阶不可约

张量算符.此定义与式(7灡3灡2)定义等价,但用它来检验一组算子是否是旋转变换
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

下的不可约张量是方便的
踿踿踿踿踿踿踿踿踿踿踿.k=0(因而q=0),即标量算符.k=1,即一阶(球)张量,
它的三个分量与平常一个矢量的三个Cartesian坐标分量之间,用一个幺正变换相

联系[见式(7灡2灡10)].k=2,即二阶张量,例如四极矩张量.
练习1暋令

r0 =z,暋暋r暲=熀 1
2

(x暲iy)

即

rq = 4毿
3rYq

1(毴,氄),暋暋q=0,暲1 (7灡3灡8)

证明rq 构成一阶不可约张量.
提示暋利用[J毩,x毬]=i毰毩毬毭x毭,不难证明

[Jz,rq]=qrq,暋[J暲,rq]= 2-q(q暲1)rq暲1

练习2暋与上类似,用角动量算符J的3个分量可以构成一阶不可约球张量J毺,

J0 =Jz,暋J暲1 =熀 1
2

(Jx 暲iJy)=熀 1
2
J暲 (7灡3灡9)

进一步推广,任何一个矢量算符
踿踿踿踿踿踿踿踿V 的

踿3个
踿Cartesian分量

踿踿
(Vx、Vy、Vz)都可以构成如下的一阶球

踿踿踿踿踿踿踿踿踿踿踿
张量
踿踿Vq

V0 =Vz,暋V暲1 =熀 1
2

(Vx 暲iVy) (7灡3灡10)

练习3暋证明不可约张量定义式(7灡3灡7)可改写成

[J毺,Tkq]=- k(k+1)暣1毺kq kq+毺暤Tkq+毺 (7灡3灡11)
提示暋式(7灡3灡7)可改写成

[J0,Tkq]=qTkq

[J暲1,Tkq]=熀 1
2

(k暲q+1)(k熀q)Tkq暲1 (7灡3灡12)

利用CG系数表,

暣kq10kq暤=
q

k(k+1)
暋暋暋暋暋暋

暣kq-1,11kq暤=-
(k-q+1)(k+q)/2

k(k+1)

暣kq+1,1,-1kq暤=+
(k+q+1)(k-q)/2

k(k+1)
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式(7灡3灡12)可统一表示为

[J毺,Tkq]= k(k+1)(-1)毺暣kq+毺,1,-毺kq暤Tkq+毺 (7灡3灡11曚)

=- k(k+1)暣1毺kq kq+毺暤Tkq+毺

练习4暋Cartesian坐标系中四极矩张量Qij定义为

Qij =Qji =3xixj-r2毮ij (7灡3灡13)
即

Qxy =3xy,暋Qyz =3yz,暋Qzx =3zx暋暋暋暋暋暋暋
Qxx =2x2 -y2 -z2,暋Qyy =2y2 -z2 -x2,暋Qzz =2z2 -x2 -y2

显然

Qxx +Qyy +Qzz =0 (7灡3灡14)
即Qij为零迹对称张量

踿踿踿踿踿踿
,只有
踿踿5个独立的分量

踿踿踿踿踿踿.证明把Qij适当线性叠加后,可以构成如下的二阶

球张量
Q2毺 =r2Y毺

2(毴,氄) (7灡3灡15)

其中

r2Y0
2(毴,氄)= 5

16毿
(2z2 -x2 -y2)= 5

16毿Qzz

r2Y暲1
2 (毴,氄)=熀 15

8毿
(x暲iy)z

是Qxz和Qyz的线性叠加,而

r2Y暲2
2 (毴,氄)= 1

2
15
8毿

(x暲iy)2

是Qxy、Qxx、Qyy的线性叠加.

7灡3灡2暋Wigner灢Eckart定理

人们之所以要研究不可约张量算符
踿踿踿踿踿踿踿

,是因为不可约张量算符在 jm暤表象中的

矩阵元有很简单的表示式,它对磁量子数的依赖关系完全寄托在一个
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿CG系数上

踿踿踿
,

而其余部分则与磁量子数无关
踿踿踿踿踿踿踿踿踿踿踿踿踿

,称为约化矩阵元
踿踿踿踿踿

[见式(7灡3灡23)],此即 Wigner灢
Eckart定理.为清楚起见,以下分三步来证明这个用途很广泛的重要定理.

(1)设 毩j1m1暤表示(J2,Jz)的共同本征态(毩是确定体系状态所需的其他量子

数),则Tkq 毩j1m1暤也是Jz 的一个本征态,相应的本征值为(q+m1).
证明暋体系绕z轴旋转氄 角的算符记为Rz(氄)=exp(-i氄Jz).利用D 函数的

性质可求出

Rz(氄)Tkq 毩j1m1暤=Rz(氄)TkqRz(氄)-1Rz(氄)毩j1m1暤

= 暺
q曚
Tkq曚Dk

q曚q(氄)暺
m曚1

毩j1m曚1暤Dj1m曚1m1
(氄)

= 暺
q曚
Tkq曚exp(-iq氄)毮q曚q暺

m曚1

毩j1m曚1暤exp(-im1氄)毮m曚1m1

=exp[-i(q+m1)氄]Tkq 毩j1m1暤
即

e-i氄JzTkq 毩j1m1暤=e-i(q+m)氄Tkq 毩j1m1暤
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此式相当于

JzTkq 毩j1m1暤= (q+m1)Tkq 毩j1m1暤 (7灡3灡16)

(2)虽然Tkq 毩j1m1暤是Jz 的本征态,却不一定是J2 的本征态.但可以证明,
与角动量本征态的耦合相似,如把它们做如下线性组合

暺
q
Tkq 毩j1m-q暤暣kqj1m-qjm暤梾梾

记为
焿毩jm暤 (7灡3灡17)

则构成(J2,Jz)的共同本征态,本征值分别为j(j+1)和m.
证明暋在转动R 作用下,焿毩jm暤变为

R 焿毩jm暤= 暺
q
RTkqR-1R 毩j1m-q暤暣kqj1m-qjm暤

= 暺
qq曚m曚1

Tkq曚 毩j1m曚1暤Dk
q曚q(R)Dj1m曚1m-q(R)暣kqj1m-qjm暤

利用D 函数的耦合规则[7灡1节,式(7灡1灡28)],

R 焿毩jm暤=暺
qq曚m曚1

Tkq曚 aj1m曚1暤暺
J

暣kq曚j1m曚1 Jq曚+m曚1暤

·暣kqj1m-qJm暤DJ
q曚+m曚1,m(R)暣kqj1m-qjm暤

利用

暺
q

暣kqj1m-qJm暤暣kqj1m-qjm暤=毮Jj

得

R 焿毩jm暤= 暺
q曚m曚1

Tkq曚 aj1m曚1暤暣kq曚j1m曚1 jq曚+m曚1暤Dj
q曚+m曚1,m(R)

= 暺
毺q曚

Tkq曚 毩j1毺-q曚暤暣kq曚j1毺-q曚j毺暤Dj
毺m(R)

= 暺
毺

焿毩j毺暤Dj
毺m(R) (7灡3灡18)

即 焺毩jm暤在转动R下按转动群的(2j+1)维不可约表示Dj(R)变换,即为J2 的本征

态,对应本征值为j(j+1).综合起来,我们就证明了 焺毩jm暤是(J2,Jz)的共同本征态.
(3)考虑等式栙

曇d氊R-1(氊)R(氊)=曇d氊= 1
8毿2曇

毿

0
sin毬d毬曇

2毿

0
d毩曇

2毿

0
d毭=1

等式两边取矩阵元

曇d氊暣毩曚j曚m曚R-1(氊)R(氊)焿毩jm暤= 暣毩曚j曚m曚 焿毩jm暤 (7灡3灡19)

利用式(7灡3灡18)及其厄米共轭式
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栙 如涉及双值表示,可代之为

曇d氊= 1
32毿2曇

毿

0
sin毬d毬曇

4毿

0
d毩曇

4毿

0
d毭



R(氊)焿毩jm暤= 暺
毺

焿毩j毺暤Dj
毺m(氊)暋暋暋暋暋

暣毩曚j曚m曚R(氊)-1 = 暣毩曚j曚m曚R(氊)+= 暺
毺曚

暣毩曚j曚毺曚 Dj曚*
毺曚m曚(氊)

可得 暣毩曚j曚m曚 焿毩jm暤= 暺
毺毺曚曇d氊Dj曚*

毺曚m曚(氊)Dj
毺m(氊)暣毩曚j曚毺曚 焿毩j毺暤

= 暺
毺毺曚

1
2j+1毮j曚j毮毺曚毺毮m曚m暣毩曚j曚毺曚 焿毩j毺暤

=毮j曚j毮m曚m
1

2j+1暺毺
暣毩曚j毺 焿毩j毺[ ]暤 (7灡3灡20)

上式中[…]表示对磁量子数毺求平均.用式(7灡3灡17)代入式(7灡3灡20),得

暺
q

暣毩曚j曚m曚Tkq 毩j1m-q暤暣kqj1m-qjm暤=毮j曚j毮m曚m
1

2j+1暺毺
暣毩曚j毺 焿毩j毺[ ]暤

(7灡3灡21)

栙暋用式(7灡3灡22)代入式(7灡3灡21)左边,并利用 暺
q

暣kqj1m-qjm暤暣kqj1m-qj曚m曚暤=毮jj曚氁mm曚 即可验证.

利用CG系数的正交性,可得出栙

暣a曚j曚m曚Tkq 毩j1m1暤= 暣kqj1m1 j曚m曚暤 1
2j+1暺毺

暣毩曚j毺 焿毩j毺[ ]暤

= 暣j1m1kqj曚m曚暤(-1)j1+k-j曚

2j+1 暺
毺

暣毩曚j毺 焿毩j毺[ ]暤暋暋(7灡3灡22)

上式右边[…]与磁量子数无关,可以把它写成下列形式(为看起来方便一些,把式

中j1m1曻jm)

暣毩曚j曚m曚Tkq ajm暤= 暣jmkqj曚m曚暤 1
2j曚+1

暣毩曚j曚暚Tk暚毩j暤(7灡3灡23)

其中暣毩曚j曚暚Tk暚毩j暤与磁量子数
踿踿踿踿踿

无关,称为约化矩阵元
踿踿踿踿踿

(reducedmatrixelement).
上式表明不可约张量算符

踿踿踿踿踿踿踿Tkq在角动量本征态之间的矩阵元对磁量子数的依赖关
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

系
踿

,完全由一个
踿踿踿踿踿CG系数来承担

踿踿踿踿踿
(CG系数反映角动量耦合的几何关系

踿踿踿踿踿踿踿踿踿踿踿踿
),其余部分

踿踿踿踿
则用一个与磁量子数无关的约化矩阵元来表示
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,此即 Wigner灢Eckart定理.

(注)暋约化矩阵元的定义在各文献中并不统一.在主要参考书中,大别之可分为两种定义

(以下只讨论k=整数的不可约张量):
(1)与本书定义式(7灡3灡23)相同的.例如,

A.Bohr&B.R.Mottelson,NuclearStructure,Vol.I,Single灢ParticleMotion,p.82,
式(1A灢60).W.A.Benjamin,1969.

A.R.Edmonds,AngularMomentuminQuantum Mechanics,2nd.ed.p.75,式(5灡4灡1).
PrincetonUniv.Press,1960.

暣毩曚j曚m曚 Tkq ajm暤=
(-1)k-j+j曚

2j曚+1
暣kqjm j曚m曚暤暣毩曚j曚暚Tk暚aj暤
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暋暋A.deShalit& H.Feshbach,TheoreticalNuclearPhysics,Vol.I,NuclearStructure,

JohnWiley&Sons,1974,p.923,式(2灡44)

暣毩曚j曚m曚 Tkq 毩jm暤= (-1)j曚-m曚 j曚 k j
-m曚 q

æ

è
ç

ö

ø
÷

m
暣毩曚j曚暚Tk暚毩j暤

(2)与本书定义差一个因子.例如,M.E.Rose,ElementaryTheoryofAngularMomen灢
tum,式(5灡14).Wiley,1957.

暣毩曚j曚m曚 Tkq 毩jm暤= 暣jmkqj曚m曚暤暣毩曚j曚暚Tk暚毩j暤

所以

暣毩曚j曚暚Tk暚aj暤Rose = 1
2j曚+1

暣毩曚j曚暚Tk暚aj暤Edmonds

练习5暋求出下列约化矩阵元公式:

暣j曚暚J暚j暤=毮jj曚 j(j+1)(2j+1) (7灡3灡24)

暣l曚暚l暚l暤=毮ll曚 l(l+1)(2l+1)

暣s曚暚s暚s暤=毮ss曚 3/2
例如,J毺 的不为0的矩阵元为

暣jm曚 J0 jm暤=m毮mm曚暋暋暋暋暋暋暋

暣jm曚 J暲1 jm暤=熀 1
2

(j暲m+1)(j熀m)毮m曚,m暲1

查CG系数表,可以把上式统一写成[参阅式(7灡3灡11)的证明]

暣j曚m曚 J毺 jm暤=毮jj曚毮m曚,m+毺(-1)毺暣j曚m曚1-毺jm暤 j(j+1)

=毮jj曚毮m曚,m+毺暣jm1毺j曚m曚暤 j(j+1) (7灡3灡25)

但按不可约张量定义式(7灡3灡23),

上式 = 1
2j曚+1

暣jm1毺j曚m曚暤暣j曚暚J暚j暤

毮m曚,m+毺已由暣jm1毺j曚m曚暤得以保证,所以

暣j曚暚J暚j暤=毮jj曚 j(j+1)(2j+1)

练习6暋证明

暣l曚暚Yk暚l暤=
(2l+1)(2k+1)

4毿
暣l0k0l曚0暤 (7灡3灡26)

= (-1)l曚
l曚 k læ

è
ç

ö

ø
÷

0 0 0
(2l曚+1)(2k+1)(2l+1)

4毿

提示暋利用3个球谐函数乘积的积分公式[7灡1节,式(7灡1灡37)]

暣l曚m曚 Ykq lm暤=
(2l+1)(2k+1)

4毿(2l+1) 暣l0k0l曚0暤暣lmkql曚m曚暤

练习7暋证明

暣j暚Tk暚j曚暤= (-1)j-j曚暣j曚暚Tk暚j暤暋暋(k= 整数) (7灡3灡27)

利用式(7灡3灡23),

暣jm Tk-q j曚m曚暤= 暣j曚m曚k-qjm暤 1
2j+1

暣j暚Tk暚j曚暤
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= (-1)q+j-j曚暣jmkqj曚m曚暤 1
2j曚+1

暣j暚Tk暚j曚暤 (7灡3灡28)

再利用Tk-q=(-1)qT*
kq[试从式(7灡3灡7)来论证],

暣jm Tk-q j曚m曚暤= (-1)q暣jm T*
kq j曚m曚暤

= (-1)q暣j曚m曚 T+
kq jm暤= (-1)q暣j曚m曚 Tkq jm暤

= (-1)q暣jmkqj曚m曚暤 1
2j曚+1

暣j曚暚Tk暚j暤 (7灡3灡29)

比较式(7灡3灡28)与(7灡3灡29),即得式(7灡3灡27).

注意暋张量 Tkq 的厄米共轭算符T+
kq 并非一个张量,因为不可约张量定义

式(7灡3灡7)的厄米共轭为

[Jz,T+
kq]=-qT+

kq

[J暲,T+
kq]=- (k熀q+1)(k暲q)T+

kq暲1 (7灡3灡30)
可见T+

kq不符合不可约张量的定义.但如令

煆Tkq = (-1)k+qT+
k-q (7灡3灡31)

则可以证明 煆Tkq为不可约张量.例如,
[Jz,煆Tkq]= (-1)k+q[Jz,T+

k-q]= (-1)k+qqT+
k-q =q煆Tkq

下面我们计算 煆Tkq与Tkq的约化矩阵元的关系.式(7灡3灡23)取厄米共轭,由于 CG
系数取为实数,得

暣毩曚j曚m曚Tkq 毩jm暤+= 暣jmkqj曚m曚暤 1
2j曚+1

暣毩曚j曚暚Tk暚毩j暤*

左边= 暣毩jm T+
kq 毩曚j曚m曚暤= (-1)k-q暣毩jm 煆Tk-q 毩曚j曚m曚暤

= (-1)k-q暣j曚m曚k-qjm暤暣毩j暚煆Tk暚毩曚j曚暤/ 2j曚+1

= (-1)k-q暣j-mk-qj曚-m曚暤

暋·(-1)k-q 2j+1
2j曚+1

暣毩j暚煆Tk暚毩曚j曚暤/ 2j曚+1

= (-1)j+k-j曚
暣jmkqj曚m曚暤

2j曚+1
2j+1
2j曚+1

暣毩j暚煆Tk暚毩曚j曚暤

由此得

暣毩j暚煆Tk暚毩曚j曚暤= (-1)j+k-j曚 2j曚+1
2j+1

暣毩曚j曚暚Tk暚aj暤* (7灡3灡32)

*7灡4暋多个角动量的耦合

在分子、原子、原子核和粒子物理中,必然碰到全同多粒子系.它们的波函数除

了要求具有交换对称性之外,还要求是角动量的本征态.这就涉及多个角动量的耦

合.与两个角动量的耦合不同之处在于:多个角动量的耦合与耦合的先后顺序有
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
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关
踿.为研究三个角动量在不同顺序下耦合成的波函数的关系,Racah引进了重耦合

(recoupling)系数,它是研究更多角动量的耦合的基础.三个或更多角动量的耦合,
从原理上讲并没有什么新东西,都属于技巧性问题,但作为一种工具,却是很有用

的,计算多粒子系的许多力学量的矩阵元和平均值都离不开它们.

*7灡4灡1暋3个角动量的耦合,Racah系数,6j符号

考虑三个属于不同自由度(作用于不同的态空间)的角动量的耦合.令

j1+j2+j3 =J (7灡4灡1)

J称为总角动量.耦合有三种不同的顺序

j1+j2 =J12,暋暋J12+j3 =J (7灡4灡2a)

j2+j3 =J23,暋暋j1+J23 =J (7灡4灡2b)

j1+j3 =J13,暋暋j2+J13 =J (7灡4灡2c)
不同的耦合顺序得出的总角动量相同的态之间通过幺正变换相联系.

按(7灡4灡2a)顺序得出的态记为

暋氉((j1j2)J12j3,JM)

= [[毤j1
(1)暳毤j2

(2)]J12 暳毤j3
(3)]JM

= 暺
m3(M12)

氉(j1j2J12M12)毤j3m3
暣j12M12j3m3 JM暤

= 暺
m1m3(M12m2)

毤j1m1毤j2m2毤j3m3
暣j1m1j2m2 J12M12暤暣j12M12j3m3 JM暤

(7灡4灡3a)
(注意:对磁量子数求和中,只有两个独立,因M=m3+M12是给定的,而M12=m1+
m2.)

按(7灡4灡2b)顺序,则

暋氉(j1(j2j3)J23,JM)

= [毤j1
(1)暳[毤j2

(2)暳毤j3
(3)]J23

]JM

= 暺
m1m2(m3M23)

毤j1m1毤j2m2毤j3m3
暣j2m2j3m3 J23M23暤暣j1m1J23M23 JM暤

(7灡4灡3b)
两者之间的关系表示为

暋[毤j1
(1)暳[毤j2

(2)暳毤j3
(3)]J23

]JM

= 暺
J12

[[毤j1
(1)暳毤j2

(2)]J12 暳毤j3
(3)]JM 暣(j1j2)J12j3,JM j1(j2j3)J23,JM暤

(7灡4灡4)
暣(j1j2)J12j3,JM j1(j2j3)J23,JM暤是一个幺正变换的系数,称为重耦合系数(re灢
couplingcoefficient).可以证明,重耦合系数与磁量子数

踿踿踿踿踿踿踿踿踿踿M 无关
踿踿.证明如下:
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暋[毤j1
(1)暳[毤j2

(2)暳毤j3
(3)]J23

]JM+1

= 1
(J+M+1)(J-M)

J+ [毤j1
(1)暳[毤j2

(2)暳毤j3
(3)]J23

]JM

用式(7灡4灡4)代入上式右边,得
[毤j1

(1)暳[毤j2
(2)暳毤j3

(3)]J23
]JM+1

= 1
(J+M+1)(J-M)暺J12

J+ [[毤j1
(1)暳毤j2

(2)]J12 暳毤j3
(3)]JM

·暣(j1j2)J12j3,JM j1(j2j3)J23,JM暤

= 1
(J+M+1)(J-M)暺J12

(J+M+1)(J-M)

·[[毤j1
(1)暳毤j2

(2)]暳毤j3
(3)]JM+1暣(j1j2)J12j3,JM j1(j2j3)J23,JM暤

=暺
J12

[[毤j1
(1)暳毤j2

(2)]J12 暳毤j3
(3)]JM+1暣(j1j2)J12j3,JM j1(j2j3)J23,JM暤

但按式(7灡4灡4),

左边 =暺
J12

[[毤j1
(1)暳毤j2

(2)]J12 暳毤j3
(3)]JM+1

·暣(j1j2)J12j3,JM +1j1(j2j3)J23JM +1暤
(证毕)
因此重耦合系数中可略去 M,记为暣(j1j2)J12j3,Jj1(j2j3)J23,J暤.为更便于

显示其对称性,令

暣(j1j2)J12j3,Jj1(j2j3)J23,J暤= (2J12+1)(2J23+1)W(j1j2Jj3,J12j23)
(7灡4灡5)

W 称为Racah系数.这样,式(7灡4灡4)可改写成

[毤j1
(1)暳[毤j2

(2)暳毤j3
(3)]J23

]JM

=暺
J12

[[毤j1
(1)暳毤j2

(2)]J12 暳毤j3
(3)]JM

· (2J12+1)(2J23+1)W(j1j2Jj3,J12J23) (7灡4灡6)

把式(7灡4灡3a)和 (7灡4灡3b)代 入 式 (7灡4灡4),在 等 式 两 边 左 乘 (取 标 积)
暣毤j1m1

(1)毤j2m2
(2)毤j3m3

(3),再利用单粒子态的正交归一性,得

暺
m1m2m3M23

毮m1m曚1毮m2m曚2毮m3m曚3
暣j2m2j3m3 J23M23暤暣j1m1J23M23 JM暤

= 暺
m1m2m3M12J12

毮m1m曚1毮m2m曚2毮m3m曚3
·暣j1m1j2m2 J12M12暤暣J12M12j3M3 JM暤

· (2j12+1)(2J23+1)W(j1j2Jj3,J12J23)

求和后,把等式两边磁量子数的一撇都去掉,得
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暣j2m2j3m3 J23M23暤暣j1m1J23M23 JM暤

=暺
J12

暣j1m1j2m2 J12M12暤暣J12M12j3m3 JM暤

· (2J12+1)(2J23+1)W(j1j2Jj3,J12J23) (7灡4灡7)
上式两边乘暣j1m1j2m2 J曚12M12暤,对m1 求和(M12取定,m2=M12-m1,不独立),利
用CG系数正交性,右边出现毮J12J曚12

,然后把J曚12的一撇去掉,得

暣J12M12j3m3 JM暤 (2J12+1)(2J23+1)W(j1j2Jj3,J12J23)

=暺
m1

暣j1m1j2m2 J12M12暤暣j2m2j3m3 J23M23暤暣j1m1J23M23 JM暤暋暋(7灡4灡8)

上式两边乘暣J12M12j3m3 JM暤,对m3 求和后,得

(2J12+1)(2J23+1)W(j1j2Jj3,J12J23)

= 暺
m1m2(M3M12M23)

暣j1m1j2m2 J12M12暤暣J12M12j3m3 JM暤

·暣j2m2j3m3 J23M23暤暣j1m1J23M23 JM暤 (7灡4灡9)

图7灡4

上式求和中,只有两个磁量子数是独立的,因为 M
先取定,而m1+m2+m3=M,M12=m1+m2,M23=
m2+m3.上式表明,Racah系数可表示成4个CG系

数乘积的叠加,因而涉及4个三角形关系.如图7灡4
所示四面体.因此,只当下列4个三角形关系:

曶(j1j2J12)暋暋曶(j2j3J23)

曶(J12j3J)暋暋曶(j1J23J)
都满足时,Racah系数W(j1j2Jj3,J12J23)才不为0.

习惯上CG系数取为实数,所以 Racah系数也

是实数.根据CG 系数的对称性及式(7灡4灡9),可求出 Racah系数的对称性关系

如下:

W(abcd,ef)=W(badc,ef)=W(cdab,ef)=W(acbd,fe)

W(abcd,ef)= (-1)e+f-a-dW(ebcf,ad)= (-1)e+f-b-cW(aefd,bc)
(7灡4灡10)

为了使对称性表现更明显,以便于记忆,Wigner引进6j符号来代替 Racah系

数,后来被广泛用来列表.6j符号定义如下:

j1 j2 J12

j3 J J{ }
23

= (-1)j1+j2+j3+JW(j1j2Jj3,J12J23) (7灡4灡11)

或

j1 j2 j5

j4 j3 j{ }
6

= (-1)j1+j2+j3+j4W(j1j2j3j4,j5j6) (7灡4灡11曚)

用6j符号来表示时,式(7灡4灡6)可改写成
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暋[毤j1
(1)暳[毤j2

(2)暳毤j3
(3)]J23

]JM

= 暺
J12

(-1)j1+j2+j3+J (2J12+1)(2J23+1)

暋· j1 j2 J12

j3 J J{ }
23

[[毤j1
(1)暳毤j2

(2)]J12暳毤j3
(3)]JM (7灡4灡12)

类似有

暋[[毤j1
(1)暳毤j2

(2)]J12 暳毤j3
(3)]JM

=暺
J13

(-1)j2+j3+J12+J13 (2J12+1)(2J13+1)

· j1 j2 J12

J j3 J{ }
13

[[毤j1
(1)暳毤j3

(3)]J13暳毤j2
(2)]JM (7灡4灡13)

6j符号的对称性

(1)任何两列交换,6j符号的值不变.
j1 j2 j3

l1 l2 l{ }
3

=
j2 j1 j3

l2 l1 l{ }
3

= … (7灡4灡14)

(2)上行中任意两元素与下行中的相应两元素对调,6j符号值不变.
j1 j2 j3

l1 l2 l{ }
3

=
l1 l2 j3

j1 j2 l{ }
3

= … (7灡4灡15)

利用CG系数和3j符号的关系以及3j和6j符号的对称性,式(7灡4灡7)、式
(7灡4灡8)、式(7灡4灡9)可依次改写如下栙:

式(7灡4灡7)中,让J23曻j3,J12曻l3,j3曻l1,J曻j2,j2曻l2,经整理后,得

暋
j1 j2 j3

m1 m2 m
æ

è
ç

ö

ø
÷

3
暋

l1 l2 j3

m曚1 m曚2 m{ }
3

= 暺
l3

(2l3+1)(-1)l1+l2+l3+j1+j2-j3-m1-m曚1

暋· j1 j2 j3

l1 l2 l{ }
3

暋
l2 j1 l3

m曚2 m1 m曚
æ

è
ç

ö

ø
÷

3
暋

j2 l1 l3

m2 m曚1 -m曚
æ

è
ç

ö

ø
÷

3

(7灡4灡7曚)

式(7灡4灡8)中,作下列替换:

J12 曻j1,暋M12 曻m1,暋J23 曻l1,暋M23 曻m曚1,暋j3 曻j2,暋m3 曻m2

j1 曻l2,暋m1 曻m曚2,暋J曻j3,暋M 曻-m3,暋j2 曻l3,暋m2 曻m曚3

经整理后,得
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暋
j1 j2 j3

m1 m2 m
æ

è
ç

ö

ø
÷

3
暋

j1 j2 j3

l1 l2 l{ }
3

= 暺
m曚1(m曚2m曚3)

(-1)l1+l2+l3+m曚1+m曚2+m曚3

暋· j1 l2 l3

m1 m曚2 -m曚
æ

è
ç

ö

ø
÷

3
暋

l1 j2 l3

-m曚1 m2 m曚
æ

è
ç

ö

ø
÷

3
暋

l1 l2 j3

m曚1 -m曚2 m
æ

è
ç

ö

ø
÷

3

(7灡4灡8曚)
(对m曚1,m曚2,m曚3求和中,只有一个是独立的.)

类似的,式(7灡4灡9)可以化为

暋
j1 j2 j3

l1 l2 l{ }
3

= 暺
m1m2m3
m曚1m曚2m曚3

(-1)l3-l1-l2-j1-j2-j3-m1-m曚1
j1 j2 j3

m1 m2 -m
æ

è
ç

ö

ø
÷

3

暋·
l1 l2 j3

m曚1 m曚2 m
æ

è
ç

ö

ø
÷

3
暋

j2 l1 l3

m2 m曚1 -m曚
æ

è
ç

ö

ø
÷

3
暋

l2 j1 l3

m曚2 m1 m曚
æ

è
ç

ö

ø
÷

3
暋暋(7灡4灡9曚)

(求和中只有两个磁量子数是独立的.)

6j符号中如有一个元素为0,则有下列简单的表示式

j1 j2 0
j3 J J{ }

23
=毮j1j2毮j3J

(-1)j1+j3+J23/ (2j1+1)(2j3+1)

(7灡4灡16)

j1 j2 J12

0 J J{ }
23

=毮J12J毮j2J23
(-1)j1+j2+J12/ (2j2+1)(2J12+1)

(7灡4灡17)
式(7灡4灡16)和式(7灡4灡17)的结果可以从图7灡5及三角形关系明显看出.

式(7灡4灡17)还可改写成

j1 j2 j3

0 j4 j{ }
5

=毮j3j4毮j2j5
(-1)j1+j2+j3/ (2j2+1)(2j3+1)(7灡4灡17曚)

式(7灡4灡16)中,如j1=j3=j(半奇数),让J23曻L,则

j j 0
j j{ }L

= (-1)L+1/(2j+1) (7灡4灡18)

6j系数的正交性

利用变换的幺正性,注意到重耦合系数已取为实数,可得出

暺
J23

暣(j1j2)J12J3,jj1(j2j3)J23,J暤暣(j1j2)J曚12j3,Jj1(j2j3)J23,J暤=毮J12J曚12
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图7灡5

按式(7灡4灡5)和(7灡4灡11),上式可改写成

暺
J23

(2J12+1)(2J曚12+1)(2J23+1)

· j1 j2 J12

j3 J J{ }
23

暋
j1 j2 J曚12

j3 J J{ }
23

=毮J12J曚12

作替换J12曻J曚,J曚12曻J曞,J23曻J,J曻j4,考虑到右边毮J12J曚12
,得

暺
J

(2J曚+1)(2J+1)j1 j2 J曚
j3 j4
{ }J

暋
j1 j2 J曞
j3 j4
{ }J

=毮J曚J曞 (7灡4灡19)

上式中如j1=j2=j(半奇数),j3=j4=j曚(半奇数),J曚=0,利用式(7灡4灡16),可得

暺
J

(2J+1) (-1)j+j曚+J

(2j+1)(2j曚+1)
j j J曞
j曚 j{ }曚 J

=毮J曞0

让J曞曻L,则

暺
J

(2J+1)(-1)J j j L
j曚 j{ }曚 J

= (-1)j+j曚 (2j+1)(2j曚+1)毮L0

(7灡4灡20)

6j符号的求和规则

根据完备性,有

暋暺
J23

暣(j1j2)J12j3,Jj1(j2j3)J23,J暤暣j1(j2j3)J23,Jj2(j3j1)J31,J暤

= 暣(j1j2)J12j3,Jj2(j3j1)J31,J暤
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将上式中一部分两角动量的耦合顺序改动一下,可得

暋暺
J23

暣(j1j2)J12j3,Jj1(j2j3)J23,J暤

暋·暣(j2j3)J23j1,Jj2(j3j1)J31,J暤(-1)j1+J23-J

= 暣(j2j1)J12j3,Jj2(j1j3)J13,J暤(-1)j1+j2-J12+j1+j3-J13

利用式(7灡4灡5)、(7灡4灡11),并用6j符号表示出来,则上式化为

暋暺
J23

(2J12+1)(2J13+1)(2J23+1)

暋·(-1)2(j1+j2+j3+J)+j1+J23-J j1 j2 J12

j3 J J{ }
23

暋
j2 j3 J23

j1 J J{ }
31

= (-1)-(j2+j1+j3+J)+j1+j2-J12+j1+j3-J13

暋· (2J12+1)(2J13+1)j2 j1 J12

j3 J J{ }
13

经过化简,并利用6j符号的对称性式(7灡4灡14)与式(7灡4灡15),可得

暋暺
J23

(2J23+1)(-1)J12+J23+J31
j1 j2 J12

j3 J J{ }
23

暋
j1 j3 J13

j2 J J{ }
23

=
j1 j2 J12

j3 J J{ }
13

作替换J12曻j3,j3曻j4,J曻j5,J23曻j6,J13曻j曚3,上式化为

暋暺
j6

(2j6+1)(-1)j3+j曚3+j6
j1 j2 j3

j4 j5 j{ }
6

暋
j1 j4 j曚3

j2 j5 j曚{ }
6

=
j1 j2 j3

j5 j4 j曚{ }
3

(7灡4灡21)

上式两边乘以(-1)-j3-j曚3 (2j3+1)j1 j2 j3

j4 j5 j曚{ }
6

,对j3 求和,利用正交性公式

(7灡4灡19),式(7灡4灡21)化为

暋暺
j

(-1)j6 暺
j3

(2j3+1)(2j6+1)j1 j2 j3

j4 j5 j曚{ }
6

暋
j1 j2 j3

j4 j5 j{ }
掯 掲掱梺梺梺梺梺梺梺梺梺梺梺梺 梺梺梺梺梺梺梺梺梺梺梺梺

6

毮j6j曚6

暋
j1 j4 j曚3

j2 j5 j{ }
6

= 暺
j2

(2j3+1)(-1)-j3-j曚3
j1 j2 j3

j4 j5 j曚{ }
6

暋
j1 j2 j3

j5 j4 j曚{ }
3

然后把j曚6曻j6,j曚3曻j曚6[注意:2(j3+j6+j曚6)=偶数],得

暺
j3

(-1)j3+j6+j曚6
j1 j2 j3

j4 j5 j{ }
6

暋
j1 j2 j3

j5 j4 j曚{ }
6

=
j1 j5 j6

j2 j4 j曚{ }
6

暋

(7灡4灡22)
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在式(7灡4灡21)中,如j曚3=0,利用式(7灡4灡16)与(7灡4灡17)化简,得

暺
j6

(2j6+1)j1 j2 j3

j4 j5 j{ }
6

毮j1j4毮j2j5 = (-1)2(j1+j2)毮j1j4毮j2j5

令j1=j4=j,j2=j5=j曚,j6曻J,j3曻L,上式化为

暺
J

(2J+1)j j曚 L
j j{ }曚 J

= (-1)2(j+j曚) (7灡4灡23)

*7灡4灡2暋4个角动量的耦合,9j符号

考虑彼此对易的4个角动量的耦合.令

j1+j2+j3+j4 =J (7灡4灡24)
它们也有不同的耦合顺序.例如

j1+j2 =J12暋j3+j4 =J34,暋J12+J34 =J
j1+j3 =J13暋j2+j4 =J24,暋J13+J24 =J

按这两种顺序耦合得出的具有相同的(J2,Jz)本征值的波函数之间通过一个幺正

变换相联系,记为

氉[(j1j2)J12(j3j4)J34,JM]

=暺
J13J24

氉[(j1j3)J13(j2j4)J24,JM]暣(j1j3)J13(j2j4)J24,J (j1j2)J12(j3j4)J34,J暤

(7灡4灡25)
幺正变换系数记为暣(j1j3)J13(j2j4)J24,J (j1j2)J12(j3j4)J34,J暤,这里已利用了

它与磁量子数无关
踿踿踿踿踿踿踿

的性质,M 已经略去.习惯上取它们为实数.它们可以表示成6
个CG系数的乘积的叠加.式(7灡4灡25)两边的波函数,借助于 CG 系数,可以表示

成4个单粒子态的乘积的叠加,然后左乘暣毤j1m1
(1)毤j2m2

(2)毤j3m3
(3)毤j4m4

(4)(取标

积),利用单粒子态的正交归一性,可求出幺正变换系数与CG系数的关系.然后等

式两边乘以

暣j1m1j3m3 J13M13暤暣j2m2j4m4 J24M24暤暣J13M13J24M24 JM暤
并对磁量子数求和,利用CG系数的正交性,最后可得出

暣(j1j2)J12(j3j4)J34,J (j1j3)J13(j2j4)J24,J暤

暋 = 暺
(磁量子数)

暣j1m1j2m2 J12M12暤暣j3m3j4m4 J34M34暤

暋暋·暣j12M12J34M34 JM暤暣j1m1j3m3 J13M13暤

暋暋·暣j2m2j4m4 J24M24暤暣J13M13J24M24 JM暤 (7灡4灡26)
右边对磁量子数求和中,只有3个是独立的,因为M 已取定,而

m1+m2+m3+m4 =M,暋M12 =m1+m2,暋M34 =m3+m4

M13 =m1+m3,暋M24 =m2+m4

为更明显表现幺正变换系数的对称性,Wigner引进下列9j符号:
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暣(j1j2)J12(j3j4)J34,J (j1j3)J13(j2j4)J24,J暤

= (2J12+1)(2J34+1)(2J13+1)(2J24+1)
j1 j2 J12

j3 j4 J34

J13 J24

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ
(7灡4灡27)

9j符号{}中,每一行和每一列的3个角动量都要求满足三角形关系,

曶(j1j2J12),暋曶(j3j4J34),暋曶(J12J34J)

曶(j1j3J13),暋曶(j2j4J24),暋曶(J13J24J)

利用9j符号,式(7灡4灡25)可表示成

暋氉((j1j2)J12(j3j4)J34,JM)

= 暺
J13J24

氉((j1j3)J13(j2j4)J24,JM)

暋· (2J12+1)(2J34+1)(2J13+1)(2J24+1)

暋·
j1 j2 J12

j3 j4 J34

J13 J24

ì

î

í

ï
ï

ïï

ü

þ

ý

ï
ï

ïïJ

(7灡4灡28)

例如,LS耦合与jj耦合波函数之间的关系可表示为

暋氉((l1l2)L(s1,s2)S,JM)

= 暺
j1j2

氉((l1s1)j1(l2s2)j2,JM) (2L+1)(2S+1)(2j1+1)(2j2+1)

暋·
l1 l2 L
s1 s2 S
j1 j2

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ

(7灡4灡29)

其他不同顺序之间的幺正变换系数也可类似得出,例如

暋暣(j1j2)暤J12(j3j4)J34,J (j1j4)J14(j2j3)J23,J暤

= (-1)j3+j4-J34 (2J12+1)(2J34+1)(2J14+1)(2J23+1)

暋·
j1 j2 J12

j4 j3 J34

J14 J23

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ

(7灡4灡30)

暋暣(j1j2)暤J12(j3j4)J34,J (j1j4)J14(j3j2)J23,J暤

= (-1)j2-J23-j4+J34 (2J12+1)(2J34+1)(2J14+1)(2J23+1)

暋·
j1 j2 J12

j4 j3 J34

J14 J23

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ

(7灡4灡31)
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9j符号的对称性

按照9j符号的定义式(7灡4灡27)及式(7灡4灡26),以及 CG 系数的对称性,可得

出9j符号的下列对称性:
(1)行列转置,9j符号的值不变;
(2)每一行(或一列)中的各元素做奇置换时,出现因子(-1)P,其中P=9个

元素之和.行(或列)做遇置换时,9j符号值不变.

9j符号的正交性

暋暺
J12J34

(2J12+1)(2J34+1)
j1 j2 J12

j3 j4 J34

J13 J24

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ
暋

j1 j2 J12

j3 j4 J34

J曚13 J曚24

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ

=
毮J13J曚13毮J24J曚24

(2J13+1)(2J24+1) (7灡4灡32)

9j符号的求和规则

利用每一种耦合顺序所构成的(J2,Jz)本征态的完备性以及9j符号的定义,
可证明

暋 暺
J13+J24

(-1)J23+J24-J34-2j2(2J13+1)(2J24+1)
j1 j2 J12

j3 j4 J34

J13 J24

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ
暋

j1 j3 J13

j4 j2 J24

J14 J23

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ

=
j1 j2 J12

j4 j3 J34

J14 J23

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ
暋暋 (7灡4灡33)

9j符号与6j符号的关系

考虑四个角动量的重耦合系数

暣(j1j2)J12(j3j4)J34,J (j1j3)J13(j2j4)J24,J暤 (7灡4灡34)
试把角动量j1 解脱耦合,上式右半部分化为

暋 (j1j3)J13(j2j4)J24,J暤

= 暺
毸

j1暤j3(j2j4)J24,毸暤

暋·暣j1(j3J24)毸,J (j1j3)J13(j2j4)J24,J暤暣(j1j2)J12(j3j4)J34,J

= 暺
毸曚

暣j1 暣j2(j3j4)J34,毸曚 ·暣(j1j2)J12(j3j4)J34,Jj1(j2J34)毸曚,J暤

代入式(7灡4灡34),由于正交性,将出现毮毸毸曚,由此得出
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暋暣(j1j2)J12(j3j4)J34,J (j1j3)J13(j2j4)J24,J暤

= 暺
毸

暣(j1j2)J12J34,Jj1(j2J34)毸,J暤

暋·暣j2(j3j4)J34,毸j3(j2j4)J24,毸暤暣j1(j3J24)毸,j (j1j3)J13J24,J暤
(7灡4灡35)

上式右边是三个角动量的重耦合系数之乘积,它们分别可以用6j符号表示出来.
按式(7灡4灡5)和(7灡4灡11),式(7灡4灡35)右边三个因子可分别表示为[参见图7灡6
(a)、(b)和(c)]

暋暣(j1j2)J12J34,Jj1(j2J34)毸,J暤

= (-1)j1+j2+J34+J (2J12+1)(2毸+1)· j1 j2 J12

J34 J{ }毸
暋暣j2(j3j4)J34,毸j3(j2j4)J24,毸暤

= 暣j3(j2j4)J24,毸j2(j3j4)J34,毸暤暋暋暋(实数)

= (-1)(j3+J24-毸)+(j3+j4-J34)暣(j2j4)J24j3,毸j2(j4j3)J34,毸暤

= (-1)(j3+J24-毸)+(j3+j4-J34)+j2+j3+j4+毸 (2J24+1)(2J34+1)j2 j4 J24

j3 毸 J{ }
34

暋暣j1(j3J24)毸,J (j1j3)J13J24,J暤

= 暣(j1j3)J13J24,毸j1(j3J24)毸,J暤

= (-1)j1+j3+J24+J (2J13+1)(2毸+1)j1 j3 J13

J24 J{ }毸

图7灡6

将以上各式代入式 (7灡4灡35)右边,而式 (7灡4灡35)左边按 9j 符号 定义式

(7灡4灡27)写出,化简,最后得

j1 j2 J12

j3 j4 J34

J13 J24

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïïJ
=(-1)2(j2+j3+j4)暺

毸

(2毸+1)

· j1 j2 J12

J34 J{ }毸
暋

j2 j4 J24

j3 毸 J{ }
34

暋
j1 j3 J13

J24 J{ }毸
暋暋暋暋(7灡4灡36)

·172·



若J=0,利用式(7灡4灡17曚)及6j符号的对称性,并注意9j符号中2(j1+j2+

j3+j4)=偶数,可得出

j1 j2 J12

j3 j4 J34

J13 J24

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïï0
=

(-1)j2+j3+J12+J13

(2J12+1)(2J13+1)
· j1 j2 J12

j4 j3 J{ }
13

毮J12J34毮J13J24

(7灡4灡37)

*7灡5暋张量积,矩阵元

*7灡5灡1暋张量积

与两个角动量的本征态的耦合相似,两个不可约张量可进行如下的耦合

暺
q1

暣k1q1k2q-q1 kq暤Tk1q1Tk2q-q1 =Tkq (7灡5灡1)

其中

k=k1+k2,…,k1-k2

可以证明,Tkq(q=k,k-1,…,-k)是一个k 阶不可约张量.通常记为[Tk1 暳
Tk2

]kq.
证明暋在转动R 作用下,Tkq算符变为

RTkqR-1= 暺
q1

暣k1q1k2q-q1 kq暤RTk1q1R
-1RTk2q-q1R

-1

= 暺
q1

暣k1q1k2q-q1 kq暤·暺
q曚1

Tk1q曚1D
k1
q曚1q1

(R)暺
q曚2

Tk2q曚2D
k2
q曚2q-q1

(R)

利用D 函数耦合公式[7灡1节,式(7灡1灡28)],

RTkqR-1 =暺
q1q曚1q曚2

暣k1q1k2q-q1 kq暤Tk1q曚1Tk2q曚2

·暺
k曚

暣k1q曚1k2q曚2 k曚q曚1+q曚2暤暣k1q1k2q-q1 k曚q暤Dk曚
q曚1+q曚2,q(R)

利用

暺
q1

暣k1q1k2q-q1 kq暤暣k1q1k2q-q1 k曚q暤=毮kk曚

得

RTkqR-1= 暺
q曚1q曚2

暣k1q曚1k2q曚2 kq曚1+q曚2暤Tk1q曚1Tk2q曚2D
k
q1+q曚2,q(R)

= 暺
q曚q曚1

暣kq曚1k2q曚-q曚1 kq曚暤Tk1q曚1Tk2q曚-q曚1D
k
q曚q(R)

= 暺
q曚
Tkq曚Dk

q曚q(R) (7灡5灡2)
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这就证明了Tkq=[Tk1暳Tk2
]kq,q=k,k-1,…,-k,构成一个k阶不可约张量.这

种张量的耦合也称为张量的乘积.
张量积是初等几何学中两个矢量的“标积暠(相当于k=0)和“矢积暠(相当于

k=1)概念的推广.初等几何学中两个矢量U 与V 的标积定义为

U·V =UxVx +UyVy +UzVz (7灡5灡3)

如用球张量(sphericaltensor)形式表示出来,可如下定义:两个L 阶球张量UL 与

VL 的“标积暠Q 为

Q 曉 (UL,VL)= 暺
L

M=-L

(-1)MULMVL-M (7灡5灡4)

对于一阶张量(L=1),其标积为

(U1,V1)=-(U11V1-1+U1-1V11)+U10V10 (7灡5灡5)
其中[见7灡3节式(7灡3灡10)]

U1暲1 =熀 1
2
(Ux 暲iUy),暋U10 =Uz

V1暲1 =熀 1
2
(Vx 暲iVy),暋V10 =Vz

代入式(7灡5灡5),容易得出

(U1,V1)=UxVx +UyVy +UzVz =U·V
与式(7灡5灡3)的定义相同,即平常两个矢量的标积.容易看出,张量“标积暠的定义Q
与[UL暳VL]0 只差一个常数因子,因按式(7灡5灡1)

[UL 暳VL]0= 暺
M

暣LML-M 00暤ULMVL-M

=
(-1)L

2L+1暺M
(-)MULMVL-M

=
(-1)L

2L+1
Q (7灡5灡6)

类似可证明[U1暳V1]1M构成的一阶张量,与两个矢量U 与V 的矢积U暳V 也

只差一个常数因子.例如

[U1暳V1]10= 暺
M1

暣1M11-M1 10暤U1M1V1-M1

= 1
2
(U11V1-1-U1-1V11)

= 1
2

-1
2

(Ux +iUy)(Vx -iVy)+1
2

(Ux -iUy)(Vx +iVy[ ])

= i
2
(UxVy -UyVx)= i

2
(U暳V)z
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*7灡5灡2暋张量积的矩阵元

我们经常碰到的物理量中,有的本身就可以用一个球张量来描述(如磁矩、电
四极矩),它们的矩阵元可以借助于 Wigner灢Eckart定理来计算.有的物理量,如两

粒子的相互作用,则可以用张量的乘积来展开.因此,我们会经常碰到计算张量积

的矩阵元的问题.

标积的矩阵元

同一个体系的两个同阶张量的标积
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿Q[见式(7灡5灡4)]

Q= 暺
M

(-1)MULMVL-M (7灡5灡7)

可以证明,其矩阵元

暣jm Q j曚m曚暤=暺
j曞

暣j暚UL暚j曞暤暣j曞暚VL暚j暤(-1)j曚-j曞毮j曚j毮m曚m/(2j+1)

(7灡5灡8)
即只有对角元(平均值)可能不为0,其值为

暣jm Q jm暤= 暺
j曚

暣j暚UL暚j曚暤暣j曚暚VL暚j暤(-1)j-j曚/(2j+1) (7灡5灡9)

暋暋证明

暣jm Q j曚m曚暤= 暺
j曞,M(m曞)

(-1)M暣jm ULM j曞m曞暤暣j曞m曞VL-M j曚m曚暤

利用 Wigner灢Eckart定理,

暣jm Qj曚m曚暤= 暺
j曞,M(m曞)

(-1)M
暣j曞m曞LM jm暤

2j+1
暣j暚UL暚j曞暤

·
暣j曚m曚L-M j曞m曞暤

2j曞+1
暣j曞暚VL暚j暤 (7灡5灡10)

利用

暋暺
M(m曞)

(-1)M暣j曞m曞LM jm暤暣j曚m曚L-M j曞m曞暤

= 暺
M(m曞)

(-1)M暣j曞m曞LM jm暤暣j曞-m曞L-M j曚-m曚暤(-1)L-M 2j曞+1
2j曚+1

= 暺
M(m曞)

暣j曞m曞LM jm暤·暣j曞m曞LM j曚m曚暤(-1)j曚-j曞 2j曞+1
2j曚+1

= (-1)j曚-j曞毮jj曚
2j曞+1
2j曚+1

代入式(7灡5灡10),即得式(7灡5灡8).
设UL(1)是体系1的L价张量,VL(2)是体系2的L阶张量[或UL(1)与VL(2)
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分别属于不同自由度],则在两个体系的角动量耦合表象中
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,标积
踿踿

Q= 暺
M

(-1)MULM (1)VL-M(2) (7灡5灡11)

的矩阵元为

暋暣j1j2jm Q j曚1j曚2j曚m曚暤

=毮jj曚毮mm曚(-1)j曚1+j2+j暣j1暚UL暚j曚1暤暣j2暚VL暚j曚2暤
j1 j2 j
j曚2 j曚1
{ }L

=毮jj曚毮mm曚(-1)j1+j曚2-j暣j1暚UL暚j曚1暤暣j2暚VL暚j曚2暤W(j1j2j曚1j曚2,jL)暋暋(7灡5灡12)
证明暋换到非耦合表象中去,

暣j1j2m Q j曚1j曚2j曚m曚暤

= 暺
Mm1m曚1

(-1)M暣j1m1j2m2 jm暤暣j曚1m曚1j曚2m曚2 j曚m曚暤

·暣j1m1 ULM j曚1m曚1暤暣j2m2 VL-M j曚2m曚2暤毮jj曚毮mm曚

利用 Wigner灢Eckart定理

=
暣j1暚UL暚j曚1暤暣j2暚VL暚j曚2暤

(2j1+1)(2j2+1
[) 暺
Mm1m曚1

(-1)M暣j1m1j2m2 jm暤

暋·暣j曚1m曚1j曚2m曚2旤jm暤暣j曚1m曚1LM j1m1暤暣j曚2m曚2L-M j2m2 ]暤毮jj曚毮mm曚暋暋

(7灡5灡13)
利用

暣j曚2m曚2L-M j2m2暤= 暣LMj2m2 j曚2m曚2暤(-1)L-M 2j2+1
2j曚2+1

式(7灡5灡13)中[…]可化为

(-1)L 2j2+1
2j曚2+1暺

Mm1m曚1

暣j曚1m曚1LM j1m1暤暣j1m1j2m2 jm暤

·暣LMj2m2 j曚2m曚2暤暣j曚1m曚1j曚2m曚2 jm暤
与Racah系数定义比较[见7灡4节式(7灡4灡9)]

上式= (-1)L 2j2+1
2j曚2+1

(2j1+1)(2j曚2+1)W(j曚1Ljj2,j1j曚2)

= (-1)j1+j曚2-j (2j1+1)(2j2+1)W(j1j2j曚1j曚2,jL)

= (-1)j曚1+j2-j (2j1+1)(2j2+1)· j1 j2 j
j曚2 j曚1
{ }L

代入式(7灡5灡13),即得式(7灡5灡12).

张量积的矩阵元

一个体系的两个张量的张量积
踿踿踿踿踿踿踿踿踿踿踿踿踿
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TLM = [UL1 暳VL2
]LM

= 暺
M1(M2)

UL1M1VL2M2
暣L1M1L2M2 LM暤 (7灡5灡14)

的矩阵元公式

暣jm TLM j曚m曚暤= (-1)j-m j L j曚
-

æ

è
ç

ö

ø
÷

m M m曚
暣j暚TL暚j曚暤 (7灡5灡15)

其中

暣j暚TL暚j曚暤

= 2L+1(-1)j+j曚+L暺
j曞

L1 L2 L
j曚 j j{ }曞

暣j暚UL暚j曞暤暣J曞暚VL暚j曚暤

暋暋如UL(1)是体系1的L1 阶张量,VL(2)是体系2的L2 阶张量,则张量积

TLM = [UL1
(1)暳VL2

(2)]LM

= 暺
M1(M2)

UL1M1
(1)VL2M2

(2)暣L1M1L2M2 LM暤 (7灡5灡16)

在角动量耦合表象中的矩阵元为

暋暣j1j2jm TLM j曚1j曚2j曚m曚暤

= (-1)j-m j L j曚
-

æ

è
ç

ö

ø
÷

m M m曚
暣j1j2j暚TL暚j曚1j曚2j曚暤

其中

暋暣j1j2j暚TL暚j曚1j曚2j曚暤

= 暣j1暚UL1暚j曚1暤暣j2暚VL2暚j曚2暤 (2j+1)(2L+1)(2j曚+1)

暋·
j1 j曚1 L1

j2 j曚2 L2

j j

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïï曚 L

(7灡5灡17)

上式中如L=0,则除一个常数因子外,T00即标积Q,式(7灡5灡17)将回到式(7灡5灡4).
在式(7灡5灡16)中,取L2=0,此时VL2=1,TLM =UL1M1

(1).利用暣j2暚1暚j曚2暤=

2j2+1毮j2j曚2
,暣L1M100LM暤=毮L1L毮M1M,以及[见7灡4节,式(7灡4灡37)]

j1 j曚1 L1

j2 j曚2 0
j j

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïï曚 L
= (-1)P

j1 j曚1 L1

j j曚 L1

j2 j曚2

ì

î

í

ïï

ïï

ü

þ

ý

ïï

ïï0
=

(-1)P-(j曚1+j+L1+j2)

(2L1+1)(2j2+1)
j1 j曚1 L1

j曚 j j{ }
2

毮j2j曚2

P = (j1+j曚1+j2+j曚2+j+j曚-2L1)
可得出

暋暣j1j2j暚UL1
(1)暚j曚1j曚2j曚暤

= (-1)j1+j曚2+j曚+L1 (2j+1)(2j曚+1)j1 j曚1 L1

j曚 j j{ }
2

暣j1暚UL1暚j曚1暤毮j2j曚2

(7灡5灡18)
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类似有

暋暣j1j2j暚VL2
(2)暚j曚1j曚2j曚暤

= (-1)j1+j2+j曚+L2 (2j+1)(2j曚+1)j2 j曚2 L2

j曚 j j{ }
1

暣j2暚VL2暚j曚2暤毮j1j曚1

(7灡5灡19)
例1暋证明球谐函数 YM

L 在自旋s=1/2的粒子的总角动量本征态之间的约化矩阵元为

暣j暚YL暚j曚暤曉 暣l1
2j暚YL暚l曚 1

2j曚暤

= (-1)j-1
2+L (2j+1)(2j曚+1)

4毿
·暣j曚 1

2j- 1
2 L0暤 (7灡5灡20)

证明暋利用式(7灡5灡18)及7灡3节式(7灡3灡26),得

暣l1
2j暚YL暚l曚 1

2j曚暤

=(-1)l+1
2+j曚+L (2j+1)(2j曚+1)

l l曚 L

j曚 j{ }1
2

暣l暚YL暚l曚暤

=(-1)j曚+1
2+L (2j+1)(2j曚+1)(2l+1)(2l曚+1)(2L+1)/4毿

· l L l曚( )0 0 0

l l曚 L

j曚 j{ }1
2

(7灡5灡21)

经过仔细计算(注意l+l曚+L=偶),可以求出(参阅节7灡4灡1节)

l l曚 Læ

è
ç

ö

ø
÷

0 0 0

l l曚 L

j曚 j{ }1
2

=
-(-1)j-j曚暣j曚 1

2j- 1
2 L0暤

(2l+1)(2l曚+1)(2L+1)

代入式(7灡5灡21),即得式(7灡5灡20).
例2暋荷电e的粒子的电四极矩算符定义为

Q2m =e 16毿
5r2Ym*

2 (毴,氄) (7灡5灡22)

是一个2阶不可约球张量.设粒子自旋s=1/2,电四极矩的观测值定义为(注意,Y0*
2 =Y0

2)

Qj = 暣lsjm Q20 lsjm暤 m=j (7灡5灡23)

lsjm暤是(l2s2j2j3)的共同本征态.利用 Wigner灢Eckart定理(径向部分波函数未明显写出),得

Qj =e 16毿
5

暣r2暤 1
2j+1

暣jj20jj暤暣l1
2j暚Y2暚l1

2j暤

利用式(7灡5灡20)及查CG系数表,得

Qj=e暣r2暤 4
5

(-1)j-1/2 2j+1暣jj20jj暤暣j1
2j- 1

2 20暤

=-e暣r2暤2j-1
2j+1

(7灡5灡24)

上式对j=l暲1/2态均成立.可以看出,当j=1/2时,Qj=0.当j曻曓(大量子数极限)时,Qj=

-e暣r2暤.设e>0,则Qj<0.其经典图象是一个扁旋转轨道(对称轴为z轴),所以Qj<0.
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暋暋例3暋计算两个核子的中心势V(r)=V(r1-r2 )的矩阵元,

暣j1j2JM V(r)j曚1j曚2JM暤

曉 暣(l1s1)j1(l2s2)j2JM V(r) (l曚11/2)j曚1(l曚21/2)j曚2JM暤 (7灡5灡25)

V(r)是与自旋无关的标量,最方便的计算可在LS耦合表象中进行.为此,利用9j系数[7灡4节

式(7灡4灡29)]

暋氉[(l1s1)j1(l2s2)j2,JM]

= 暺
LS
氉[(l1l2)L(s1s2)S,JM] (2j1 +1)(2j2 +1)(2L+1)(2S+1)·

l1 s1 j1

l2 s2 j2{ }
L S J

则式(7灡5灡25)可表示成

暣j1j2JM V(r)j曚1j曚2JM暤= (2j1 +1)(2j2 +1)(2j曚1 +1)(2j曚2 +1)

·暺
LSL曚S曚

(2L+1)(2S+1)(2L曚+1)(2S曚+1)

·
l1 s1 j1

l2 s2 j2{ }
L S J

暋

l曚1 s1 j曚1

l曚2 s2 j曚2{ }
L曚 S曚 J曚

·暣(l1l2)L(s1s2)SJM V(r) (l曚1l曚2)L曚(s1s2)S曚JM暤

(7灡5灡26)

为了把径向与角度部分的积分分离,标量势V(r)可按Legendre多项式展开,

V(r)= 暺
曓

k=0
Vk(r1,r2)Pk(cos毴12) (7灡5灡27)

毴12是r1 与r2 的夹角,

r= r2
1 +r2

2 -2r1r2cos毴12暋暋暋暋暋暋

cos毴12 =cos毴1cos毴2 -sin毴1sin毴2cos(毤1 -毤2)

利用Legendre多项式的正交归一性,可求出式(7灡5灡27)中的展开系数

Vk(r1,r2)=Vk(r2,r1)

=2k+1
2曇

+1

-1
V(r)Pk(cos毴12)dcos毴12 (7灡5灡28)

利用球谐函数相加定理

Pk(cos毴12)= 4毿
2k+1暺

k

q=-k
Yq*

k (毴1,毤1)Yq
k(毴2,毤2)

= 4毿
2k+1

(Yk(1),Yk(2)) (7灡5灡29)

上式中(Yk(1),Yk(2))是两个张量的标积[见式(7灡5灡4)].
式(7灡5灡26)右边的矩阵元的角度和自旋部分为

暣(l1l2)L(s1s2)SJM (Yk(1),Yk(2)) (l曚1l曚2)L曚(s1s2)S曚JM暤

= 暺
MSM曚S(MLM曚L)

暣LMLSMS旤JM暤暣L曚M曚LS曚M曚S旤JM暤

·暣l1l2LML旤(Yk(1),Yk(2))旤l曚1l曚2L曚M曚L暤毮SS曚毮MSM曚S
(7灡5灡30)
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利用

暋暣l1l2LML (Yk(1),Yk(2))l曚1l曚2L曚M曚L暤

= (-1)l曚1+l2+L暣l1暚Yk暚l曚1暤暣l2暚Yk暚l曚2暤
l1 l2 L
l曚2 l曚1

{ }k
毮LL曚毮MLM曚L

以及

暺
MS

暣LM -MSSMS JM暤暣LM -MSSMS JM暤=1

式(7灡5灡30)可化为

毮SS曚毮LL曚(-1)l曚1+l2+L暣l1暚Yk暚l曚1暤暣l2暚Yk暚l曚2暤
l1 l2 L
l曚2 l曚1

{ }k
(7灡5灡31)

式(7灡5灡26)右边的径向积分记为

Fk=曇曇r2
1r2

2dr1dr2Vk(r1,r2)Rn1l1
(r1)Rn2l2

(r2)Rn曚1l曚1
(r1)Rn曚2l曚2

(r2)

曉Fk(n1l1,n2l2,n曚1l曚1,n曚2l曚2) (7灡5灡32)

称为推广的Slater积分,Rnl(r)为核子径向波函数.把(7灡5灡27)、(7灡5灡29)、(7灡5灡31)、(7灡5灡32)

诸式代入式(7灡5灡26),可求出矩阵元(与 M 无关)
暣j1j2J V(r)j曚1j曚2J暤

暋 = (2j1 +1)(2j2 +1)(2j曚1 +1)(2j曚2 +1)·暺
LS

(2L+1)(2S+1)

·

l1
1
2 j1

l2
1
2 j2

ì

î

í

ï
ïï

ï
ï

ü

þ

ý

ï
ïï

ï
ï

L S J

暋

l曚1
1
2 j曚1

l曚2
1
2 j曚2

ì

î

í

ï
ïï

ï
ï

ü

þ

ý

ï
ïï

ï
ï

L S J

(-1)l曚1+l2+L

·暺
曓

k=0

4毿
2k+1

暣l1暚Yk暚l曚1暤暣l2暚Yk暚l曚2暤
l1 l2 L
l曚2 l曚1

{ }k
Fk (7灡5灡33)

上式求和中S=0、1,而k受三角形条件曶(l1、l曚1、k)、曶(l2、l曚2、k)以及l1+l曚1+k=偶,l2+l曚2+
k=偶的限制.

*7灡5灡3暋一阶张量的投影定理,矢量模型

关于一阶张量(矢量)的以下诸定理,对于处理角动量、磁矩、磁偶极跃迁等是

很有用的.
(1)设T毺(毺=0,暲1)为一阶球张量,则

暣J曚M曚T毺 JM暤=毮J曚J毮M曚,毺+M

暣JM曚J毺(J·T)JM暤

J(J+1)
(7灡5灡34)

特别是J曚=J时,有

暣JM曚T毺 JM暤=毮M曚,毺+M

暣JM曚J毺(J·T)JM暤

J(J+1)
(7灡5灡35)
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图7灡7

在证明式(7灡5灡34)之前,先从半经典图像来理解式(7灡5灡34)
的物理意义.如图7灡7,矢量T=T暚 +T曂 ,T暚 与T曂 分别代表T
的平行和垂直于矢量J的分量,在角动量(J2,Jz)本征态下,

T曂 的平均值为0(在早期量子论的矢量模型中,认为T绕守恒

量J 旋转,因而T曂 的平均值为0),只剩下T暚 =J(J·T)/J2

曻J(J·T)/J(J+1)有贡献.对平均值(M曚=M)来讲,则只有

T0 的贡献.
证明暋考虑一阶球张量J毺(J·T)的矩阵元[注意:J·T

为标量]

M= 暣J曚M曚J毺(J·T)JM暤暋暋暋暋
= 暺

毻

(-1)毻暣J曚M曚J毺J毻T-毻 JM暤

可以证明栙

M= 暺
毻

(-1)毻暣J曚M曚J毺T-毻J毻 JM暤 (7灡5灡36)

利用J毺 的选择定则

M=暺
毻

(-1)毻暣J曚M曚J毺 J曚M曚-毺暤暣J曚M曚-毺T-毻 J毻+M暤暣J毻+M J毻 JM暤

利用7灡3节式(7灡3灡25)及 Wigner灢Eckart定理[7灡3节式(7灡3灡23)],上式化为

M=暺
毻

(-1)毻(-1)毺暣J曚M曚1,-毺旤J曚M曚-毺暤 J曚(J曚+1)

· 1
2J曚+1

暣J毻+M,1,-毻旤J曚M曚-毺暤暣J曚暚T暚J暤

·(-1)毻暣J毻+M,1,-毻旤JM暤 J(J+1)

= J(J+1)J曚(J曚+1)
2J曚+1

(-1)毺暣J曚M曚1,-毺旤J曚M曚-毺暤

·暺
毻

暣J毻+M,1,-毻旤J曚M曚-毺暤暣J毻+M,1,-毻旤JM暤暣J曚暚T暚J
掯 掲掱梺梺梺梺梺梺梺梺梺梺梺梺梺梺梺 梺梺梺梺梺梺梺梺梺梺梺梺梺梺梺

暤
毮J曚J毮M曚-毺,M

=J(J+1)
2J+1

暣J暚T暚J暤(-1)毺暣JM +毺,1,-毺旤JM暤毮J曚J毮M曚,M+毺

=毮J曚J毮M曚,M+毺
J(J+1)

2J+1
暣JM1毺旤JM +毺暤暣J暚T暚J暤

·082·

栙 利用7灡3节,式(7灡3灡11曚)(对于k=1),[J毻,T-毻]=(-1)毻 2暣101,-毻 1-毻暤T0,所以

暋暺
毻

(-1)毻暣J曚M曚 JM[J毻,T-毻]JM暤

= 2暣J曚M曚 JMT0 JM暤暺
毻

暣101,-毻 1-毻暤=0暋 暺
毻

暣101,-毻 1-毻暤= 暺
毻

毻
3

=( )0

再注意到暋J毻T-毻=T-毻J毻+[J毻,T-毻],得证.



根据 Wigner灢Eckart定理,得

M=毮J曚J毮M曚,M+毺J(J+1)暣JM曚 T毺 JM暤 (7灡5灡37)
联合式(7灡5灡36)与(7灡5灡37),即得式(7灡5灡34).

这样,计 算 矩 阵 元 暣JM曚 T毺 JM 暤就 归 结 为 计 算 矩 阵 元 暣JM曚
J毺(J·T)JM暤,然后借助下列因式分解定理,转化为计算暣J暚(J·T)暚J暤,问
题就简化了.

(2)因式分解定理

暣JM曚 J毺(J·T)JM暤= 暣JM曚 J毺 JM暤暣J暚J·T暚J暤/ 2J+1
(7灡5灡38)

暋暋证明暋考虑到(J·T)为标量(零阶张量),有

暣JM曚 J毺(J·T)JM暤= 暺
M曞

暣JM曚 J毺 JM曞暤暣JM曞J·TJM暤

= 暺
M曞

暣JM曚 J毺 JM曞暤毮M曞M 暣J暚J·T暚J暤/ 2J+1

= 暣JM曚 J毺 JM暤暣J暚J·T暚J暤/ 2J+1
暋暋(3)联合式(7灡5灡35)与式(7灡5灡38),得

暣JM曚 T毺 JM暤
暣JM曚 J毺 JM暤=

暣J暚J·T暚J暤
J(J+1) 2J+1

(7灡5灡39)

这是因为T毺 及J毺 均为一阶张量,它们的矩阵元之比与磁量子数无关.由于暣JM曚
J毺 JM暤已有简单的计算公式[见7灡3节式(7灡3灡25)],用它代入上式,可求出

暣JM曚 T毺 JM暤=毮M曚,M+毺暣JM1毺旤JM曚暤 暣J暚J·T暚J暤
J(J+1)(2J+1)

(7灡5灡40)

而按 Wigner灢Eckart定理

暣JM曚 T毺 JM暤= 暣JM1毺旤JM曚暤暣J暚T暚J暤/ 2J+1
毮M曚,M+毺已自动由暣JM1毺|JM曚暤保证,所以

暣J暚T暚J暤= 1
J(J+1)

暣J暚J·T暚J暤 (7灡5灡41)

此即求一阶张量的约化矩阵元的一般公式.求出它之后,代入式(7灡5灡39),即得出

暣JM曚 T毺 JM暤.

练习暋令T=J,代入式(7灡5灡41),验证暣J暚J暚J暤= J(J+1)(2J+1)[参阅7灡3节式

(7灡3灡24)].
例暋在LS耦合方案中求原子磁矩的公式.
设原子中诸电子自旋之和为S,轨道角动量之和为L,总角动量为J=L+S.原子状态记为

|毩SLJM暤是(S2,L2,J2,Jz)的共同本征态,毩为完全标记原子状态所需的其他量子数.原子磁矩

算符为

毺=gLL+gSS=gJJ (7灡5灡42)
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gL 与gS 分别为轨道和自旋部分的g 因子,gJ 称为Land湪g因子.利用

毺·J= (gLL+gSS)·(L+S)暋暋暋暋暋暋

=gLL2 +gSS2 +(gL +gS)S·L

=gLL2 +gSS2 + 1
2

(gL +gS)(J2 -L2 -S2)

= 1
2

(gL +gS)J2 + 1
2

(gL -gS)(L2 -S2) (7灡5灡43)

暣SLJ暚J2暚SLJ暤=J(J+1) 2J+1

暣SLJ暚L2暚SLJ暤=L(L+1) 2J+1

暣SLJ暚S2暚SLJ暤=S(S+1) 2J+1
可得

暣SLJ暚毺·J暚SLJ暤= 1
2

{(gL +gS)J(J+1)+(gL -gS)[L(L+1)-S(S+1)]} 2J+1

但

暣SLJ暚毺·J暚SLJ暤=gJ暣SLJ暚J2暚SLJ暤=gJJ(J+1) 2J+1 (7灡5灡44)

因此

gJ = 1
2

(gL +gS)+
(gL -gS)[L(L+1)-S(S+1)]

J(J+1{ }) (7灡5灡45)

此即Land湪g因子公式.
磁矩观测值定义为

毺= 暣JM 毺z JM暤旤M=J = 暣JJ 毺z JJ暤 (7灡5灡46)

按 Wigner灢Eckart定理及式(7灡5灡41)和式(7灡5灡44),

毺=
暣JJ10旤JJ暤

2J+1
暣J暚毺暚J暤=

暣JJ10旤JJ暤
2J+1

暣J暚毺·J暚J暤
J(J+1)

=gJJ (7灡5灡47)

暋暋对于碱金属原子
踿踿踿踿踿

,如只考虑单个价电子的贡献
踿踿踿踿踿踿踿踿踿踿踿踿

,则只需在以上公式中把S曻1/2,L曻l,

J曻j=l暲1/2(l曎0),j=1/2(l=0),gL曻gl=-1,gS曻gs=-2,从而得出gj 和毺=gjj,

u=glj+

1
2

(gs-gl), j=l+1/2

- 1
2

(gs-gl) j
j+1

, j=l-1/2,(l曎0

ì

î

í

ïï

ïï )
(7灡5灡48)

即单粒子模型中的磁矩公式[Schmidt公式,参阅卷I,9灡2节,式(9灡2灡32)].
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第8章暋量子体系的对称性

8灡1暋绪暋暋论

人类对于对称性的认识,可以追溯到没有文字记载的史前时期,它与人们对于

和谐与美的追求紧密联系在一起.古人类使用的装饰品和祭祀器皿往往具有某种

空间对称性.中国历代的建筑,如北京故宫及城市建筑的布局,都具有很高的对称

性.汉语中的象形文字,往往具有某种几何对称性.中国文学中的一些体裁,如骈

文、诗、词、赋和对联等,不仅讲究句形上的对称,而且注意内容上的呼应.脍炙人口

的王勃的《滕王阁序》中的名句:
落霞与孤鹜齐飞

秋水共长天一色

给予人们无尽的美的享受.诗圣杜甫在《登高》一诗中的千古绝唱:
无边落木萧萧下

不尽长江滚滚来

更引发人们的无限遐想.对称性应用于自然科学极为广泛的各学科领域所起的促

进作用,是饶有兴趣的一个课题.下面将简单介绍对称性在经典物理学和量子物理

学中的应用.

8灡1灡1暋对称性在经典物理学中的应用

对称性概念总是和某种变换下的不变性相联系.一个球体,具有一种非常对称

的几何形状,无论从空间哪个方向去看,其形状均同,即在空间旋转变换下是不变

的.物理学中称之为各向同性
踿踿踿踿.一个轴对称体系,对于绕对称轴旋转任意角,都是不

变的,其对称性,则稍逊于球体.一个正三角形,对于绕重心旋转120曘是不变的,其
对称性则逊于圆.

经典物理学中所涉及的对称性,主要是与空间和时间变换相联系的对称性
踿踿踿踿踿踿踿踿踿踿踿踿踿踿.利

用这些对称性,曾得出过许多有用的结果,但主要是用以简化问题的处理.这大致

可分两个方面:
(1)对称性可能导致一些物理量之间存在某种关系

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,从而使问题简化.

例1暋在小变形情况下,弹性体的应力(对称)张量(包含6个独立的分量,即
正应力Xx、Yy、Zz 和切应力Xy=Yx,Yz=Zy,Zx=Xz)与应变(对称)张量(正应变

exx,eyy,ezz及切应变exy=eyx,eyz=ezy,ezx=exz)之间是线性关系,一般要用36个弹

性系数来描述.但如假设弹性体由各向同性的均匀介质组成
踿踿踿踿踿踿踿踿踿踿踿

,则
踿36个弹性系数就

踿踿踿踿踿踿
·382·



不再完全独立
踿踿踿踿踿踿

,可归结为两个
踿踿踿踿踿踿

,一是刻画正应力与正应变关系的 Young模量E,一
是刻画切应变与正应变关系的Poisson比氁栙.

例2暋光(电磁波)在一般介质中的传播规律是相当复杂的.电位移矢量D 与

电场强度E 的方向,一般说来并不相同,它们之间通过介电张量毰ij相联系

Di = 暺
j
毰ijEj暋暋(i,j=x,y,z)

(磁感应强度B与磁场强度H 的关系也与此类似.)可以证明,为保证能量守恒,毰ij

必为对称张量(毰ij=毰ji),只有6个独立分量.经过主轴变换,变到介电主坐标系中

以后,

Dx =毰xEx,暋Dy =毰yEy,暋Dz =毰zEz

毰x、毰y、毰z称为主介电系数.一般介质中,毰x曎毰y曎毰z,所以D 和E 方向并不相同.各种

奇异现象,如光的偏振与双折射,均由此而生.但对于各向同性介质,则毰x=毰y=
毰z=毰,只有一个独立的介电系数毰,而D=毰E,即D 与E 同向.对于磁各向同性介

质,则有B=毺H,毺为导磁系数.这样,在均匀各向同性介质中,电磁波的传播方程

中只含有两个常量,即毰和毺,而传播速度为v=c/ 毰毺,c为真空中的光速.电磁场

波动方程就大为简化.
(2)对称性往往导致某种守恒量

踿踿踿踿踿踿踿踿踿踿踿踿
(运动积分),利用它们可以简化动力学方程的

踿踿踿踿踿踿踿踿
求解
踿踿.

最常见的例子是物体在中心力场V(r)中的运动,相对于力心的轨道角动量

l=r暳p是守恒量,因为

d
dtl=dr

dt暳p+r暳dp
dt=v暳p+r暳(-

殼

V(r))

=-1
r

dV
drr暳r=0

即l是一个运动积分,由初值决定.这样,含时间二阶微商的 Newton方程就可化

简为含时间一阶微商的方程.此外,由于r·l=0,p·l=0,而l又为守恒量,可以

判定中心力场中粒子的运动必为一个平面运动
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,平面的法线方向即l的方向.
经典力学中,体系的守恒量与对称性的关系,首先被Jacobi注意到栚.他指出

(1842),对于一个能够用Lagrange量L来描述的体系,L 在体系平移下的不变性

将导致动量守恒,而在旋转下的不变性则导致角动量守恒.Sch湽tz(1897)指出,L
在时间平移下的不变性将导致能量守恒栛.N昳ther(1918)把变分原理应用于物理

学中,给出了一个重要定理,后来称为 N昳ther定理栜:对于每一个连续对称性变
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栚

栛

栜

或者与(E,氁)等价的Lam湪系数(毸,毺).
C.G.J.Jacobi.Vorlesungen橞berDynamik,Werke,SupplementbandReimer,Berlin,1884.
J.R.Sch湽tz,G昳tt.Nachr.,1897,p.110.
例如参阅J.D.Bj毤rken&S.D.Drell,RelativisticQuantumFields,曥11灡4.McGraw灢Hill,1965,

E.L.Hill,Rev.Mod.Phys.23(1957)253.N昳ther定理对于场论,特别是规范场论的发展,有重要影响.



换,如果体系的Lagrange量(在场论中为Lagrange密度)和Lagrange方程在形式

上保持不变,则有一个相应的守恒定律和运动常数栙.
Wigner认为栙 ,物理学用以描述自然界中发生的事件的三个基本范畴是:

(1)初条件
踿踿踿

;(2)自然规律
踿踿踿踿

;(3)对称性
踿踿踿.他指出,Newton的伟大贡献不仅在于他找

踿踿踿踿踿踿踿踿踿踿踿
出了经典力学的基本规律
踿踿踿踿踿踿踿踿踿踿踿

,而且在于他把初条件和自然规律两个概念区分开来
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

Newton注意到,物理世界全部的复杂性寓于初条件的特殊性之中.只要给定了体

系的初条件(初位置和初速度),则根据简单的自然规律(Newton第二定律)即可

准确预言以后任何时刻体系的运动状态.把复杂的初条件与简单的自然规律区别
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

开来的这种洞察力
踿踿踿踿踿踿踿踿

,在物理学发展中起过极为重要的作用,是经典物理学发展中在

概念上的一个大突破.有此认识之后,人们就可以把自然界的无限演化过程进行分

段研究,即人们可以暂时不去追究事物过去的历史演化情况,先集中力量研究在给

定初条件下事物如何运动和演化,否则人们将面临举步维艰的困境.事实上,这就

构成了经典力学研究的基本思想.

8灡1灡2暋对称性在量子物理学中的深刻内涵

Wigner指出栙 ,在近代物理的发展中,Einstein的伟大贡献之一在于,他首次

指出对称性(不变性)在物理学中的重大意义.最基本的几个不变性是:(1)自然规

律在空间各处都相同,不因地点而异,此即“空间的均匀性
踿踿踿踿踿踿

暠;(2)自然规律不因时间

零点的选择不同而异,此即“时间的均匀性
踿踿踿踿踿踿

暠;(3)自然规律的旋转不变性,或“空间
踿踿

各向同性
踿踿踿踿

暠.对于一个孤立系来讲,空间和时间的均匀性及空间各向同性是一种很

自然的假定,几乎是不言而喻的.(4)第四种不变性并不象以上三种不变性那样明

显和易于为人们认识,是 Einstein在建立特殊相对论时重新提出的 Lorentz不变
踿踿

性
踿

,它是 Galilei不变性的发展.简单说来就是,自然规律对于各种惯性参考系是完
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

全相同的
踿踿踿踿.这一点 Galilei早已认识到了.但在19世纪的电磁和光的理论中,由于

相信“以太暠(ether)的存在而否定了这种不变性.20世纪初,Einstein重新提出这

个不变性,但对 Newton力学中的绝对时间和空间概念做了根本性的修正.不同惯

性参考系中的时间和空间坐标之间遵守 Lorentz变换,而不是 Galilei变换.
Lorentz不变性,的要求,对特殊相对论的建立起了重要的作用,在后来广义相对

论中得到了进一步发展,并且是近代场论的理论基础之一.
在Einstein之后,对称性的重要性虽然已经为不少人注意到,但对称性真正成

踿踿踿踿踿踿
为物理学日常工作的语言
踿踿踿踿踿踿踿踿踿踿踿

,还是量子力学建立以后的事
踿踿踿踿踿踿踿踿踿踿踿踿.与经典物理学相比,量子
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栙 E.P.Wigner,inSymmetryinScience,ed.B.Gruber& R.S.Millman,p.18.PlenumPress,

1980.TheroleandvalueofsymmetryprinciplesandEinstein狆scontributiontotheirrecognition,文中提到,
“对于对称性(即不变性)原理与守恒定律关系的认识,通常归功于 Klein与 N昳ther,我相信,甚至更早些时

候,Hamel已认识到这点.暠



物理学中对称性的内涵及其应用范围都大大扩充了.这种情况的出现固然与解决

各领域中实际问题的需要有关,但更根本的原因是量子力学规律本身的特点所带

来的.
与经典力学体系状态的描述方式(用相空间中一个点)不同,具有波动 粒子两

象性的微观体系的量子态用波函数(Hilbert空间中的一个矢量)来描述.量子力学

中的态叠加原理是应用群论
踿踿踿踿踿踿踿踿踿踿

(特别是群表示论
踿踿踿踿踿踿踿

)这种数学工具来系统处理量子体系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

的对称性的基础
踿踿踿踿踿踿踿.描述量子态的好量子数

踿踿踿踿
(守恒量
踿踿踿

)、能级的简并性
踿踿踿踿踿踿

、诸简并态的标
踿踿踿踿踿踿

记
踿

(体系的对称性群及其适当的子群链的不可约表示及其分解)、具有某种对称性
踿踿踿踿踿踿踿

的力学量的矩阵元计算
踿踿踿踿踿踿踿踿踿踿

、跃迁概率及选择规则和分支比
踿踿踿踿踿踿踿踿踿踿踿踿踿

等,都与体系的对称性密切

相关.这些都是本章各节要详细讨论的课题.
经典物理学中碰到的对称性主要是体系的空间几何对称性栙.然而正如 Weis灢

skopf指出栚.在经典力学框架中
踿踿踿踿踿踿踿踿

,这种空间对称性多少带有偶然的性质
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.例如行星

的运动,一个完全对称的圆轨道是非常罕见的,其出现的可能性极微.这种情况是

经典力学规律自身的特点所决定的.经典力学允许一切力学量做连续变化
踿踿踿踿.实验中

展示出的具有确定特性和空间构形的原子,是经典力学无法说明的.它只有用量子

力学中不连续变化的量子态
踿踿踿踿踿踿踿踿踿

才能说明.一个原子,并非任何轨道都是允许的,而只

有某些具有一定形状的轨道才允许.例如,氢原子中电子的轨道,只有某些用球谐

函数描述其对称性的轨道才能稳定地存在.
从基于量子力学而建立起来的众多近代物理学科的发展历史来看,对量子体

系的几何对称性的研究的确曾经取得很丰硕的成果.例如,几何对称性对于原子和

分子光谱学(矢量模型、角动量和宇称选择规则等),周期场对称性的研究对于了解

晶体的导电性等,都取得很有价值的成果.20世纪50年代,A.Bohr& B.R.
Mottelson对于变形原子核的轴对称性和空间反射不变性的研究,使人们对于原

子核转动谱及相应的电磁跃迁的认识,深入了一大步栛.由于经典力学量可以连续

变化,与离散的空间变换对称性相应的守恒量并无经典对应[例如,与空间反射对

称性相应的宇称,与旋转180曘对称性相应的旋称(signature)等].
除了空间几何对称性之外,量子力学中还出现另外一些新的对称性.它们在经

典力学中,或者不出现,或者没有多大价值.其中最重要的是全同粒子的置换对称
踿踿踿踿踿踿踿踿踿
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包括空间平移,旋转对称性,以及两者的结合———螺旋(helical)对称性,还有空间反射.
V.F.Weisskopf,inNobelSymposium11,editors,A.Engstr昳m &B.Strandberg.JohnWiley&

Sons,1968.
变形原子核的转动谱,与双原子分子转动谱相似,近似遵守E(I)曍I(I+1)规律(I为原子核角动

量),反映出变形原子核的轴对称性,并说明在低激发区绝热近似是好的.偶偶原子核的基转动带中只观测到

I毿=0+ ,2+ ,4+ ,…能级,则表明变形原子核具有绕垂直于对称轴(z轴)的任何一轴(如x轴)旋转180曘[即

Rx(毿)]的分立对称性.对于偶偶核,Rx(毿)2=Rx(2毿)=1,Rx(毿)的本征值r=暲1.r称为旋称(signature).I毿

=0+ ,2+ ,4+ ,…正是属于r=+1的能谱.详见 A.BohrandB.R.Mottelson,NuclearStructure.vol.II,

NuclearDeformations,chap.4.W.A.Benjamin,Inc.,1975.



性
踿.这些对称性都是由于量子态的描述与经典力学态的描述有根本性差异而来,在
物理本质上则反映了微观客体的波动 粒子两象性.

全同性(置换对称性)

所谓“全同性暠(identity),是指无法确认两个物体之间的任何差别.一切宏观

物体,由于其性质和状态(形状等)可以连续变化,实际上都有可以辨认的差别,没
有两个宏观物体可以称得上真正“全同暠(identical)栙.

量子体系则不然.由于态的量子化,两个量子态,或者全同,或者很不相同,中
间并无连续的过渡.当两个氢原子都处于基态时,可以说它们是真正全同栚.此时

电子处于最低能态(1s态),具有确定的空间构形等性质.无论一个氢原子是怎样

制备出来的,最终的稳定产物都完全相同.没有态的量子化
踿踿踿踿踿踿踿

,就谈不上全同性
踿踿踿踿踿踿踿.反过

来,粒子的全同性又对自然界中可能出现的量子态给予很严格的限制
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

栛,即全同粒
踿踿踿

子系的量子态
踿踿踿踿踿踿

,对于两粒子交换,或者是对称的
踿踿踿踿踿踿

(Bose子),或者是反对称的
踿踿踿踿踿踿踿

(Fermi
子),二者必居其一

踿踿踿踿踿踿.这种对称性
踿踿踿踿踿

,导致统计性守恒
踿踿踿踿踿踿踿

,即体系的统计性
踿踿踿踿踿踿踿

(Bose统计或

Fermi统计)是不改变的
踿踿踿踿踿.

应该强调,全同性
踿踿踿

(统计性
踿踿踿

)并非只是一个抽象的概念
踿踿踿踿踿踿踿踿踿踿踿

,而是一个可观测量
踿踿踿踿踿踿踿踿

栜.
特别应该提到,全同性将导致粒子之间有一种新型作用能

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
———交换能

踿踿踿
,这纯粹是一
踿踿踿踿踿

种量子效应
踿踿踿踿踿.如果没有这种交换能

踿踿踿踿踿踿踿踿踿
,世界上原子和分子不可能稳定存在
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.两个全同

的Fermi子,如它们的自旋态相同,则其空间相对运动波函数氉(r)必须反对称(r=
r1-r2 表示相对坐标),即P12氉(r)=氉(-r)=-氉(r).因而氉(0)=0,即两个粒子在

空间重叠的概率为0.这表现为粒子之间有一种斥力,阻止两个粒子位置重合栞.这
就是Pauli原理在坐标表象中的表现.Pauli原理是原子的电子壳结构和化学元素

周期律的理论基础,此乃量子理论的重大成就之一.交换能对化学家唯象地引进的

化学键概念提供了理论依据,由此才诞生了量子化学.
当然,某种粒子的全同性并不是绝对不变的.例如,将物质加热到百万度
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例如,数以几十亿计的人群中,没有两个人的指纹完全相同.在人类已观测到的无数恒星中,也没有

发现任何两颗恒星完全相同,人们总可以在两个宏观物体之间找到微小的差异.
在经典力学中,即使承认两个粒子“全同暠,也不会得出什么有价值的东西.人们仍然可以根据它们

的初条件不同(因而有不同轨道)来区分它们.
当然,在有的情况下,全同性也不一定能导致什么特别的后果.例如,两个电子如果各自定域于一定

空间区域,波函数在空间不重叠,则波函数的置换对称性并不带来什么可观测的后果.对于这种情况下的粒

子,仍然可用Boltzmann统计来处理.
例如,由全同原子组成的双原子分子O2 的转动谱中,角动量L=奇数的能级不存在(参阅卷1,14灡2

节).历史上有一些原子核的自旋(统计性)就是通过双原子分子光谱的实验观测来确定的.
与此不同,两个全同Bose子(设自旋为0)的相对运动波函数氉(r)应是对称的,允许氉(0)曎0,两个

粒子的空间位置可以重叠.如两个粒子靠近的概率较大,就表现为一种“吸引力暠.由很多这样的粒子组成的

体系,当其温度曋0K时,粒子的热运动极为缓慢.在适当条件下,这种“吸引力暠将起主导作用而形成 Bose灢
Einstein凝聚.



(106K~10eV),一般物质原子都将丧失其全同性.因为在此情况下,原子有可观的

概率被激发,而不同的原子可以处于不同的激发态,此时很难说两个原子全同.分
子(特别是有机大分子)的情况则有所不同.因为分子的转动和振动激发能可能很

低,在室温下这种自由度就可能被激发,两个分子处于同一个量子态的概率可能很

小,此时分子作为一个整体的全同性,意义就不大栙.

8灡2暋守恒量与对称性

利用对称性来处理物理问题的一个很重要的方面,就是分析守恒量,无论在经

典力学中或在量子力学中,都是如此.
经典力学中,守恒量的含义比较单纯(见本节附录).设在体系运动过程中,某

力学量F 保持不随时间改变,即

d
dtF =0 (8灡2灡1)

则称F 为体系的一个守恒量,其值由初条件决定.守恒量在 Newton力学形式和

Lagrange形式下的表述见本节附录.为便于过渡到量子力学,下面对正则力学形

式做简要回顾.
一个体系有各种各样的力学量,其中坐标、动量、角动量等是带有共性的力学

量.表征一个力学体系的特性的是其
踿踿踿踿踿踿踿踿踿踿踿踿踿踿 Hamilton量

踿.无论在经典力学中或在量子力

学中,Hamilton量都占有特殊重要的地位.在经典力学的正则形式中,体系的状态
踿踿踿踿踿

用
踿2N 维相空间中的一个点

踿踿踿踿踿踿踿踿踿
[qi(t),pi(t);i=1,2,…,N,N 为自由度]来描述

踿踿踿
,qi 和

pi 分别为正则坐标和正则动量.它们随时间的演化遵守正则方程(附录 A2)

q
·
i =灥H

灥pi
,暋p

·
i =-灥H

灥qi
,暋i=1,2,…,N (8灡2灡2)

任何不显含t的力学量F(q,p)随时间的演化为

d
dtF = 暺

i

灥F
灥qi

q
·
i+灥F

灥pi
p
·æ

è
ç

ö

ø
÷i = 暺

i

灥F
灥qi

灥H
灥pi

-灥F
灥pi

灥H
灥q

æ

è
ç

ö

ø
÷

i
曉 {F,H}(8灡2灡3)

{…}为Poisson括号[附录 A2,式(A2.10)].因此,如
{F,H}=0 (8灡2灡4)

则F 为体系的一个守恒量
踿踿踿.F 是否为守恒量

踿踿踿踿踿踿
,取决于体系
踿踿踿踿踿 Hamilton量的特性

踿踿踿踿.
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栙 生物体由细胞组成,而分子(特别是大分子)则是构成细胞的原件.大分子的对称性是生命科学极有

兴趣研究的课题.大分子的对称性可称为积木对称性(buildingblocksymmetry).很接近日常生活中的对称

性概念,但它是建立在原子的全同性以及原子具有特征的空间构形的基础上.由全同的客体有规律地联结起

来的积木对称性,有一些普遍的几何规则.例如,由全同客体按一定规则一个挨一个联结起来的线性结构,一
般为螺旋结构(helicalstructure),直线或圆则是其特殊情况.由此出发,可以理解生物大分子的螺旋结构.由
全同客体联结成的二维或三维结构的类型则不止一种,但类型的数目有限.例如,平面晶体有17种类型,三
维晶体有230种类型.



当过渡到量子力学时,力学量用相应的算符来刻画.而按照正则量子化原则

(参见2灡2节),经典Poisson括号应代之为如下的对易式,即

{A,B}曻 1
i淈

[A,B]曉 1
i淈

(AB-BA) (8灡2灡5)

因此,守恒量条件式(8灡2灡4)就换为

[F,H]=0 (8灡2灡6)

F 是否守恒量取决于它与
踿踿踿踿踿踿踿踿踿踿 H 是否对易

踿踿踿踿.
上述结论也可根据体系的对称性从Schr昳dinger方程得出.一个体系的量子

态氉随时间的演化,遵守Schr昳dinger方程

i淈灥
灥t氉=H氉 (8灡2灡7)

设体系在某种线性变换(不显含t,非奇异,即存在逆变换Q-1)下

氉曻氉曚=Q氉(或氉=Q-1氉曚) (8灡2灡8)
体系在变换Q 下的不变性表现为:氉曚与氉 遵守相同的动力学规律,即

i淈灥
灥t氉曚=H氉曚 (8灡2灡9)

用式(8灡2灡8)代入

i淈灥
灥tQ氉=HQ氉

用Q-1运算,得

i淈灥
灥t氉=Q-1HQ氉 (8灡2灡10)

与Schr昳dinger方程(8灡2灡7)比较,不变性要求表现为

Q-1HQ =H
即

[Q,H]=0 (8灡2灡11)
凡满足式(8灡2灡11)的变换Q,称为体系的对称性变换

踿踿踿踿踿
,而式(8灡2灡11)成立与否,取

决于体系(即其 Hamilton量)的对称性.物理学中的对称性变换
踿踿踿踿踿Q,总是构成一个

踿踿踿踿踿踿
群
踿

,称为体系的对称性群
踿踿踿踿

(symmetrygroup).
以上是根据体系的 Hamilton量在某种线性变换下的不变性来描述体系的对

称性和相应的守恒定律.更普遍来讲栙,对于一个体系,设一个变换不改变它的各
踿踿踿踿踿踿踿踿踿踿踿

物理量之间的相互关系
踿踿踿踿踿踿踿踿踿踿

,则称为体系的一个对称性变换
踿踿踿踿踿踿踿踿踿踿踿踿踿.对于一个量子体系,设它

的某一状态用态矢氉描述,而经过某种变换后则用态矢氉曚描述(或等价地说,第一

观测者用氉描述,另一个观测者用氉曚描述).类似,体系的另一个态用毤描述,而经
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栙 E.Wigner,GroupTheoryanditsApplicationtoQuantumMechanicsofAtomicSpectrachap.26.
AcademicPress,1959.



过与上相同的变换后则用毤曚描述.若该变换是体系的一个对称性变换,则状态之间

的关系不因变换(不同观测者)而异.按照量子力学中统计诠释这一基本原理,必然

要求

(氉,毤)= (氉曚,毤曚) (8灡2灡12)
(注意:这里只要求标量积的绝对值不变

踿踿踿踿踿踿踿踿踿踿踿踿
,并未要求标量积不变
踿踿踿踿踿踿踿踿踿

,后者乃是幺正变换

的要求.)基于量子力学这个基本原理的要求,Wigner曾经得出下列重要结论栙 :
对称性变换只能是幺正
踿踿踿踿踿踿踿踿踿踿

(unitary)变换
踿踿

,或反幺正
踿踿踿踿

(anti灢unitary)变换.
对于幺正变换(记为U),

氉曻氉曚=U氉 (8灡2灡13)

U 要求满足

U(c1氉1+c2氉2)=c1U氉1+c2U氉2暋(线性算符) (8灡2灡14)
式中c1、c2 是两个任意(复)数,氉1 与氉2 为体系任意两个态.此外,还要求

(氉曚,毤曚)= (氉,毤) (8灡2灡15)
按

(氉曚,毤曚)= (U氉,U毤)= (氉,U+U毤)
可见

U+U =UU+=1暋暋(或U-1 =U+) (8灡2灡16)
对于反幺正变换(记为毴),

氉曻氉曚=毴氉 (8灡2灡17)

毴要求满足

毴(c1氉1+c2氉2)=c*
1毴氉1+c*

2毴氉2暋(反线性算符
踿踿踿踿踿

) (8灡2灡18)
(氉曚,毤曚)= (氉,毤)* = (毤,氉) (8灡2灡19)

对于连续对称性变换
踿踿踿踿踿踿踿

,例如,空间平移或旋转,时间平移,它们总可以从恒等变

换出发,连续地经过无穷小变换(用参量毰刻画毰曻0)而得出(当毰曻0时,连续变换

将回到恒等变换I).这种变换与取复共轭K(注)不相容,只可能是幺正变换
踿踿踿踿踿踿踿踿.但对

踿踿
于离散的对称性变换
踿踿踿踿踿踿踿踿踿

,则两种可能性均存在
踿踿踿踿踿踿踿踿踿.例如,空间反射

踿踿踿踿
,属于幺正变换
踿踿踿踿踿踿

,而时
踿

间反演
踿踿踿

(见第10章),则属反幺正变换
踿踿踿踿踿踿.

(注)“取复共轭暠运算K,是反线性算符
踿踿踿踿踿

,因为

K(c1氉1 +c2氉2)=c*
1氉*

1 +c*
2氉*

2 =c*
1 K氉1 +c*

2 K氉2

还可证明K 为反幺正算符,因为它不仅满足式(8灡2灡18),而且满足式(8灡2灡19),即
(K氉,K毤)= (氉* ,毤* )= (氉,毤)* = (毤,氉)

还可以证明,反幺正算符
踿踿踿踿踿暳踿

反幺正算符
踿踿踿踿踿=踿

幺正算符
踿踿踿踿.例如,设毴为反幺正算符,则毴K=U 为幺正

算符.因为

U(c1氉1 +c2氉2)=毴K(c1氉1 +c2氉2)=毴(c*
1氉*

1 +c*
2氉*

2 )

=c1毴氉*
1 +c2毴氉*

2 =c1毴K氉1 +c2毴K氉2 =c1U氉1 +c2U氉2

而(U氉,U毤)=(毴K氉,毴K毤)=(毴氉* ,毴毤* )=(毤* ,氉* )=(毤,氉)* =(氉,毤),所以U=毴K 为幺正算符.
·092·



利用K2=1,有

毴=UK (8灡2灡20)

即一个反幺正算符总可以表示成一个幺正算符与取复共轭运算
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿K 之积

踿踿.

应当指出,如果一个体系存在一个守恒量
踿踿踿踿踿踿踿踿踿踿踿踿踿

,则体系一定具有相应的某种对称
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

性
踿.反之

踿踿
,不一定正确
踿踿踿踿踿.Wigner曾经证明,对于幺正变换对称性

踿踿踿踿踿踿踿踿踿
,的确存在相应的守
踿踿踿踿踿踿踿踿

恒量
踿踿

,但对于反幺正变换对称性
踿踿踿踿踿踿踿踿踿踿踿

,如时间反演
踿踿踿踿

,并不存在相应的什么守恒量
踿踿踿踿踿踿踿踿踿踿踿踿.

幺正变换U 的无穷小(infinitesimal)变换可表示为

U =1-i毰F (8灡2灡21)

毰为描述连续变换的无穷小参量,F 为一个线性算符.按幺正性要求

U+U =1
可得出

F+=F (8灡2灡22)
即F 为线性厄米算符

踿踿踿踿踿踿踿
,可用以定义一个可观测量

踿踿踿踿
(observable).这样,Hamilton量

的不变性条件(8灡2灡11)就化为式(8灡2灡6)
[F,H]=0

F 就是与该对称性相应的守恒量.

例1暋空间平移不变性.
把一个体系(态)作无穷小平移毮r的算符为(见卷I,5灡4灡1节)

D(毮r)=exp[-i毮r·p/淈] (8灡2灡23)

其中

p=-i淈

殼

(8灡2灡24)

为平移变换的无穷小算子,即动量算符.平移不变性表现为[D,H]=0,因而

[p,H]=0 (8灡2灡25)

即动量为守恒量.所有平移变换构成的群,称为平移群,是一个非紧致连续群.
例2暋空间旋转不变性.
一个无自旋体系绕空间方向n旋转无穷小角度毮氄,相应的无穷小旋转算符表为(见卷I,

5灡4灡2节)

R(n毮氉)=exp(-i毮氄n·l/淈) (8灡2灡26)

其中

l=r暳p=-i淈r暳

殼

(8灡2灡27)

为旋转变换的无穷小算子,即体系的轨道角动量算符.空间旋转不变性表现为[R,H]=0,因而

[l,H]=0 (8灡2灡28)

即轨道角动量l为守恒量.所有旋转变换构成的群称为旋转群(SO3),是一个紧致的连续群,但
非 Abel群,三个无穷小算子lx、ly、lz 彼此不对易.

例3暋空间反射不变性.
设粒子坐标本征态记为 r暤,(r取任意实数值),在空间反射算符P 的作用下,

·192·



P r暤=旤-r暤 (8灡2灡29)

显然,

P2 r暤=P旤-r暤=旤-(-r)暤= r暤暋(r任意实数值) (8灡2灡30)

上式对坐标表象的所有基矢|r暤都成立,所以

P2 =I(单位算符) (8灡2灡31)

所以空间反射不变性群是一个二阶(循环)群,包含两个元素,即(P,I).体系的空间反射不变性

表现为

[P,H]=0 (8灡2灡32)

由式(8灡2灡29)~式(8灡2灡31),还可得出(i)P-1=P;(ii)P+ =P;(iii)P+P=1,即P 为厄米算符
踿踿踿踿

,也
是幺正算符.空间反射为离散变换,不能用连续变化的参量来描述.对于离散对称性变换

踿踿踿踿踿踿踿踿踿
,可以直
踿踿踿

接用变换本身来定义一个守恒量
踿踿踿踿踿踿踿踿踿踿踿踿踿踿.对于空间反射P的不变性,守恒量即宇称.由于P2 本征值为1,

P的本征值只能为暲1,相应的本征态分别称为偶宇称态和奇宇称态.具有空间反射不变性的体系

的 Hamilton量为偶宇称算符(参阅卷I,5灡4灡3节).自由粒子或孤立系,显然具有空间反射不变性.

守恒量总是与体系的某种对称性相联系,这一点在经典力学中和量子力学中是相

同的.但在量子力学中守恒量的含义与在经典力学中有所不同,其根源在于量子态的描

述与经典力学态的描述不相同,而这正是微观客体具有波动 粒子两象性的反映.
(1)量子力学中的守恒量并不一定具有确定的

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
(不随时间变化的
踿踿踿踿踿踿踿

)值
踿.这一点与

初态密切相关.如在初始时刻,体系某守恒量取确定值(即体系处于该守恒量的本

征态),则以后将保持取该确定值(体系保持在该本征态).反之,若初态并非某守恒

量的本征态,则以后也不是该守恒量的本征态.当然,守恒量作为一个特殊的力学

量,与一般力学量的不同之处在于,它在任何态
踿踿踿踿踿

(不一定是定态
踿踿踿踿踿踿

)下的平均值和测值
踿踿踿踿踿踿踿踿

的概率分布都保持不随时间变化
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(保持与初态同).
(2)量子力学中并非所有守恒量都可以同时取确定值

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.例如,空间旋转不变性

带来的守恒量———角动量的三个分量是不对易的.一般说来,它们不能同时取确定

值,即不能有共同本征态(l=0态除外).这与旋转群为非 Abel群有关栙.
(3)量子力学中的守恒量

踿踿踿踿踿踿踿踿踿
,有一些有经典对应
踿踿踿踿踿踿踿踿

,例如,能量、动量、角动量等,它
们是与连续对称性变换相应的守恒量栚.但有一些可观测量并无经典对应

踿踿踿踿踿踿踿踿踿踿踿踿踿踿.因此,
当它们作为量子体系的守恒量时,所相应的对称性变换,在经典力学中并不导致什

么有意义的守恒量(例如空间反射不变性),或者守恒量消失(例如自旋),或者那种

对称性变换在经典力学中没有多大价值(如全同粒子的置换对称性).
连续对称性变换相应的守恒量是相加性(additive)守恒量.例如,多粒子系的
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栚

对于空间平移变换,平移变换群是 Abel群,作为平移不变性相应的守恒量———动量p的三个分量

彼此对易,它们可以具有共同本征态.
有经典对应的守恒量,总是体系某种连续对称性变换所导致.反之,则不尽然.例如,自旋也是量子

体系在空间旋转下的不变性所导致,但无经典对应(淈曻0时,自旋曻0).自旋反映粒子一种新的自由度,表现

为需用多分量波函数来描述其量子态.



动量和角动量分别等于诸粒子的动量和角动量之和.离散(discrete)对称性变换相

应的守恒量,习惯上表示为相乘性(multiplicative)守恒量栙.如多粒子系的宇称是

诸粒子宇称之积栚.

独立守恒量的数目

经典力学中,具有N 个自由度的封闭体系(closedsystem),其独立的守恒量

的最大数目为(2N-1)栛.如体系的守恒量的数目不少于 N 的体系,则称为可积

(integrable)体系.反之,为非可积(nonintegrable)体系,其经典轨道运动会出现混

沌(chaos)现象.
(1)设体系的对称性群是一个有限群

踿踿踿G,即群G 的所有元素都与体系的 Ham灢
ilton量对易

[gi,H]=0暋(gi 暿G)
这样看来,似乎一切元素均可作为守恒量.但应注意,并非所有元素都对应于物理

上有价值的守恒量(如单位元素,即为一个平庸的守恒量).另外,不是所有元素都

可作为独立的
踿踿踿

守恒量,具有对称性(用有限群刻画)的体系的独立守恒量的数目都

小于群元素的数目.实际上只能选取一定数目的元素作为独立的守恒量,而其他元

素均可表示成这些元素的某种乘积,不能作为独立的守恒量.

例1暋设体系的对称性群为一个循环(cyclic)群,则只存在一个独立守恒量.最简单例子是

空间反射群,独立守恒量即宇称P.又如Cn 群(绕定轴旋转2毿/k角的所有旋转,k=0,1,2,…,n
-1),独立守恒量可选为R(2毿/n).
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有时人们也用相加性量子数来描述离散对称性变换相应的守恒量.例如,轴对称变形原子核,往往

具有绕垂直于对称轴(z轴)的任何一轴(例如x轴)旋转180曘,Rx(毿)=exp[-i毿Jx]的对称性.若选用离散变

换Rx(毿)本身作为守恒量,其本征值r称为旋称,是相乘性的.对于偶偶核,Rx(毿)2=Rx(2毿)=1,所以r=暲
1;对于奇偶核,Rx(毿)2=-1,所以r=暲i.若令r=exp[-i毿毩],选用毩为好量子数,称为旋称指数(signature
exponent),则为相加性的.r=暲1对应于毩=0,1,而r=熀i对应于毩=暲1/2.变形核的角动量I=毩Mod2,即

r 毩 I
+1 0 0,2,4,…

-1 1 1,3,5,…

-i 1/2 1/2,5/2,9/2,…

+i -1/2 3/2,7/2,11/2,…

粒子作为一个整体在空间中的运动所相应的宇称,称为轨道宇称.若粒子处于轨道角动量为l的量

子态,则轨道宇称为(-1)l.如粒子还有内禀结构,在涉及内禀态改变的过程(包括粒子产生或湮没)中,则要

计及内禀态在空间反射下的性质,需引进内禀宇称
踿踿踿踿.通常此概念用于内禀结构不清楚的粒子,目前还不能从

理论上确切给出其内禀宇称,而只能从守恒定律及实验分析来确定反应过程中各粒子的相对内禀宇称.详见

高崇寿、曾谨言著,《粒子物理与核物理讲座》,高等教育出版社,1990.原子核的宇称,由其结构决定,为诸核

子宇称之积.原子核不同激发态的宇称也可以不同.原子核的宇称,现已不再称为内禀宇称,但原子核的总角

动量(诸核子总角动量之和)仍习惯上仍然称为核自旋(内禀角动量).
参见LandauandLifshitz,Mechanics,3rd.edition,曥2灡1.



例2暋变形原子核中的三轴对称性(triaxialsymmetry).
对称性运算有:(a)绕x、y、z轴旋转毿角,即Rx(毿)、Ry(毿)、Rz(毿).(b)对xy、yz、zx平面的

镜像反射,氁z、氁x、氁y.但这些元素中只有三个独立,例如选氁x、Rz(毿)、P[空间反射P=氁xRx(毿)=
氁yRy(毿)=氁zRz(毿)].其他元素均可表示成它们的某种乘积.不难证明,

氁z =PRz(毿),暋暋Rx(毿)=氁xP
Ry(毿)=氁x氁z,暋暋氁y =PRy(毿)

(2)设体系的对称性群为连续群G,例如,为r阶Lie群,对应有r个无穷小算

子(或生成元).群G 的所有变换均可通过此r个无穷小算子来表达,所以体系独立

守恒量的数目为r.但注意,一般说来,对称性群为非Abel群,这r个无穷小算子不

都是彼此对易,所以不能把它们全体都选入量子体系的同一组守恒量完全集.
(3)设体系在群G 和群G曚变换下分别都是不变的,而且这两种变换彼此对易,

则其直积群G暳G曚也是体系的一个对称性群.(若G 与G曚均为有限群,G 的任何一

元素与G曚任一元素之积,都可以作为体系的一个复合的守恒量,但不是所有这些

复合元素都有价值,也不都是独立的.)

附录暋经典力学中守恒量与对称性的关系

1灡Newton力学形式

考虑一个N 粒子体系,设粒子质量、坐标和动量分别记为mi、ri 和pi(i=1,2,…,N).设粒

子受力可表示成与时间无关的局域(local)位势的梯度.例如,第k个粒子受力

Fk =-

殼

kV(r1,…,rk,…,rN) (1)

按 Newton方程

p
·
k =mk暓rk =-

殼

kV(r1,…,rk,…,rN) (2)
(1)设体系具有空间平移不变性,即在无穷小平移(见图8灡1)下

rk 曻r曚k =rk +毰 (3)

图8灡1

(毰为任意的无穷小量)

V(r1 +毰,…,rk +毰,…,rN +毰)=V(r1,…,rk,…,rN) (4)

上式做 Taylor展开,保留一级小量,得

毰·暺
k

殼

kV =0

由于毰是任意的,所以

暺
k

殼

kV =0 (5)

利用 Newton方程(2),可得

暺
k
p
·
k =-暺

k

殼

kV =0

令

P= 暺
k
pk暋(总动量) (6)

则
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图8灡2

P
·

=0 (7)

即总动量P为守恒量,由初值决定.定义体系的质心运动速度

R
·
=P/M暋(M = 暺

k
mk,总质量) (8)

则R
·
=常量,积分得

R= P
Mt+R0 (9)

R为质心坐标,R0 为质心初位置.6个常量R0 和P均由初值决定.
(2)设体系绕n方向旋转角度毮氄,毮氄=毮氄n(图8灡2).任一个矢量

r在此旋转下的变化为

毮r=毮氄暳r (10)

设体系具有旋转不变性,即

V(r1 +毮氄暳r1,…,rk +毮氄暳rk,…)=V(r1,…,rk,…) (11)

上式做 Taylor展开,保留一级小量,得

暺
k

(毮氄暳rk)·

殼

kV(r1,…,rk,…)

=毮氄·暺
k

(rk 暳

殼

k)V(r1,…,rk,…)=0

毮氄是任意的,所以

暺
k

(rk 暳

殼

k)V =0 (12)

利用 Newton方程(2),可得

暺
k
mkrk 暳暓rk =-暺

k
rk 暳

殼
kV =0

亦即

d
dt 暺

k
rk 暳(mkr

·
k[ ]) = d

dt暺k (rk 暳pk)=0 (13)

令

L= 暺
k
lk = 暺

k

(rk 暳pk)暋(总轨道角动量) (14)

则L为守恒量,由初条件决定.
(3)设体系具有时间平移不变性,即V 不显含t.利用 Newton方程(2),乘以r

·
k,由于

灥V/灥t=0,得

暺
k
mkr

·
k·暓rk =-暺

k
r·

k·

殼

kV =- d
dtV

(15)

令

T= 1
2暺

k
mkr

·2
k暋(总动能) (16)

则式(15)可表示成

d
dt

(T+V)=0 (17)

即体系总能量E=T+V 为守恒量.
以上讨论中假设了粒子位势与速度无关.以下讨论带电粒子所受的Lorentz力,它与速度有

关.设粒子荷电q,则
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F=q E+v
c 暳( )B (18)

此时

m暓r=q E+ 1
cv暳( )B

mr··暓r=qr··E+ 1
cr··(r·暳B[ ]) =qr

··E

设E为静电场,E=-

殼

毤,利用r
··

殼

毤=d
dt毤

,上式可化为

d
dt

1
2mr·2 +q( )毤 =0 (19)

即T+q毤为守恒量.

2灡Lagrange形式

设体系的Lagrange量表示为L(q1,…,qN ,q
·
1,…,q

·
N ,t),或简记为L(q,q

·,t),其中qi(i=1,

2,…,N)是一组独立的广义坐标,N 为体系的自由度.
对于具有时间均匀性的体系(例如,孤立系,或外界作用不依赖于时间),即对于时间平移

(时间零点的选取),L具有不变性,

毮L=灥L
灥t毮t=0

毮t是任意的,所以

灥L
灥t =0 (20)

考虑到

dL
dt = 暺

i

灥L
灥qi

q
·
i+灥L

灥q
·
i

暓q( )i +灥L
灥t

(21)

利用Lagrange方程

d
dt

灥L
灥q

·( )
i

-灥L
灥qi

=0,暋暋i=1,2,…,N (22)

及式(20),式(21)化为

d
dtL = 暺

i
q
·
i

d
dt

灥L
灥q

·
i
+暓qi

灥L
灥q

·( )
i

所以

d
dt 暺

i
q
·
i
灥L
灥q

·
i
-( )L =0 (23)

暺
i
q
·
i
灥L
灥q

·
i
-( )L 即体系的能量,它是守恒量.令

pi =灥L
灥q

·
i

(24)

表示与qi 相应的广义动量,并把L表示成(qi,pi,t)的函数,即独立变量选为qi、pi(i=1,2,…,

N),定义

H(q,p,t)= 暺
i
q
·
ipi-L (25)
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则称为体系的 Hamilton量.式(23)表明,具有时间均匀性的体系,能量(Hamilton量)是守恒量.
由式(24)及Lagrange方程(22),有

p
·
i =灥L

灥qi
(26)

对于具有空间均匀性的体系,在无穷小平移(见式(3))下,

毮L= 暺
k

灥L
灥rk

·毮rk =毰·暺
k

灥L
灥rk

=0

毰任意,所以

暺
k

灥L
灥rk

=0 (27)

再利用Lagrange方程(22),得

d
dt暺k

灥L
灥r·k

= 暺
k

灥L
灥rk

=0 (28)

注意到式(24),上式表明

P= 暺
k

灥L
灥r·k

= 暺
k
pk暋(总动量) (29)

是守恒量.
对于具有空间各向同性的体系,在作无穷小旋转(见式(10))下

毮L= 暺
k

灥L
灥rk

·毮rk +灥L
灥r·k

·毮r·( )k =0 (30)

利用式(24)与式(26),得

毮L=暺
k

(p
·
k·毮rk +pk·毮r·k)= 暺

k

[p
·
k·(毮氄暳rk)+pk·(毮氄暳r·k)]

=毮氄·暺
k

(rk 暳p
·
k +r·k 暳pk)=毮氄·d

dt暺k (rk 暳pk)

毮氄是任意的,所以

d
dt暺klk = d

dt暺krk 暳pk =0 (31)

即

L= 暺
k
lk暋(总轨道角动量) (32)

为守恒量.

8灡3暋量子态的分类与对称性

8灡3灡1暋量子态按对称性群的不可约表示分类

设在某种(非奇异)变换R 之下,体系的状态

氉曻氉曚=R氉 (8灡3灡1)
体系的 Hamilton算符

H 曻 H曚=RHR-1 (8灡3灡2)
如果
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H曚=H暋 即 暋[R,H]=0 (8灡3灡3)
则称体系(用 Hamilton量 H 表征)在变换R 下具有不变性.通常物理学中的对称

性变换总是构成一个群,称为体系的对称性群
踿踿踿踿

(symmetrygroup).
设 H 本征方程为

H氉i
毻 =Ei氉i

毻,暋暋毻=1,2,…,fi (8灡3灡4)

fi 为能级Ei 的简并度.设体系具有R 变换下的对称性,按式(8灡3灡3),有

HR氉i
毻 =RH氉i

毻 =REi氉i
毻 =EiR氉i

毻

这表明R氉i
毻 仍为H 的本征态,而且对应的本征值也是Ei.因此,它的最普遍的表

达式为

R氉i
毻 = 暺

fi

毺=1
Di

毺毻(R)氉i
毺 (8灡3灡5)

Di
毺毻(R)是展开系数(依赖于R)栙,毺,毻=1,2,…,fi.Di(R)构成氉i

毻 张开的fi 维空间

中的(fi暳fi)矩阵.下面证明:
定理1暋Di(R)构成体系的对称性群R 的一个fi 维表示.
证明

(1)设体系相继经历两次变换RS,则

RS氉i
毻 =R暺

毺
Di

毺毻(S)氉i
毺 = 暺

毺
Di

毺毻(S)R氉i
毺

=暺
毺
Di

毺毻(S)暺
毭
Di

毭毺(R)氉i
毭 = 暺

毭

[暺
毺
Di

毭毺(R)Di
毺毻(S)]氉i

毭 (8灡3灡6)

但如把RS看成一个变换(由R,S相乘而得出的一个变换),则

RS氉i
毻 = 暺

毭
Di

毭毻(RS)氉i
毭 (8灡3灡7)

比较式(8灡3灡6)与(8灡3灡7),可得

Di
毭毻(RS)= 暺

毺
Di

毭毺(R)Di
毺毻(S)

即

Di(RS)=Di(R)Di(S) (8灡3灡8)
即相继进行两次变换 RS 所相应的矩阵Di(RS)等于变换 R 和S 相应的矩阵

Di(R)和Di(S)之积.
(2)与恒等变换(记为e)对应的矩阵为单位矩阵(记为I),Di(e)=I.因为按恒

等变换定义,eR=R,而按式(8灡3灡8),

Di(eR)=Di(e)Di(R)=Di(R)
所以

Di(e)=Di(R)Di(R)-1 =I暋(单位矩阵) (8灡3灡9)
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栙 若群元素用连续变化的参数来描述(如转动群用三个Euler毩,毬,毭角来描述),则Di
毺毻(R)可表示成参

量的函数[如Di
毺毻(毩,毬,毭)].



(3)设R 之逆变换为R-1,即RR-1=e.按式(8灡3灡8),有

Di(R)Di(R-1)=Di(e)=I
所以

Di(R-1)=Di(R)-1 (8灡3灡10)
即与逆变换R-1对应的矩阵Di(R-1)是Di(R)的逆矩阵Di(R)-1.

这样,我们就证明了矩阵的集合Di(R)本身也构成一个群,而且它们与体系的

对称性变换群有同态(holomorphic)的对应关系,所以Di(R)构成对称性群的一个

表示(fi 维).
这个表示一般说来是不可约的

踿踿踿踿踿踿踿踿踿踿踿
,即除了极个别的
踿踿踿踿踿踿踿

“偶然简并
踿踿踿踿

暠情况之外
踿踿踿踿

,体系的
踿踿踿

某一能级的诸简并态
踿踿踿踿踿踿踿踿踿

,可以荷载体系的对称性群的一个不可约表示
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

R氉i
毻 = 暺

fi

毺=1
Di

毺毻(R)氉i
毺,暋暋毻=1,2,…,fi (8灡3灡11)

我们称属于能级
踿踿踿踿Ei 的

踿fi 个简并态
踿踿踿踿

“按照对称性群的不可约表示
踿踿踿踿踿踿踿踿踿踿踿踿Di(R)变换

踿踿
暠,即

踿
体系的能量本征态可以按照它们在对称性变换下的性质来分类
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.这fi 个简并态构

成体系的一个fi 重态
踿踿.

由此可以看出,与经典力学相比
踿踿踿踿踿踿踿

,量子力学更适合于利用体系的对称性来处理
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

问题
踿踿.这是由于量子力学用波函数来描述体系的状态

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,而且遵守态叠加原理
踿踿踿踿踿踿踿踿踿.这些

踿踿
量子态张开一个线性空间
踿踿踿踿踿踿踿踿踿踿踿

,可用以荷载体系的某种对称性群的表示
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.对称性的重要

性反映在:能量本征态可以按照对称性群的不可约表示来分类
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,标记不可约表示的
踿踿踿踿踿踿踿踿

指标可用以作为描述体系状态的好量子数
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而研究对称性群的不可约表示的维数
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

对于了解体系能级的简并度是很有用的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(见8灡4节).
在8灡2节中已指出,物理学中通常碰到的对称性变换(除时间反演外),包括一

切连续的对称性变换,均为幺正变换,因此相应的群表示均为幺正表示
踿踿踿踿.这就保证

踿踿
了在这些变换下波函数的正交归一性不改变
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

反过来说,假设在变换前能量本征态是正交归一化的

(氉i
毻,氉i

毺)=毮毻毺 (8灡3灡12)
在经过变换R 后,氉曻氉曚=R氉,如要求

(R氉i
毻,R氉i

毺)=毮毻毺 (8灡3灡13)
仍然成立,即

暺
毩毬

Di*
毩毻 (R)Di

毬毺(R)(氉i
毩,氉i

毬)=毮毻毺

暺
毩
Di*

毩毻 (R)Di
毩毺(R)= 暺

毩
Di+

毻毩(R)Di
氁毺(R)=毮毻毺

所以

Di(R)+ Di(R)=I (8灡3灡14)
即要求Di(R)为幺正表示.
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暋暋按照群的不等价的不可约表示的正交归一性定理(见附录B灡3灡2),可以证明

下列正交性定理
踿踿踿踿踿

:
定理2暋设氉i

毩 与毤j
毬 分别按照对称性群的两个不等价的不可约表示

踿踿踿踿踿踿踿踿踿Di 和Dj

变换,则
(氉i

毻,毤j
毺)=毮ij毮毻毺Ci (8灡3灡15)

其中Ci 不依赖于
踿踿踿踿

“磁量子数
踿踿踿踿

暠毻和毺.
证明

(氉i
毻,毤j

毺)=(R氉i
毻,R毤j

毺)= 暺
毩毬

Di*
毩毻 (R)Dj

毬毺(R)(氉i
毩,毤j

毬)

等式两边对所有群元素R 求和(在连续群情况则为积分),

(氉i
毻,毤j

毺)暺
R

= 暺
毩毬

暺
R
Di*

氁毻 (R)Dj
毬毺(R[ ])(氉i

毩,毤j
毬)

利用附录B灡3灡2的定理2,

上式 =暺
毩毬

暺
R
毮ij毮毩毬毮毻毺

fi

é

ë

ê
ê
ê

ù

û

ú
ú
ú暋
(氉i

毩,毤j
毬)=毮ij毮毺毻

fi 暺
R

(氉i
毩,毤i

毩)暺
R

因此
(氉i

毻,毤j
毺)=毮ij毮毺毻Ci

其中

Ci = 1
fi暺

fi

毩=1

(氉i
毩,毤i

毩)

不依赖于磁量子数.

8灡3灡2暋简并态的标记,子群链

在讲一般原则之前,先讲一个具体的例子.在7灡1节中已讲过,一个体系的角

动量(J2,Jz)的共同本征态氉jm,在空间旋转R(毩,毬,毭)下(毩,毬,毭为Euler角)

R(毩,毬,毭)氉jm = 暺
m曚
Dj

m曚m(毩,毬,毭)氉jm曚 (8灡3灡16)

若限制R 为只是绕z轴的旋转(转角为氄),则
Dj

m曚m(氄,0,0)=exp(-im氄)毮m曚m (8灡3灡17)
即转动群的矩阵表示化为对角矩阵

踿踿踿踿

Dj(氄,0,0)=

e-ij氄

e-i(j-1)氄

烑
eij

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

氄

(8灡3灡18)

用群表示的语言来讲,式(8灡3灡16)的意思就是:(2j+1)个态氉jm (m=j,j-1,…,

-j),在空间旋转R 下按照转动群的(2j+1)维不可约表示Dj(R)变换.它们有一

个共同的量子数j,就是转动群SO3 的不可约表示的标记.但如局限于绕z轴的旋

转———它们构成SO3 群的一个子群SO2,则Dj 也是子群SO2 的表示.式(8灡3灡18)
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表明,原来的SO3 群的不可约表示将变成可约化的.由于SO2 是一个 Abel群,而

Abel群的不可约表示只能是一维的.与旋转氄角的变换相应的SO2 群的不可约表

示为e-im氄,用m 来标记.(对于 Abel群SO2,其Casimir算子就是SO2 的惟一的无

穷小算子Lz=-i淈灥
灥氄

,SO2 的不可约表示e-im氄就是用这个 Casimir算子Lz 的本

征值m(淈)来标记.)这个m 正是区分诸简并态
踿踿踿踿踿踿踿踿氉jm的磁量子数

踿踿踿踿踿.
一般来讲,设H为群G 的一个子群,Dj(gi)是G 的一个不可约表示(gi暿G).

若限制gi暿H,即只限于子群H中的元素,此时虽然Dj(gi)也是群H的一个表示,
但表示一般是可约的

踿踿踿踿踿踿踿踿
[即可以经过一个相似变换,使Dj(gi)(gi暿H)变成块对角形

式].经过约化之后,可以化为子群H的若干个不可约表示的直和

Dj = 暺
k
ajkdk (8灡3灡19)

dk 是子群H的一个不可约表示,ajk表示约化时dk 出现的次数栙.这样我们就找到

了另一个量子数k,它是子群H的一个不可约表示的标记.在量子力学中就可以用

k来区分属于群G 的不可约表示Dj 的某些简并态.
量子力学中在能级有简并的情况下,通常是选择一组守恒量完全集来标定诸

简并态.以中心力场中无自旋粒子为例,通常选用守恒量完全集(H,l2,lz)的共同

本征态氉nrlm
来标记能级Enrl

的各简并态.用群表示论的语言来讲,量子数l就是体

系的对称性群SO3 的2l+1维不可约表示Dl 的标记,也是SO3 群的Casimir算子

l2 的本征值(取淈=1)l(l+1)的标记.区别各简并态的磁量子数m 则是SO3 的子

群SO2 的不可约表示的标记,也是SO2 的Casimir算子lz 的本征值(m)的标记.所
以量子力学中找寻一组守恒量完全集的本征值来标定各定态

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,相当于群表示理论
踿踿踿踿踿踿踿踿

中找寻体系的对称性群的一个合适的子群链
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(如SO3灲SO2),并用各子群的不可
踿踿踿踿踿踿踿踿

约表示的标记
踿踿踿踿踿踿

(即其
踿Casimir算子的本征值

踿踿踿踿踿踿
)来区分各简并态
踿踿踿踿踿踿踿.

8灡3灡3暋力学量的矩阵元

这一节可以认为是转动变换下的不可约张量概念的推广(参阅7灡3节).

1灡 标量的矩阵元

设算符F 在对称性变换R 之下具有不变性,即对于所有R,有RFR-1=F,或
[F,R]=0 (8灡3灡20)

则称F 为变换R 下的标量算子.(例如,Lie群的Casimir算符就具有此性质.)
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栙 按附录B灡4灡2,式(B灡4灡11),

ajk = 1
nH

暺
氀
n氀氈k(氀)氈j(氀)

nH 表示子群H所含元素的数目,氀标记H的一个类,包含n氀 个元素,氈是特征标.



定理3暋在对称性群的不可约表示的基矢之间,标量算符F 的矩阵元为

(氉i
毻,F毤j

毺)=毮ij毮毻毺Fi (8灡3灡21)
即F 的矩阵元对于“量子数暠i和j是对角化的,并且不依赖于

踿踿踿踿
“磁量子数
踿踿踿踿

(毺,毻)暠.
在证明此定理之前,先举大家熟知的两个例子.
例1暋对于空间转动群,其Casimir算子j2 在(2j+1)维不可约表示的基矢氉jm 之间的矩阵

元(淈=1)为
(氉j曚m曚,j2氉jm )=j(j+1)毮j曚j毮m曚m

例2暋中心势场V(r)是空间转动下的标量.它在粒子态氉nrlm =Rnrl
(r)Ym

l (毴,氄)之间的

矩阵元
(氉n曚rl曚m曚

,V(r)氉nrlm
)= (Rn曚rl

,V(r)Rnrl
)毮l曚l毮m曚m

证明暋利用式(8灡3灡20)

RF毤j
毺 =FR毤j

毺 =F暺
毬
Dj

毬毺(R)毤j
毬 = 暺

毬
Dj

毬毺(R)F毤j
毬

即F毤j 按照对称性群的不可约表示Dj 变换,因此可以令

F毤j
毺 曉毃j

毺

利用定理2(正交性关系),可得

(氉i
毻,毃j

毺)=毮ij毮毻毺Fi

亦即
(氉i

毻,F毤j
毺)=毮ij毮毻毺Fi

Fi 不依赖于“磁量子数暠.
定理3说明,只当初

踿踿踿
、末态都按照对称性群的同一个不可约表示变换
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,并且
踿踿

“磁
踿

量子数
踿踿踿

暠也相同时
踿踿踿踿

,标量算符的矩阵元才可能不为
踿踿踿踿踿踿踿踿踿踿踿踿踿0.

2灡 不可约张量,直积表示的约化,选择定则

设有一组算符Tk
q(q=1,2,…,fk),在变换R 下具有下列性质:

RTk
qR-1 = 暺

q曚
Dk

q曚q(R)Tk
q曚 (8灡3灡22)

上式中Dk(R)是体系的对称性群的一个不可约表示,则称Tk
q 是变换R 下的一组

不可约张量
踿踿踿踿踿

(irreducibletensor).关于不可约张量的矩阵元,有一个重要的定

理———Wigner灢Eckart定理(转动群的 Wigner灢Eckart定理已在7灡3灡2节中讲过).
在讲述此定理之前,先介绍一个群的两个不可约表示的直积及其约化的概念,量子

力学中的跃迁选择定则与此密切相关.
试分析Tk

q毤j
毺 的变换性质.

RTk
q毤j

毺 =RTk
qR-1R毤j

毺 = 暺
q曚
Dk

q曚q(R)Dk
q曚暺

毺曚
Dj

毺曚毺(R)毤j
毺曚

=暺
q曚毺曚

[Dk
q曚q(R)Dj

毺曚毺(R)]Tk
q曚毤j

毺曚

=暺
q曚毺曚

[Dk(R)暳Dj(R)]q曚毺曚,q毺Tk
q曚毤j

毺曚 (8灡3灡23)
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其中Dk(R)暳Dj(R)是两个不可约表示(矩阵)Dk(R)与 Dj(R)的直积(direct
product,参阅附录B灡5灡1).可以证明,此直积表示也是对称性群的一个表示.但一

般言之,直积表示
踿踿踿踿Dk暳Dj 是可约的

踿踿踿踿.所以可以把Tk
q毤j

毺 重新线性叠加,使之荷载对

称性群的若干个不可约表示,即Dk暳Dj 可以约化成若干个不可约表示的直和

Dk暳Dj = 暺
l
alDl (8灡3灡24)

al 是不可约表示Dl 出现的次数.式(8灡3灡24)称为Clebsch灢Gordan系列.如al曑1,
即约化后每一个不可约表示最多可能出现一次

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,这种群称为简单可约

踿踿踿踿
(simplyre灢

ducible)群.转动群SO3 就是一个简单可约群.这是在角动量耦合理论中已经知道

的结论:两个角动量j1 与j2 耦合成总角动量J=j1+j2 时,

J= j1-j2 ,j1-j2 +1,…,(j1+j2)
每一个J值只出现一次

踿踿踿踿踿.用群表示论语言来表述,即

Dj1 暳Dj2 = 暺
j1+j2

J= j1-j2

DJ (8灡3灡25)

两个角动量的耦合
踿踿踿踿踿踿踿踿

问题,就是转动群的两个不可约表示的直积的约化
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

问题.
设对称性群的不可约表示Di 出现在Dk暳Dj 直积约化的 Clebsch灢Gordan系

列(8灡3灡24)中,即ai曎0,则由式(8灡3灡23)和定理2[式(8灡3灡15)],可知矩阵元(氉i
毻,

Tk
q毤j

毺)可能不为0,这里氉i
毻 是张开不可约表示Di 的基矢.反之,若ai=0,即Di 不出

现在直积Dk暳Dj 的Clebsch灢Cordan约化系列中,则必然

(氉i
毻,Tk

q毤j
毺)=0 (8灡3灡26)

这就是选择规则
踿踿踿踿

(selectionrule)在群表示论中的表述.在量子力学中,若Tk
q 代表

导致体系跃迁的相互作用张量算符,在一级微扰论中,(氉i
毻,Tk

q毤j
毺)代表从初态毤j

毺 到

末态氉i
毻 的跃迁幅度(transitionamplitude).当式(8灡3灡26)成立时,这种量子跃迁是

禁戒的(forbidden).
实际物理问题中,导致跃迁的相互作用算符本身并不一定是一个不可约张量

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,

但往往可以表示成若干不可约张量之和
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,

O= 暺
kq
CkqOk

q (8灡3灡27)

其中Ok
q 是按对称性群的不可约表示Dk 变换的张量,此时可以在不同的物理条件

下分别考虑式(8灡3灡27)中的不同项所相应的跃迁选择定则.

3灡 Wigner灢Eckart定理,分支比

转动群的 Wigner灢Eckart定理,已在7灡3灡2节中讲述过.下面讲述对于一般的

体系的对称性群的类似的 Wigner灢Eckart定理.
按上面的分析,按照对称性群的不可约表示Dk 变换的不可约张量算符Tk

q(q=
1,2,…,fk),对张开不可约表示Dj 的基矢毤j

毺(毺=1,2,…,fj)运算后,所得的fkfj

·303·



个态Tk
q毤j

毺,就张开群的一个直积表示Dk暳Dj,此表示一般是可约的.因此可以把

这fkfj 个态Tk
q毤j

毺 重新线性组合,用以荷载对称性群的若干个不可约表示.设

毃l
毭 = 暺

q毺

暣kqj毺l毭暤Tk
q毤j

毺暋(毭=1,2,…,fl) (8灡3灡28)

按照不可约表示Dl 变换,Dl 是出现在Dk暳Dj 的 Clebsch灢Gordan系列(8灡3灡24)
中的一个不可约表示.这里为了简单,只讨论简单可约情况(al曑1).式(8灡3灡28)中
的组合系数(kqj毺l毭)称为Clebsch灢Gordan系数.式(8灡3灡28)之逆可表示为栙

Tk
q毤j

毺 = 暺
l毭

暣l毭 kqj毺暤毃l
毭 (8灡3灡29)

因此

(氉i
毻,Tk

q毤j
毺)= 暺

l毭

暣l毭 kqj毺暤(氉i
毻,毃l

毭)

按定理2[见式(8灡3灡15)]

上式 = 暺
l毭

暣l毭 kqj毺暤毮il毮毻毭Ci = 暣i毻kqj毺暤Ci (8灡3灡30)

Ci 不依赖于
踿踿踿踿

“磁量子数
踿踿踿踿

暠.上式表明不可约张量算符Tk
q 的矩阵元(氉i

毻,Tk
q毤j

毺)对磁量

子数的依赖,完全寄托在Clebsch灢Gordan系数(i毻kqj毺)上.这就是 Wigner灢Eckart
定理.此定理在原子和分子物理,核物理和粒子物理中有广泛的应用.

8灡4暋能级简并度与对称性的关系

8灡4灡1暋一般讨论

量子体系的能级常出现简并,即对应于某一个能量本征值,存在不止一个能量

本征态.卷I,3灡1节已指出,一维规则势阱中粒子的束缚态
踿踿踿踿踿踿踿踿踿踿踿踿踿

(如存在的话
踿踿踿踿踿

)是不简并
踿踿踿踿

的
踿.但一维自由粒子

踿踿踿踿踿踿
,对应于能量E,有两个本征态,氉(x)~exp(暲i 2mEx/淈),

即出现二重简并
踿踿踿踿.对于三维自由粒子

踿踿踿踿踿踿
,能量E 给定后,

氉(r)~exp(ip·r/淈)暋暋(p = 2mE)
都是能量本征态.尽管p的大小 p 虽已确定,但方向是任意的,所以简并度为无

踿踿踿踿踿
穷大
踿踿.自由粒子能级(为连续谱)的这种简并性,与自由粒子的对称性(包括空间各

向同性和空间均匀性)有密切关系.又例如,一般的中心力场中粒子的束缚态(离散

谱)一般是简并的.它的能级Enrl
依赖于径向量子数nr 和角动量量子数l,但与磁

量子数m 无关(m=l,l-1,…,-l),简并度为(2l+1).这种简并性与中心力场的

几何对称性(空间各向同性)密切相关.
这里自然会提出两个问题:
(1)能级出现简并是否表明体系就有某种对称性?
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(2)量子体级的对称性是否一定导致能级简并?
对于第一个问题,Messiah书中栙提到:“能级的简并度几乎

踿踿
总是与 Hamilton

量的某种对称性相联系.暠对于“几乎暠的含义,书中未明确指出,可能是考虑到能

级的“偶然简并
踿踿踿踿

暠问题.所谓“偶然简并暠(accidentaldegeneracy),往往是指 Hamil灢
ton量中某些参量(如电场或磁场强度、势场的某些参量等)的变化所引起的,即当

这些参量取某些特殊值时,本来不简并的两条能级发生交叉的情况.这种简并与体

系的对称性并没有什么本质的联系,故称为“偶然简并暠.但应着重指出,有一些简
踿踿踿踿

并是被误称为
踿踿踿踿踿踿

“偶然简并
踿踿踿踿

暠,实则并非
踿踿踿踿

“偶然
踿踿

暠,而是体系具有某种更高的对称性的反
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

映
踿.例如,Coulomb场和各向同性谐振子场中粒子的能级的简并度,高于一般中心

力场中粒子能级的简并度,这并不是偶然的,而是它们具有比一般中心力场的几何

对称性(SO3)更高的动力学对称性的反映(见9灡1节,9灡2节).此外,还有一些简

并,表面上一看,似乎是由于某些参数取某些特殊值时才出现的简并,但事实上是

一种系统出现的简并.如果仍然称之为“偶然简并暠,看来是不恰当的.正如 Elliott
指出栚,系统地出现某种简并

踿踿踿踿踿踿踿踿踿
,往往意味着某种对称性
踿踿踿踿踿踿踿踿踿踿.

对于第二个问题,应当指出,体系的对称性并不一定导致能级简并
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.例如,一维

谐振子,虽然具有空间反射不变性(宇称为守恒量),但其能级是不简并的.试问:什
么样的对称性才能导致简并?

按照群表示理论,一个Abel群的不可约表示必为一维表示
踿踿踿踿踿踿踿踿踿踿踿踿踿.因此,若一个体系

的全部对称性群为 Abel群(即不存在对称性变换群为非 Abel群),则能级不会出

现简并.例如,一维谐振子的对称性群即空间反射群,是一个二阶群(包含两个元

素,即恒等变换和空间反射),为 Abel群,此外不存在其他非 Abel对称性群,所以

能级是不简并的.反之,若体系有一个对称性群是非
踿踿踿踿踿踿踿踿踿踿踿踿Abel群

踿
,则能级一般说来是简
踿踿踿踿踿踿踿踿踿

并的
踿踿.例如,一般中心力场中的粒子,对称性群为三维旋转群SO3,它是非Abel群,
它的3个无穷小算符(即角动量的3个分量)彼此不对易.因此其能级(除l=0外)
是简并的,简并度为(2l+1),即SO3 群的不可约表示的维数.

量子力学中有一条定理,可用以判断体系能级是否会出现简并(卷I,5灡1节).
定理说:假设体系有两个彼此不对易的守恒量

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿F 和G,即[F,H]=0,[G,H]=0,
但
踿

[F,G]曎0,则其能级一般是简并的
踿踿踿踿踿踿踿踿

(个别特殊能级除外).这条定理实质上与上

面用群表示的语言所讲述的原则是等价的.因为一个体系的对称性变换群如为非

Abel的Lie群,则其无穷小算符(均为守恒量)一般是不对易的,因而一般会出现

简并.
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例1暋Stark效应.
考虑碱金属原子的价电子(荷电-e)在屏蔽 Coulomb场V(r)(来自原子核提供的纯 Cou灢

lomb场以及内层满壳电子的贡献)中运动(具有SO3 对称性).当加上沿z轴方向的均匀外电场

E时,Hamilton量表示为

H =p2

2毺
+V(r)+eEz (8灡4灡1)

SO3 对称性被破坏,但体系仍具有绕z轴的旋转不变性,即绕定轴的旋转群(SO2),是一个 Abel
群.乍一看来,电子能级的简并将被全部解除.但SO2 并未完全概括体系的全部对称性,因为体

系还有镜像反射对称性
踿踿踿踿踿踿踿

(镜像面包含z轴在内,如yz,zx平面),即氁yz与氁zx(镜像反射)是对称性

操作

氁yz暶x曻-x,y曻y,z曻z
氁zx暶y曻-y,x曻x,z曻z

(8灡4灡2)

显然[氁yz,H]=0,[氁zx,H]=0.但[氁yz,lz]曎0,[氁zx,lz]曎0,lz 是绕z 轴旋转的SO2 群的无穷小

算符.包括氁yz和氁zx在内的绕z轴的旋转群,是一个非 Abel群,因而能级出现二重简并.
例2暋Zeeman效应.
同上例,但电场换为磁场,即加上沿z轴方向的均匀外磁场

踿踿踿踿踿B,此时

H =p2

2毺
+eB

2毺c
lz +e2B2

8毺c2(x2 +y2)+V(r) (8灡4灡3)

可看出,[lz,H]=0,即体系仍有绕z轴的旋转不变性,lz 仍为守恒量.但[氁yz,H]曎0,[氁zx,H]曎

0,因为在氁yz或氁zx的运算下[见式(8灡4灡2)],lz=-i淈 x 灥
灥y-y 灥

灥( )x 曻-lz.所以镜像反射对称
踿踿踿踿踿踿

性被破坏
踿踿踿踿.因此,体系的对称性群只是 Abel群SO2,因而能级简并完全解除,能级Enrl曻Enrlm

,能
量将依赖于磁量子数m.

8灡4灡2暋二维势阱中粒子能级的简并性

1灡 一般二维中心势

采用极坐标,二维中心势V(氀)中粒子的Schr昳dinger方程为

H氉= -淈2

2毺
1
氀

灥
灥氀氀

灥
灥氀

+1
氀2

灥2

灥氄
æ

è
ç

ö

ø
÷

2 +V(氀[ ])氉=E氉 (8灡4灡4)

显然,角动量lz=-i淈x 灥
灥y-y 灥

灥
æ

è
ç

ö

ø
÷

x =-i淈灥
灥氄

是守恒量,

[lz,H]=0
通常选择(H,lz)为对易守恒量完全集,在坐标表象中其共同本征态为

氉(氀,氄)曍R(氀)eim氄,暋暋m =0,暲1,暲2,… (8灡4灡5)

R(氀)满足下列径向方程:

-淈2

2毺
1
氀

d
d氀氀

d
d氀

+m2淈2

2毺氀2 +V(氀[ ])R(氀)=ER(氀) (8灡4灡6)

根据R(氀)满足的边条件(包括束缚态条件),即可求出能量本征值E.但不用进行

具体计算即可判断能级必有简并,因为式(8灡4灡6)中只出现m2,能级E 对暲 m 必
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定是简并的.因此,一般二维中心势阱中粒子的束缚态是二重简并的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(基态m=0
除外).

乍一看来,二维中心势的对称性群似乎是绕z轴的旋转群SO2(是一个 Abel
群),能级似应无简并,但这是不全面的,因为体系还有 镜 像 反 射 对 称 性

踿 踿 踿 踿 踿 踿 踿
[见

式(8灡4灡2)].可以证明氁yz和氁zx均为守恒量,即
[氁yz,H]= [氁zx,H]=0 (8灡4灡7)

但氁yz和氁zx与守恒量lz=xpy-ypx 不对易,
[氁yz,lz]曎0,[氁zx,lz]曎0 (8灡4灡8)

因此能级出现简并.体系的对称变换,除了SO2 外,还包含空间反射.
练习1暋试分析二维无限深圆方势阱中粒子能级的简并度.

V(氀)=
0, 氀<a
曓, 氀>{ a

练习2暋二维无限深方势阱

V(x,y)=
0, 0<x、y<a
曓,{ 其他区域

粒子能级为

Enxny = 毿2淈2

2毺a2(n2
x +n2

y)= 毿2淈2

2毺a2n2

n2 =n2
x +n2

y

nx,ny =1,2,3,… (8灡4灡9)

波函数为

氉nxny
(x,y)= 2

asin nx毿
a( )x sin ny毿

a( )y

试分析能级的简并度.能级简并度可否大于一般二维中心势? 如何理解其对称性?

提示

(nx,ny) En
毿2淈2

2毺a2 fn(简并度)

(1,1) 2 1
(1,2) 5 2
(1,7)
(5,5) 50 3

(1,8)
(4,7) 65 4

(1,18)
(6,17)
(10,15)

325 6

(4,33)
(9,32)
(12,31)
(23,24)

1105 8
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2灡 二维谐振子

二维谐振子势

V = 1
2毺(氊2

xx2+氊2
yy2) (8灡4灡10)

中粒子的能级是众所熟知的,即

Enxny = nx +æ

è
ç

ö

ø
÷

1
2 淈氊x + ny +æ

è
ç

ö

ø
÷

1
2 淈氊y

nx,ny =0,1,2,… (8灡4灡11)

如氊x/氊y=无理数
踿踿踿

,则能级无简并
踿踿踿踿踿踿.为讨论方便,令

氊x =氊0(1-毰)

氊y =氊0(1+毰)
(8灡4灡12)

其逆为

氊0 = 1
2

(氊x +氊y)

毰=氊y -氊x

氊y +氊x

(8灡4灡13)

氊0 表示振子的平均强度,毰表示形变度,毰=0表示各向同性(氊y=氊x).能级公式

(8灡4灡11)可改写为

Enxny = (nx +ny +1)淈氊0-(nx -ny)毰淈氊0 (8灡4灡14)

对于各向同性二维谐振子(氊x=氊y=氊0)

E=En = (n+1)淈氊0

n=nx +ny (8灡4灡15)

nx,ny,n=0,1,2,…

它只依赖于量子数nx 与ny 的一种特殊组合
踿踿踿踿

,即nx+ny=n.这是振子强度氊x=氊y

所导致的.对于给定能级(即给定n),

nx =n,n-1,n-2,…,0
相应

ny =0,1, 2, …,n
即有(n+1)个量子态氉nxny

,所以能级En 的简并度为

fn = (n+1),暋n=0,1,2,… (8灡4灡16)

它比一般二维中心势阱V(氀)的能级简并度(=2)高一些.这反映出二维各向同性

谐振子势的对称性 U2 高于一般的二维中心势 O2(U2灲O2),是各向同性谐振子势

[V(氀)曍氀2]所特有的一种动力学对称性(见9灡3节).
设二维谐振子势
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氊x

氊y
= a

b
(8灡4灡17)

a、b为整数,a/b为既约分数
踿踿踿踿

,则能级也会出现简并
踿踿踿踿踿踿踿踿.特别是当a/b为简单分数(如

a/b=1/1,1/2,2/3,…)时,在低激发谱中就会出现简并.下面以a/b=1/2为例来

说明.此时按式(8灡4灡13),毰=1/3,而能级

E=2
3

nx +2ny +æ

è
ç

ö

ø
÷

3
2 淈氊0 = 2

3
n+æ

è
ç

ö

ø
÷

3
2 淈氊0

n=nx +2ny =0,1,2,…
(8灡4灡18)

对于给定能级(即给定n),可证明其简并度为

fn =

1
2

(n+2), n偶

1
2

(n+1), n

ì

î

í

ï
ï

ï
ï 奇

(8灡4灡19)

表8灡1中给出较低的几条能级的简并量子态.设粒子自旋为1/2,则粒子遵守

Pauli原理,从最低能级开始填充,一直到填满第n能级,形成满壳结构,它所包含

的粒子数为2暺
n

i=0
fi,习惯上称之为幻数(magicnumber),见表8灡1最后一列.

表8灡1暋氊x/氊y=1/2二维谐振子的能级简并度与壳结构

n=nx+2ny En/淈氊0 简并态(nx,ny) fn 幻数 2暺
n

i=0
f( )i

0 1 (00) 1 2

1 5/3 (10) 1 4

2 7/3 (20),(01) 2 8

3 3 (30),(11) 2 12

4 11/3 (40),(21),(02) 3 18

5 13/3 (50),(31),(12) 3 24

6 5 (60),(41),(22),(03) 4 32

7 17/3 (70),(51),(32),(13) 4 40

汅

能级和壳结构随形变度毰的变化,见图8灡3.可以看出,当氊x/氊y =1,1/2,

2/3,…简单分数时,低激发谱中就出现能级集束(bundling)现象,或者说,能级分

布出现很不均匀的现象,即出现壳结构(shellstructure).在氊x/氊y=1(各向同性,

毰=0)时,能级简并度最大,能级集束最明显.
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图8灡3暋二维谐振子势中粒子能级

8灡4灡3暋轴对称变形势

一般的轴对称变形势V(氀,z)(不依赖于氄角)具有绕z轴的旋转不变性以及

xy 平面内的反射不变性(O2 对称性),粒子能量本征态可以取为lz 的本征态,即

氉(氀,氄,z)=R(氀,z)eim氄,暋m =0,暲1,暲2,… (8灡4灡20)

R(氀,z)满足

-淈2

2毺
1
氀

灥
灥氀氀

灥
灥氀

-m2

氀
æ

è
ç

ö

ø
÷

2 + 灥2

灥z[ ]2 +V(氀,z{ })R(氀,z)=ER(氀,z)

(8灡4灡21)
能量本征值不依赖于m 的正负号,所以与一般二维中心势V(氀)相同,一般的轴对

踿踿踿踿踿
称变形势
踿踿踿踿V(氀,z)中能级的简并度仍为

踿踿踿踿踿踿踿踿踿2.
如进一步假定V 是可分离变量

踿踿踿踿踿
,

V(氀,z)=V1(氀)+V2(z) (8灡4灡22)
则波函数R(氀,z)=f1(氀)f2(z).如V2(z)的参数与V1(氀)的参数没有什么关系,则
能级简并度与二维中心势V1(氀)的能级相同.

在二原子分子和稳定变形原子核的理论中,常用到轴对称变形势栙.下面讨论

·013·
栙 A.BohrandB.R.Mottelson,NuclearStructure,Vol.II,chap.4.Benjamin,1975.



轴对称变形谐振子势
踿踿踿踿踿踿踿踿踿

(氊x=氊y=氊曂 ),

V(x,y,z)= 1
2毺氊2

曂 (x2+y2)+1
2毺氊2

zz2 (8灡4灡23)

其能级为

E= (n+1)淈氊曂+ nz+æ

è
ç

ö

ø
÷

1
2 淈氊z (8灡4灡24)

n=nx +ny

nx,ny,n,nz =0,1,2,…
若氊曂/氊z=无理数

踿踿踿
,则能级简并度与二维各向同性谐振子势相同

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.但当

氊曂

氊z
= a

b
(8灡4灡25)

a/b为既约分数,(a、b为整数)时,就会出现新的简并.当a/b=1暶1,即三维各向

同性谐振子,它具有比一般中心力场更高的对称性(SU3),这将于第9章中讨论.
为讨论方便,令

氊曂 = 1+1
3

æ

è
ç

ö

ø
÷毰氊0,暋氊z = 1-2

3
æ

è
ç

ö

ø
÷毰氊0 (8灡4灡26)

其逆表示式为

氊0 = 1
3

(2氊曂+氊z),暋毰=3(氊曂-氊z)
2氊曂+氊z

(8灡4灡27)

氊0 是振子平均强度,毰表示形变.毰=0(氊曂 =氊z)表示球形谐振子,毰>0(氊曂 >氊z)表
示长椭球(prolate)变形,毰<0表示偏椭球(oblate)变形.

下面稍仔细讨论一下氊曂/氊z=2暶1(毰=0灡6)情况下能级的简并度.此时,式
(8灡4灡24)化为

E=EN = (N+5/2)淈氊曂 /2
N =2n+nz (8灡4灡28)

nz,n,N =0,1,2,…
对给定能级EN,有

nz =N,N-2,…,1(N 奇)或0(N 偶)

n=0,暋1,…,暋 N-1
2

或N
2

(8灡4灡29)

而对于给定n,有(n+1)个(nx,ny),因此EN 能级的简并度为

fN = 暺
n

(n+1)= 1
8

(N+2)(N+4),暋N 偶

(N+1)(N+3),暋N{ 奇
(8灡4灡30)

表8灡2给出较低几条能级的简并度以及相应的“幻数暠(设粒子自旋为1/2).
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表8灡2暋长短轴比氊曂/氊z=2暶1的轴对称谐振子势的简并度与壳结构(见图8灡4)

N(nnz) 2fN(计及自旋) 幻数 2暺
N

i=0
f( )i

0暋(00) 2 2
1暋(01) 2 4
2暋(02),(10) 6 10
3暋(03),(11) 6 16

4暋(04),(12),(20) 12 28
5暋(05),(13),(21) 12 40
6暋(06),(14),(22),(30) 20 60
7暋(07),(15),(23),(31) 20 80

图8灡4暋轴对称谐振子势中粒子的能级

取自 A.BohrandB.R.Mottelson,NuclearStructure,Vol.II,p.592.

8灡4灡4暋能级简并性,壳结构与经典轨道闭合性的关系

先举一个最简单的例子,即二维谐振子,V=1
2

(m氊2
xx2+m氊2

yy2).众所周知,

在经典力学中,如氊x/氊y=a/b(既约分数),则轨道是闭合的,是一个周期运动,角
频率为氊=a氊y=b氊x.在量子力学中,它的能级为
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E(nx,ny)= (nx +1/2)淈氊x +(ny +1/2)淈氊y (8灡4灡31)

作为(nx,ny)的函数,易见

灥E
灥nx

灥E
灥ny

=氊x/氊y (8灡4灡32)

8灡4灡2节中的分析已指出,当氊x/氊y=a/b(简单既约分数)时,在低激发谱中就会出

现简并,能级分布就出现壳结构.例如,氊x/氊y=1(各向同性谐振子)和氊x/氊y=1/2
时,低激发能级中就出现不同的壳结构(见图8灡3与表8灡1).轴对称变形谐振子势

中的粒子,也存在类似的能级壳结构.这说明,量子体系能级的简并性和壳结构
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,与
踿

经典轨道的闭合性有密切关系
踿踿踿踿踿踿踿踿踿踿踿踿踿.

以下来分析在中心力场V(r)中粒子的能级简并性以及壳结构.其能级(束缚

态)一般依赖于角动量l和径向量子数nr,即E(nr,l),但不依赖于磁量子数m.能
级简并度为(2l+1).

试把E(nr,l)看成量子数nr,l的解析函数栙,在(nr,l)平面中某点(nr0,l0)的
邻域作 Taylor展开

E(nr,l)=E(nr0,l0)+(nr-nr0)灥E
灥

æ

è
ç

ö

ø
÷

n 0
+(l-l0)灥E

灥
æ

è
ç

ö

ø
÷

l 0

+1
2

(nr-nr0)2 灥2E
灥

æ

è
ç

ö

ø
÷

n 0
+(nr-nr0)(l-l0)灥2

灥nr

E
灥

æ

è
ç

ö

ø
÷

l 0

+1
2

(l-l0)2 灥2E
灥l

æ

è
ç

ö

ø
÷

2
0
+… (8灡4灡33)

设E(nr,l)随(nr,l)变化很光滑而缓慢,作为初步近似,在上式中略去较小的二

次项,

E(nr,l)曋E(nr0,l0)+(nr-nr0)灥E
灥n

æ

è
ç

ö

ø
÷

r 0
+(l-l0)灥E

灥
æ

è
ç

ö

ø
÷

l 0

=常数项+ 灥E
灥n

æ

è
ç

ö

ø
÷

r 0
nr+ 灥E

灥
æ

è
ç

ö

ø
÷

l 0
l (8灡4灡34)

即近似为nr、l的线性函数.设

灥E
灥n

æ

è
ç

ö

ø
÷

r 0

灥E
灥

æ

è
ç

ö

ø
÷

l 0
=a/b (8灡4灡35)

其中a/b为既约分数(a,b为整数),则单粒子能级系中将出现一系列近简并的能

级.令

灥E
灥n

æ

è
ç

ö

ø
÷

r 0
=a殼,暋 灥E

灥
æ

è
ç

ö

ø
÷

l 0
=b殼 (8灡4灡36)
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Bohr&B.R.Mottelson,NuclearStructure,Vol.II,p.578.Benjamin,1975.



则

E(nr,l)=Nsh殼+常数

Nsh =anr+bl
(8灡4灡37)

对于给定Nsh,能级E(nr,l)也近似给定.但对于给定的 Nsh,(nr,l)还可以有各种

可能组合,因此能级可能出现进一步简并(近简并),即单粒子能级出现集束(bund灢
ling)现象.Nsh相同,但(nr,l)不尽相同的诸能级就构成一个大壳,用Nsh来标记.相
邻大壳之间的间距为

淈氊sh =殼= 1
a

灥E
灥n

æ

è
ç

ö

ø
÷

r 0
= 1

b
灥E
灥

æ

è
ç

ö

ø
÷

l 0
(8灡4灡38)

对于三维各向同性谐振子

E= (2nr+l+3/2)淈氊
灥E
灥n

æ

è
ç

ö

ø
÷

r
暶 灥E

灥
æ

è
ç

ö

ø
÷

l =2暶1 (8灡4灡39)

此式对(nr,l)平面上所有点
踿踿踿

都成立,而且E 对nr 和l的高阶微商均为0,因此形成

高度“集束暠现象,即出现严格的简并栙,相邻两条能级(“大壳暠)之间的间距淈氊sh=
淈氊是常数(能级为均匀分布),Nsh=2nr+l就是平常习惯用的量子数N=2nr+l.

对于氢原子[V(r)=-毷/r],

E=-毺毷2

2淈2
1

(nr+l+1)2 (8灡4灡40)

灥E
灥n

æ

è
ç

ö

ø
÷

r
暶 灥E

灥
æ

è
ç

ö

ø
÷

l =1暶1 (8灡4灡41)

此式对(nr,l)平面上所有点
踿踿踿

也都成立.Nsh=(nr+l)与平常习惯用的主量子数n=
(nr+l+1)只差一个不关重要的常数.与各向同性谐振子不同,氢原子的相邻两个

大壳(简并能级)之间间距为

淈氊sh = 1
a

灥E
灥nr

=毺毷2

淈2
1

(nr+l+1)3 (8灡4灡42)

当nr+l曻曓时,淈氊sh曻0,表现为Coulomb势的各大壳之间的间距越来越密.

8灡5暋对称性在简并态微扰论中的应用

8灡5灡1暋一般原则

微扰论是应用量子力学处理实际问题中最常用的近似方法,其中绝大多数问

题涉及简并态如何受到微扰的影响
踿踿踿踿踿踿踿踿踿踿踿踿.设体系 Hamilton量
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栙 这种平面运动可以看成两个谐振动的复合,一个是径向r的振动,一个是角度毴的转动.而这两种运

动的周期(频率)是可约的(commensurable),因而运动轨道呈闭合曲线.参阅 H.Goldstein,ClassicalMe灢
chanics,2nded.,p.94.Addison灢Wesley,Reading,Mass.,1980.



H =H0+H曚 (8灡5灡1)

H曚代表微扰.设体系原来处于H0 的某简并能级,在计及微扰H曚之后,能级的简并

度、能级位置和能量本征态将如何变化?
显然,如

踿 H曚与
踿 H0 具有完全相同的对称性

踿踿踿踿踿踿踿踿踿踿
,则加上 H曚后,原来能级可能发生

踿踿踿踿踿踿
移动
踿踿

,但能级简并度不会变化
踿踿踿踿踿踿踿踿踿踿

,即原来简并能级不会分裂
踿踿踿踿踿踿踿踿踿踿踿.但每条能级移动的大小

不尽相同,因此有可能出现能级发生交叉.但如果
踿踿踿 H曚的对称性低于

踿踿踿踿踿踿 H0,即体系的
踿踿踿踿

对称性被
踿踿踿踿

(部分或全部
踿踿踿踿踿

)破坏
踿踿

,则能级的简并可能被解除
踿踿踿踿踿踿踿踿踿踿踿

(部分或全部
踿踿踿踿踿

).下面举两个

简单的例子.
例1暋设粒子处于一般中心力场

踿踿踿踿踿踿
中,H0=p2/2毺+V(r),具有空间旋转(SO3)不变性,能级

Enrl
具有简并度2l+1.设 H曚=-Dl2(D>0,常数),则 H=H0+H曚仍具有SO3 对称性.能级Enrl

不会分裂,但将发生移动,Enrl曻Enrl-Dl(l+1)淈2.例如,无限深球方势阱(见卷I,6灡2节)中粒子

的最低的几条能级Enrl
依次为0s、0p、0d、1s、0f、1p、….当受到微扰 H曚=-Dl2 的作用后,尽管

每条能级都不分裂,它们将下移 殼E=-Dl(l+1)淈2,其中s能级(l=0)不移动,l曎0能级都会

下移,l越大的能级下降越厉害.当D 足够大时,0d能级就可能下降到1p之下,即两条能级会发

生交叉.但l相同的能级下降的幅度相同,彼此不会交叉.

例2暋各向同性谐振子势V(r)= 1
2毺氊2r2 中的粒子,能级EN =(N+3/2)淈氊,N=2nr+l,

nr,l=0,1,2,….对于给定能级EN ,l可以取N,N-2,…,0或1(视N 为偶或奇而定).这种l简

并性是各向同性谐振子势的动力学对称性(SU3)高于SO3 对称性的表现(见9灡3节).能级简并

度fN =1
2

(N+1)(N+2),高于一般中心力场中能级的简并度(2l+1).因此,当加上 H曚=

-Dl2之后,SU3 对称性被破坏,l简并性即被解除
踿踿踿踿踿踿踿.如 N=2能级,l=2,0,包含0d和1s,是简并

的(l简并).当加上 H曚=-Dl2(D>0)之后,0d能级将下降6D淈2,而1s能级保持不动.因此,N

=2能级的l简并被解除,分裂成两条能级,即0d和1s.

下面用群论的语言做更深入的描述.设H0 的对称性群为G0,计及微扰H曚后,

H=H0+H曚的对称性群为G.分两种情况进行讨论.
(1)设G=G0,即H 与H0 具有相同的对称性

踿踿踿踿踿踿踿踿
,则与H0 完全一样,H 的各能级

上的诸简并态,都按照G0=G 的不可约表示变换,所以能级简并度不会发生改变,
即能级不会分裂,但可以移动.当然,在 H曚的影响下,H0 的不同能级的移动不一

定相同,并且随 H曚强度变化(对称性保持不变),移动的幅度也会变化.此时可能出

现下列情况:随
踿 H曚强度增大

踿踿踿踿
,H0 的某些能级可能交叉

踿踿踿踿踿踿踿踿踿.在发生交叉时,两能级将

出现简并,习惯上称之为“偶然简并暠.
但也可能出现如下情况:即某些能级不可能彼此交叉

踿踿踿踿踿踿踿踿踿踿踿.下面稍仔细一点讨论此

问题.考虑两条能级E1 和E2,在微扰 H曚(对称性与 H0 相同)作用下发生移动.当

H曚=H1 时,它的两个本征值E1 和E2 已相当靠近,相应的本征方程为

(H0+H1)氉1 =E1氉1

(H0+H1)氉2 =E2氉2

(8灡5灡2)
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设
踿氉1 和

踿氉2 分别按照
踿踿踿踿G0 的彼此等价的不可约表示变换

踿踿踿踿踿踿踿踿踿踿踿踿踿.现在继续让 H曚变化一个

小量v(对称性保持不变,设v为实),即 H曚=H1+v,此时能量本征方程变为

(H0+H1+v)氉=E氉 (8灡5灡3)
令

氉=c1氉1+c2氉2 (8灡5灡4)
代入式(8灡5灡3),利用氉1 和氉2 的正交归一性,得

E1c1+v11c1+v12c2 =Ec1

v21c1+E2c2+v22c2 =Ec2

(8灡5灡5)

此齐次方程有非平庸解的条件为

E1+v11-E v12

v21 E2+v22-E
=0 (8灡5灡6)

解得

E=E暲 =1
2

(E2+v22+E1+v11)

暲 [(E2+v22)-(E1+v11)]2+4v12
2 (8灡5灡7)

相应的波函数分别为

氉+=cos毴
2氉1-sin毴

2氉2

氉-=sin毴
2氉1+cos毴

2氉2

(8灡5灡8)

式中毴由下式确定:

tan毴= v12

(E2+v22)-(E1+v11)
(8灡5灡9)

如要求E1 和E2 发生交叉,就要求出现重根,即E+ =E- ,这要求

E1+v11-E2-v22 =0,暋v12 =0 (8灡5灡10)
这对v=H曚-H1 是一个很苛刻的要求.一般v只含有一个可调节的参数

踿踿踿踿踿踿踿踿踿踿踿
(强度参

数),很难使式(8灡5灡10)的两个条件都得到满足,因此能级不会发生交叉
踿踿踿踿踿踿踿踿

,如图8灡5
(a)所示.但如氉1 与氉2 按照G0 的不等价

踿踿踿
的两个不可约表示变换,由于H曚与H0 对

称性相同,v12=0恒成立,此时两能级发生交叉是可能的
踿踿踿踿踿踿踿踿踿踿踿

,如图8灡5(b).(参阅,卷
I,11灡3节.)

例如,暋对于上面例1的情况,如两条能级Enrl
和En曚rl曚

的角动量相同(l曚=l),
则两条能级不会交叉,而当l曚曎l(转动群的不可约表示Dl 与Dl曚不等价)两条能级

就可能发生交叉.
(2)设H曚的对称性低于

踿踿踿踿踿踿H0,即对称性群G 是G0 的子群,G灱G0.我们知道,一
踿

个群的不可约表示
踿踿踿踿踿踿踿踿

,也是它的子群的表示
踿踿踿踿踿踿踿踿踿

,但往往是可约的
踿踿踿踿踿踿踿.这样,在计及微扰 H曚

的影响之后,原来属于 H0 的某能级的诸简并态所张开的G0 的不可约表示空间,
往往会约化为群G 的若干个不可约表示空间,即原来的 H0 的某一条能级会分裂
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图8灡5

成若干条,而属于分裂后的每一条能级的简并态(简并未完全解除情况),各自张开

群G 的一个不可约表示空间.群G 的这些不可约表示空间的维数之和,与原来 H0

某一条能级的简并度相同.
例如,设 H0 的某一条能级E(0)为f重简并,简并态氉

(0)
1 ,氉

(0)
2 ,…,氉

(0)
f 张开G0

的一个f维不可约表示D(g),g暿G0.在计及微扰 H曚后,H=H0+H曚的对称性群

为G 灱G0.此 时 能 级 E(0) 将 分 裂 成 E1,E2,…,简 并 度 分 别 为 f1,f2,…

暺
i
fi =( )f ,属于Ei 能级的简并态氄

(i)
毩 (毩=1,2,…,fi)张开G 的一个fi 维不可

约表示d(i)(见表8灡3).这些不可约表示的直和 暺
i
d(i),与原来G0 的不可约表示

最多差一个相似变化

暺
i
d(i)(g)=U-1D(g)U,暋g暿G

表8灡3

H0(对称性群G0) H=H0+H曚(对称性群G灱G0)

能级E(0),简并度f暋E(0)暋
暋E

汅

3暋,氄(3)
毩 ,毩=1,2,…,f3;d(3)

暋E2暋,氄(2)
毩 ,毩=1,2,…,f2;d(2)

暋E1暋,氄(1)
毩 ,毩=1,2,…,f1;d(1

{ )

简并态氉(0)
1 ,氉(0)

2 ,…,氉(0)
f 暺

i
fi =f

张开G0 的f维不可约表示D(g) 暺
i
d(i)

(g)=U-1D(g)U暋(g暿G)
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在简并微扰论的计算中
踿踿踿踿踿踿踿踿踿

,表象的选择是重要的
踿踿踿踿踿踿踿踿踿.其原则是:(a)尽可能使 H曚接

近于对角化;(b)计算H曚的矩阵元应较为简便.为做到这点,需要对H曚的对称性进

行仔细的分析(见例3).
应该指出,从对称性的考虑,只能得知简并度解除的上限.如果微扰论的计算

进行到足够高级的修正,原则上能级简并的解除可以达到此上限.但通常微扰论计

算往往只做到一级或二级修正,此时并不一定能使简并度的解除达到此上限.此
外,单纯从对称性的考虑

踿踿踿踿踿踿踿踿踿
,只能得知能级最多可以分裂成几条
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,但不可能提供分裂
踿踿踿踿踿踿踿踿

的细致的信息
踿踿踿踿踿踿

(分裂的大小
踿踿踿踿踿

,分裂后能级的确切位置
踿踿踿踿踿踿踿踿踿踿

等),这些只能从体系的动力学

性质给出.

例3暋正常Zeeman效应(磁场B沿z轴方向,不计及电子自旋)

H0=p2

2毺
+V(r) H=H0+eB

2毺c
lz

对称性群G0=SO3 G=SO2(绕z轴的旋转群)

能级Enl,(2l+1)重简并 Enlm =Enl+eB
2毺c

m淈,简并解除

简并态选为 量子态仍为氉nlm

氉nlm (m=l,l-1,…,-l)

按SO3 的(2l+1)维不可约表示Dl
m曚,m(毩,毬,毭)变换,

作为其子群SO2 的表示时是可约化的.

按SO2 的不可约表示(一维)e-im毩变换,

Dl(毩,0,0)=

e-il毩

e-i(l-1)毩

烑

eil

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

毩

即群SO2 的(2l+1)个不可约(一维)表示的直和.这里由于群SO2 的Enl空间的基矢氉nlm 选择

得恰当[即已选之为群 SO2 的惟一的无穷小算符 l
暷

z=-i淈 灥
灥毩

(亦即其 Casimir算子)的本征

态],当转动局限于绕z轴的旋转(SO2)时,Dl(毩,0,0)不必再经过幺正变换就已经是对角矩

阵了.
在Zeeman效应中,空间反射对称性保持不变,所以宇称仍为守恒量.
例4暋Stark效应(外电场E沿z轴方向).
考虑碱金属原子,其价电子在屏蔽 Coulomb场V(r)中运动.能级Enl的(2l+1)个简并态

(取为氉nlm )按对称性群 O3 的不可约表示Dl 变换.当沿z轴方向加上电场E时,微扰 H曚=eEz.
此时普遍的空间旋转不变性和反射不变性已不复存在,宇称不再是守恒量.但绕z轴的旋转不

变性仍然保存.此外,对于含z轴在内的平面的镜像反射(氁v,即氁yz,氁zx)也具有不变性.对称性

群记为C曓v,是一个非 Abel群.它有两个一维表示(记为A1 和A2)和无穷多个二维不可约表示

(记为Em,m=1,2,3,…),如表8灡4所示.试问,体系的能级将如何分裂? 为此,可借助于群表示

理论中的特征标分析(见附录B灡4).
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在 O3 的不可约表示Dl 中,旋转毩角的一类元素C(毩)(不管转轴的指向)的特征标为

trDl(毩,0,0)=暺
l

m=-l
e-im毩 = 暺

l

m=l
2cosm毩+1= 暺

l

m=l
trEm(毩)+1

=
sin(l+1/2)毩

sin毩/2
, 毩曎0

2l+1, 毩=
{

0
(8灡5灡11)

这里trEm(毩)是元素C(毩)在C曓v的二维不可约表示Em 中的特征标,而1则可视为它在一维表

示A1 中的特征标.
现在考虑在 Dl 表示中氁v 的特征标.以对zy平面的镜像反射氁zy 为例.容易看出,氁zy =

Cx(毿)P,Cx(毿)是绕x轴旋转 毿角,P 为三维空间反射(r曻-r).在 Dl 表示中,氁zy 的特征

标为

trDl(氁zy)=trDl(Cx(毿)P)

=trDl(Cx(毿))·trDl(P)

=sin(l+1/2)毿
sin毿/1

·(-1)l =1

所以

trDl(氁v)=1 (8灡5灡12)

由表8灡4可看出,氁v 在C曓v的一维表示A1 中特征标为1,在二维表示Em 中特征标为0.综合上

述分析,可得出如下结论:群 O3 的不可约表示Dl,作为其子群C曓v的表示时,约化为

Dl(g)= 暺
l

m=1
Em(g)熭A1暋(g暿C曓v)

表8灡4

暋暋暋暋暋暋不可约表示

暋群元素
A1 A2

Em(毩)
m=1,2,3,…

Cz(毩)绕z轴旋转毩角 1 1
e-im毩 0
0 eim( )毩

氁v 1 -1
0 1

( )1 0

因此,能级Enl将分裂为l条2重简并能级和1条非简并能级.

8灡5灡2暋对称性在原子光谱分析中的应用,LS耦合

多电子原子是一个很复杂的体系.多电子体系的 Hamilton量为

H = 暺
Z

i

p2
i

2毺
-Ze2

ri
+毼(ri)si·l[ ]i +暺

Z

i<j

e2

ri-rj
(8灡5灡13)

其中-Ze2/ri 代表原子核(荷电+Ze)对电子的吸引 Coulomb势能,毼(ri)si·li 表

示在中心力场中的电子感受到的自旋轨道耦合(spin灢orbitcoupling.),毼(ri)依赖
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于中心力场栙 .式(8灡5灡13)中方括号内各项均为单体算符,较容易处理.难以对付

的是电子之间的Coulomb作用e2/rij,它是一个二体算符.通常采用独立粒子模型

(即壳模型)和微扰论来近似处理.在此模型中,电子之间的二体相互作用被一个适

当的平均场Vc(ri)代替,Vc(ri)假设为一个中心力场.此时可以把 H 改写成

暋暋栙暋设电子在中心势V(r)中运动,则毼(r)= 1
2毺2c2

1
r

dV
dr

(参见11灡4灡3节).

H = 暺
Z

i=1

p2
i

2毺
-Ze2

ri
+Vc(ri[ ])+VSL +Vres (8灡5灡14)

其中

VSL = 暺
Z

i=1
毼(ri)si·li暋暋 (8灡5灡15)

Vres = 暺
Z

j曎i

e2

rij
-暺

Z

i=1
Vc(ri) (8灡5灡16)

Vres可以视为电子之间的剩余相互作用(residualinteraction).在独立粒子模型中,
把Vres忽略掉,Hamilton量取为

H0 = 暺
Z

i=1

p2
i

2毺
-Ze2

ri
+Vc(ri)+毼(ri)si·l[ ]i (8灡5灡17)

它是单体算符,其本征函数可表示成各单电子波函数的乘积(并计及交换反对称).
在更精确的计算中才把Vres(作为微扰)的影响考虑进去.

在原子中,自旋轨道耦合作用比较微弱,其强度与核电荷Z 有关,随Z 增大而

加强,只在重原子中才比较重要.对于轻原子或中等原子,VSL烆Vres.因此,可以先

考虑Vres的影响,然后再考虑VSL的影响.
在忽略VSL的情况下,考虑到[Vres,S]=0,[Vres,L]=0,S是诸电子的自旋之

和,L是诸电子轨道角动量之和,即S、L和J=L+S均为守恒量.考虑到微扰Vres

与自旋无关,在进行微扰计算时,选择以 (H0,L2,S2,Lz,Sz)的 共 同 本 征 态

毩LSMLMS暤为基矢的表象是方便的,此即LS耦合方案
踿踿踿踿.毩是为确定原子状态所需

的其他量子数,当某一LS能级出现多次的情况,就需要用毩去区分它们.若在给

定电子组态(configuration)情况下,某个LS只出现一次,则毩是不必要的.在LS
耦合方案中,对于LSMLMS 量子数来说,Vres已对角化,即

暣毩曚L曚S曚M曚LM曚S Vres 毩LSMLMS暤=毮L曚L毮S曚S毮M曚LML毮M曚SMSV毩曚毩(LS)(8灡5灡18)
在不需其他量子数毩的情况下,Vres的对角化已经解决.此时只需考虑Vres的对角

元的贡献.考虑到电子之间剩余相互作用为排斥力,它对不同LS 能级的贡献大

小,有一个 Hund法则:在给定电子组态
踿踿踿踿踿踿踿

(未满壳中电子数
踿踿踿踿踿踿踿曑踿

半满壳
踿踿踿

)的情况下
踿踿踿踿

,最
踿

低能级的
踿踿踿踿S取最大的可能值

踿踿踿踿踿踿踿
,而
踿L则取在此

踿踿踿踿S值下允许的最大值
踿踿踿踿踿踿踿踿.
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[注]Hund法则的定性说明
踿踿踿踿踿踿踿

Hund法则是从原子光谱分析中总结出来的经验规则.从对称性可给予定性的解释.由于电
踿踿踿

子相互作用为
踿踿踿踿踿踿Coulomb排斥力

踿踿踿
,空间波函数反对称度越大的状态越稳定
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.根据 Fermi子多体系

波函数的反对称要求,相应的自旋波函数的交换对称性越大的状态就越稳定.为此,我们研究多

电子体系的自旋波函数的交换对称性.
令PS

ij表示(i,j)两个电子的自旋交换算符,S(i,j)=s(i)+s(j)表示两个电子自旋之和.容

易证明(取淈=1,参见卷栺,p.305,式(9灡4灡21))

PS
ij =S2(i,j)-1=

+1, 作用于3重态上

-1,{ 作用于单态上

对于由k个电子组成的体系,总自旋S= 暺
i
s(i)

S2 = 暺
i
s(i( ))2

= 暺
i
s(i)2 +2暺

i<j
s(i)·s(j)

利用

S2(i,j)=s(i)2 +s(j)2 +2s(i)·s(j)暋暋暋暋

2s(i)·s(j)=S2(i,j)-s(i)2 -s(j)2 = (PS
ij +1)-3/2=PS

ij -1/2
得

S2 =暺
k

i=1

3
4 +暺

k

i<j
PS

ij - 1
2暺

k

i<j

=3
4k+暺

k

i<j
PS

ij - 1
4k(k-1)= 暺

k

i<j
PS

ij +k- 1
4k2

令

PS = 暺
k

i<j
PS

ij

表征k个电子体系的自旋态的交换对称性的程度,

PS =S2 + 1
4k2 -k

其本征值为

S(S+1)+ 1
4k2 -k

S的最大值为k/2(所有电子自旋取向相同),此时PS 本征值为1
2k(k-1),相当于所有PS

ij=1,

此时自旋态的交换对称性最大,因而最稳定.
对于给定的S,如有几个L值都是允许时,则L较大的空间态下,电子相距较远,库仑斥力

较小,因而较稳定.

在计及VSL后,L与S 分别不再为守恒量,但可证明L2、S2 和J=L+S仍为守

恒量,即LS仍保持为好量子数.因此只需在具有一定的能量(H0+Vres)的本征值

和LS的子空间[记为E(毩LS)]中把 H=H0+Vres+VSL对角化.可以证明(注),在
此子空间中,VSL可以换为一个等效算符A(S·L),A 为不依赖于磁量子数的常

量,即
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暣毩LSM曚LM曚S VSL 毩LSMLMS暤=A暣毩LSM曚LM曚S S·L毩LSMLMS暤
(8灡5灡19)

为便于处理VSL,可采用耦合表象,因为在子空间E(毩LS)的表象 毩LSMLMS暤中
VSL是非对角的,在换到耦合表象 毩LSJM暤中则是对角化的.毩LSJM暤是(H0+
Vres,L2,S2,J2,Jz)的共同本征态.此时,

暣毩LSJ曚M曚VSL 毩LSJM暤=A暣毩LSJ曚M曚S·L毩LSJM暤

=A
2

暣毩LSJ曚M曚J2-L2-S2 毩LSJM暤

=A
2淈2[J(J+1)-L(L+1)-S(S+1)]毮JJ曚毮MM曚 (8灡5灡20)

这样,VSL使(毩LS)标记的能级分裂成若干条,每一条用一个J 值标记,简并度为

2J+1.J的可能取值为

J= L-S ,L-S +1,…,(L+S) (8灡5灡21)

[注]

VSL是单体算符[见式(8灡5灡15)],毩LSMLMS暤是已反对称化的态,所以

暣毩LSM曚LM曚S VSL 毩LSMLMS暤=Z暣毩LSM曚LM曚S 毼(r)s·l毩LSMLMS暤
考虑到l、s、L、S都是转动下的一阶张量,按照 Wigner灢Eckart定理

暣毩LSM曚LM曚S 毼(r)s毺l毻 毩LSMLMS暤=a暣毩LSM曚LM曚S S毺L毻 毩LSMLMS暤
其中a不依赖于磁量子数,只是约化矩阵元之比.因此

暣毩LSM曚LM曚S 毼(r)s·l毩LSMLMS暤=a暣毩LSM曚LM曚S S·L毩LSMLMS暤

所以

暣毩LSM曚LM曚S VSL 毩LSMLMS暤=A暣毩LSM曚LM曚S S·L毩LSMLMS暤
式中A=Za,与磁量子数无关.

例暋12C低激发能级的分析.
按独立粒子模型,12C 原子的最低的电子组态为(1s)2(2s)2(2p)2,包含两个满壳(1s)2,

(2s)2 和一个未满壳(2p)2.对于原子的低激发态,满壳中的电子的激发可视为冻结,只需考虑未

满壳中价电子的激发.对于12C,就只考虑(2p)2 组态所包含的可能状态.计及电子的自旋自由度

和Pauli原理,在此组态下共有15个态 æ

è
ç

ö

ø
÷

6
2[ ]=15 .如按LS耦合方案对量子态进行分类,则这

些态用L=0,1,2和S=0,1来标记.计及Pauli原理后,允许的态为
3P,1S,1D

这些态的总数也恰好是15=(3暳3+1暳1+1暳5).在此情况下,每一个LS只出现一次,附加量

子数毩是不必要的.计及微扰作用后,能级将分裂为3条.3条能级的相对位置取决于相互作用

的对角元Vres(3P),Vres(1S)及Vres(1D).按 照 Hund 法 则,3P(S=1,L=1)能 级 最 低,而
1D(S=0,L=2)低于1S(S=0,L=0)能级,见图8灡6.

图8灡6(b)中的3P能级(S=1,L=1),在VSL 作用下就分裂成3条,J=0、1、2,即3P0、3P1 和
3P2.因A>0,由式(8灡5灡20)可看出,J较大的能级位置较高[图8灡6(c)].对于S=0(J=L)或
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图8灡6暋12C最低组态的能级分析.
(a)H0 的最低组态[(1s)]2(2s)2 是满壳,冻结;(b)计及电子相互作用V 后的能级(H0+Vres);

(c)再计及自旋轨道耦合后的能级(H0+Vres+VSL)

L=0(J=S情况),VSL无贡献,能级不移动.图8灡6中的1S和1D能级就属于S=0情况.

磁场对原子光谱的影响,Land湪g因子

当加上外磁场后,一般说来,原子总角动量J不再是守恒量.但对于均匀外磁

场B(沿z轴方向),原子与外磁场作用可表示为

W =eB
2毺c

(Lz+2Sz)=eB
2毺c

(Jz+Sz) (8灡5灡22)

此时Jz 仍保持为守恒量.以下分两种情况讨论:

1)外磁场很强(W烅VSL)
此时可忽略VSL,只考虑外磁场的影响,因此只需在子空间E(毩LS)中把W 对

角化.此时选用 毩LSMLMS暤表象是方便的,因为在此表象中W 已对角化

暣毩LSM曚L、M曚S W 毩LSMLMS暤=毺BB(ML +2MS)毮M曚LML毮M曚SMS
(8灡5灡23)

式中毺B=e淈/2毺c是Bohr磁子.于是原来能级E毩LS分裂为

E毩LS 曻E毩LSMLMS =E毩LS +毺BB(ML +2MS)暋暋暋暋 (8灡5灡24)

ML =L,L-1,…,-L,暋MS =S,S-1,…,-S
由于能量依赖于(ML+2MS)这个特殊的组合,能级有时还可能出现简并.

2)外磁场B 很弱(W烆VSL)
此时应先考虑VSL影响,然后把W 作为微扰处理,因此采用耦合表象是方便

的.此时可局限在给定能级(毩LSJ)的各简并态张开的2J+1维子空间E(毩LSJ)中
把W 对角化.考虑到J+S 和J 均为转动下的一阶张量,在此子空间中,按照

Wigner灢Eckart定理(见7灡3灡2节,8灡3灡3节)
暣毩LSJM曚 (J+S)毩LSJM暤=g暣毩LSJM曚J毩LSJM暤 (8灡5灡25)

式中Land湪g因子,不依赖于磁量子数,是约化矩阵元之比.事实上,在此子空间

中,J+S与gJ 是彼此等效的算符.为计算g因子,可分别计算(J+S)·J和gJ·J
的对角元.
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暋暋暋暋 暣(J+S)·J暤= 暣J2+S·J暤= J2+1
2

(J2+S2-L2)

=淈2

2L[3J(J+1)+S(S+1)-L(L+1)]

g暣J·J暤=gJ(J+1)淈2

由此得出

g=1+ 1
2J(J+1)[J(J+1)+S(S+1)-L(L+1)] (8灡5灡26)

利用以上结果,可计算的矩阵元

暣毩LSJM曚 W 毩LSJM暤=eB
2毺c

暣毩LSJM曚 (Jz+Sz)毩LSJM暤

=eB
2毺c

g暣毩LSJM曚 Jz 毩LSJM暤

=eB
2毺c

gM淈毮M曚M =Mg毺BB毮M曚M (8灡5灡27)

这样,在弱磁场B 的影响之下,原来(2J+1)重简并的能级E毩LSJ 就均匀分裂为

(2J+1)条能级,简并完全解除,

E毩LSJ 曻E毩LSJM =E毩LSJ +Mg毺BB (8灡5灡28)

M =J,J-1,…,-J
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第9章暋氢原子与谐振子的动力学对称性

9灡1暋中心力场中经典粒子的运动,轨道闭合性与守恒量

经典力学中,在一个中心力场V(r)中运动的粒子,除能量守恒之外,轨道角动

量L=r暳p也是守恒量,因为

d
dtL =r暳dp

dt+dr
dt暳p=r暳dp

dt

=-r暳

殼

V(r)=-r暳r
r

dV
dr =0 (9灡1灡1)

在物理上,这很容易理解.因为作用力的方向指向力心,粒子所受力矩为0,因而角

动量守恒.此外,由于

L·r=L·p=0 (9灡1灡2)

图9灡1

a为半长轴,b为半短轴,c= a2-b2为焦距,偏

心率为e=c/a,p=b2/a.P 为近日点(periheli灢

on),A 为远日点(aphelion).近日距r近 = p
1+e

,远

日距r远 = p
1-e.r近 +r远 =2a=2p/(1-e2),

暋暋暋 a= p
1-e2或p=a(1-e2).

经典粒子的运动必为一个平面运动
踿踿踿踿

,轨道平面的法线方向即
踿踿踿踿踿踿踿踿踿踿L 的方向

踿踿踿.以上这些

特点是体系的空间旋转不变性(SO3 对称性)的表现.但应指出,在一般的中心力场
踿踿踿踿踿踿踿踿

V(r)中的粒子的轨道
踿踿踿踿踿踿踿

,并不一定能保证是一条闭合的曲线
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

9灡1灡1暋氢原子轨道的闭合性,Runge灢Lenz矢量

在万有引力场中的粒子,或在Coulomb场中的带电粒子(如氢原子),势场

V(r)=-毷
r

(9灡1灡3)

按经典力学分析(见本节附录1),当粒子

能量E<0时(束缚态),它的运动轨道为

椭圆(图9灡1).设椭圆的半长轴和半短轴

的长度分别为a 和b,偏心率e=c/a=

a2-b2/a,则粒子能量

E=-毷
2a

(9灡1灡4)

只依赖于长轴的长度.但角动量平方

L2 =毺毷a(1-e2) (9灡1灡5)
(毺为约化质量)则与半长轴长度a和偏

心率e均有关.能量相同而角动量不同的

粒子轨道的偏心率不同.偏心率越小,则
角动量越大.特别是,圆轨道(e=0)的角
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动量最大.根据能量和角动量的大小
踿踿踿踿踿踿踿踿踿

,即可确定椭圆轨道的形状
踿踿踿踿踿踿踿踿踿踿踿.再根据角动量的

踿踿踿踿踿踿踿
指向
踿踿

,即可确定椭圆轨道平面的法线方向
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.所有这些都表明万有引力场或 Cou灢

lomb场是一种特殊的中心力场.更仔细的分析发现,除了能量E 和轨道角动量L
之外,还有另外的守恒量

踿踿踿踿踿踿踿踿
,即Runge灢Lenz矢量栙

R= 1
毺毷

p暳L-r
r

(9灡1灡6)

可以证明(见本节附录2)

d
dtR =0 (9灡1灡7)

从R的定义式(9灡1灡6)可明显看出

R·L=0 (9灡1灡8)
即R是在轨道平面内的一个守恒量

踿踿踿踿踿踿踿踿踿踿踿踿.在远(近)日点处(p·r=0),R 的方向就是长
踿踿踿踿踿踿

轴方向
踿踿踿.考虑到R为守恒量,所以椭圆长轴方向在运动过程中保持不变

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.还可以证

明(见本节附录2)

R2 =R·R=2H
毺毷2L2+1 (9灡1灡9)

式中

H =p2

2毺
-毷

r
(9灡1灡10)

是体系的 Hamilton量.所以R 的大小也是运动常数,并与能量和角动量平方之积

有关.按式(9灡1灡4)、(9灡1灡5)、(9灡1灡9),可得出

R2 =e2 (9灡1灡11)

R的大小
踿踿踿

,即椭圆的偏心率
踿踿踿踿踿踿踿

(R方向即长轴方向).
Coulomb场(或万有引力场)表现出的这些特点,反映它具有比一般中心力场

更高的对称性栚(见9灡2灡1节).

9灡1灡2暋各向同性谐振子轨道的闭合性

经典力学中,各向同性谐振子势

V(r)= 1
2Kr2 = 1

2毺氊2r2,暋氊= K/毺 (9灡1灡12)
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栙

栚

C.Runge,Vektoranalysis,Vol.1,p.70.Hirzel,Leipzig,1919;W.Lenz,Z.Phys.24(1924)197.
据史料调查,早在18世纪末 Laplace已发现了这一守恒量,见P.S.Laplace,Trait湨deM湨caniqueC湨leste,

Vol.1Villars,Paris,1799.关于有关史料,有兴趣的读者可参阅:H.Goldstein,Am.J.Phys.43(1975)

735;44(1976)1123.
W.Pauli,Z.Phys.36(1926)336灢363;英译文见SourcesofQuantum Mechanics,ed.B.L.van

derWaerden(Dover,NewYork,1967),Onthehydrogenspectrumfromthestandingpointofthenewquan灢
tummechanics,p.387~415.Pauli首先用代数方法,得出了氢原子的能谱.



图9灡2

中粒子的轨道,一般是椭圆.设椭圆的半长

轴为a,半短轴为b(图9灡2).简单分析即可

证明,谐振子的能量E 和角动量平方L2 分

别为栙

E= K
2

(a2+b2) (9灡1灡13)

L2 =毺Ka2b2 (9灡1灡14)
根据E 和L2 可以把椭圆轨道的形状参量

a和b确定下来,再根据角动量L 的方向,
即可确定轨道的法线方向.

与Coulomb场的不同点在于:在 Cou灢
lomb场情况下,力心O 不在椭圆轨道的中心而在椭圆长轴上的一个焦点.长轴和

短轴的地位是不等当的,远日点(perihelion)和近日点(aphelion)都在长轴上,长轴

的方向(RungeLenz矢量的方向)和偏心率是守恒的,能量只依赖于长轴的长度.
而对于三维各向同性谐振子,力心O 即椭圆轨道的中心.远日点在长轴上,近日点

在短轴上,长轴与短轴的地位是相当的.能量既依赖于a2,也依赖于b2.
考虑到谐振子 Hamilton量(取自然单位,毺=氊=淈=1)在相空间中的旋转不

踿踿踿踿踿踿踿踿
变性
踿踿

[H=(p2+r2)/2],对于各向同性谐振子,x、y、z轴的地位完全等当
踿踿踿踿踿踿踿踿

,因此,除
了角动量的三个分量

Lz =xpy -ypx,暋Lx =ypz-zpy,暋Ly =zpx -xpz (9灡1灡15)
之外,容易看出(采用自然单位)

暋暋 Hx = 1
2

(x2+p2
x),暋 Hy = 1

2
(y2+p2

y),暋 Hz = 1
2

(z2+p2
z) (9灡1灡16)

暋暋暋Qxy =xy+pxpy,暋 Qyz =yz+pypz,暋 Qzx =zx+pzpx (9灡1灡17)
都是守恒量(但注意,它们彼此并不完全独立,详见下节).

下面来讨论这些守恒量如何保证了粒子轨道的闭合性.首先,由于角动量守

恒,就保证了轨道必然在一个平面内,例如取为xy平面(见图9灡2).下面考虑在此

平面中的各向同性谐振子的运动.考虑守恒量
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栙 谐振子势可以分离变量,在x、y、z轴三个方向的运动都是简谐运动.两个彼此垂直的简谐运动,当
振动频率之比为有理数时,合成的运动轨道即有名的 Lissajour图形.各向同性谐振子的轨道就是最简单的

Lissajour图形,即椭圆.参阅 K.R.Symon,Mechanics,3rd.ed.3~10节.Reading,Massachusetts,Addi灢

son灢Wesley,1971.经典谐振子的平面运动可分解成两个一维谐振子,一个能量为 1
2Ka2,另一个为 1

2Kb2,

总能量为E=K
2

(a2+b2).由于角动量为守恒量,不妨在远日点A 处来分析其角动量的大小.设粒子在点A

的速度为v0,则E= 1
2Ka2+ 1

2毺v2
0= 1

2Ka2+ 1
2Kb2,所以v2

0=Kb2/毺,而角动量值为毺v0a,因而L2=

毺2v2
0a2=毺Ka2b2.



Qxy =xy+pxpy暋暋暋暋暋暋暋

Q1 =Hx -Hy = 1
2

(x2-y2)+1
2

(p2
x -p2

y)

在远日点A 处

x=acos毭,暋y=asin毭
px =-bsin毭,暋py =bcos毭

因此,守恒量表示为

Qxy = 1
2

(a2-b2)sin2毭

Q1 = 1
2

(a2-b2)cos2毭 (9灡1灡18)

因而

tan2毭=Qxy/Q1 (9灡1灡19)

Q2
xy +Q2

1 = 1
4

(a2-b2)2 (9灡1灡20)

由式(9灡1灡13)和(9灡1灡20)可得椭圆偏心率

曍(a2-b2)/(a2+b2)暋暋暋暋暋暋暋暋暋

= Q2
xy+Q2

1/(Hx+Hy)= Q2
xy+Q2

1/E (9灡1灡21)
椭圆轨道的长轴(以及短轴)在平面中的指向(由毭刻画)就由守恒量Qxy/Q1 确定,

而偏心率则由守恒量 (Q2
xy+Q2

1)/E 确定.

9灡1灡3暋独立守恒量的数目与轨道的闭合性

对于一个具有s个自由度的封闭的经典力学体系(孤立系,或 Hamilton量不

显含t),由于时间零点的选择是任意的,可以证明,体系的独立守恒量的最大数目
踿踿踿踿踿踿踿踿踿踿踿踿踿

是
踿

(2s-1)栙.独立的守恒量的数目曒s的体系,称为可积
踿踿

(integrable).反之,为不可

积(nonintegrable),体系的运动会出现混沌(chaos)现象栚.具有s+毇 个独立守恒

量的体系(0曑毇曑s-1),称为毇 重简并(毇灢folddegenerate).而毇=s-1的体系,
称为完全简并体系

踿踿踿踿踿踿
(completelydegeneratesystem).对于一个具有s个自由度的经

典体系的周期运动,原则上具有s个运动频率(或周期)氊i(i=1,2,…,s).对于
踿踿毇重

踿
简并的体系
踿踿踿踿踿

,这些频率之间存在
踿踿踿踿踿踿踿踿毇 个线性关系

踿踿踿踿踿
(系数都是整数
踿踿踿踿踿踿

栛)而对于完全简并
踿踿踿踿踿踿

的体系
踿踿踿

,就只剩下一个独立的频率
踿踿踿踿踿踿踿踿踿踿踿

,因而轨道是闭合的
踿踿踿踿踿踿踿踿.

·823·

栙

栚

栛

L.LandauandE.M.Lifshitz,Mechanics,3rd.ed.,曥6.北京,世界图书出版公司,1999.
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例1暋一般中心力场V(r)中的粒子(s=3),独立的守恒量有 H 和L=r暳p,即4个独立守

恒量(4=3+1),所以它是一重简并(毇=1)体系.它周期运动的独立频率有2个(例如,一个选为

角频率氊毴,一个选为径向振动频率氊r),但它们之间并不一定有什么关系.这就说明,为什么一

般中心力场中的经典粒子运动必为平面运动,但并不保证为闭合轨道.
例2暋氢原子

可以证明,除H 和L=r暳p外,还存在另一个矢量守恒量,即Runge灢Lenz矢量R(见本节附

录2).但这7个守恒量之间存在两个关系,即(用自然单位)

R·L=0,暋R·R=2HL2 +1
因此有5个独立的守恒量(s=3+毇,毇=2).所以氢原子是一个完全简并体系(s-1=2=毇),只

有一个独立的角频率,因而其周期运动的轨道是闭合的.
例3暋各向同性谐振子

前面已指出,三维各向同性谐振子有9个守恒量,即(Lx,Ly,Lz),(Hx,Hy,Hz),(Qxy,Qyz,

Qzx).但可以证明,它们之间有下列4个关系

L2
x +Q2

yz =4HyHz (9灡1灡22)

L2
y +Q2

zx =4HzHx (9灡1灡23)

L2
z +Q2

xy =4HxHy (9灡1灡24)

(QxyQyz +QyzQzx +QzxQxy)-(LzLx +LxLy +LyLz)=2(HxQyz +HyQzx +HzQxy)

(9灡1灡25)

因此,独立的守恒量只有5个,所以也是一个完全简并的体系(理由与例2同),只有一个独立的

周期运动频率,所以轨道是闭合的.

附录1暋Coulomb场中经典粒子的束缚态运动

质量为毺的粒子,在Coulomb场中运动,

V(r)=-毷/r (9灡1灡26)

考虑到角动量L和能量E 守恒,我们有(采用极坐标系)

毺r2毴
·
=L暋暋暋暋暋 (9灡1灡27)

1
2毺(r·2 +r2毴

·2)- 毷
r =E (9灡1灡28)

由此可以求出轨道方程r(毴).利用式(9灡1灡27),我们有

r· = dr
d毴毴

·
= L

毺r2
dr
d毴=- L

毺
d
d毴

1( )r
令

u= 1
r

则有

r· =- L
毺

du
d毴

(9灡1灡29)

利用式(9灡1灡27)和式(9灡1灡29),可将式(9灡1灡28)化为

du
d( )毴

2

=2毺E
L2 +2毺毷

L2u-u2 (9灡1灡30)
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开方后,积分,得

曇 du
2毺E
L2 +2毺毷

L2u-u2
=毴+常数 (9灡1灡31)

利用积分公式

曇 dx
a+bx+cx2

= -1
-c

arcsin
2cx+b

-
æ
è
ç

ö
ø
÷

q
(9灡1灡32)

式中c<0,q=4ac-b2<0.式(9灡1灡31)可化为[注意,arcsin(-x)=-arcsinx,arcsinx+arccosx
=毿/2]

arcsin u-毺毷/L2

毺2毷2/L4 +2毺E/L2
=毴+常数 暋暋暋

或

arccos u-毺毷/L2

毺2毷2/L4 +2毺E/L2
=-毴+毿/2+常数 (9灡1灡33)

取适当坐标极轴,使毿/2+常数=0,则有

cos毴= u-毺毷/L2

毺2毷2

L4 +2毺E
L2

暋暋暋暋 (9灡1灡34)

即

u=毺毷
L2 1+ 1+2EL2

毺毷2 cos
æ

è
ç

ö

ø
÷毴

所以

r= L2/毺毷

1+ 1+2EL2

毺毷2 cos毴
(9灡1灡35)

与二次曲线的标准式(极坐标)

r= p
1+ecos毴

(9灡1灡36)

比较(见图9灡1),对于E<0情况,偏心率为

e= 1+2EL2

毺毷2 <1 (9灡1灡37)

轨道为椭圆(束缚运动),而参数p为

p=L2/毺毷 (9灡1灡38)
因此轨道角动量平方为

L2 =毺毷p =毺毷a(1-e2) (9灡1灡39)

a是椭圆的半长轴.由式(9灡1灡37)与式(9灡1灡39)可解出粒子的能量

E=-毷/2a (9灡1灡40)

粒子运动的面积速度=1
2r2毴

·
=L/2毺为守恒量,椭圆面积为毿ab,所以运动周期为

T= 毿ab
L/2毺

=2毿毺ab/L

T2 =4毿2毺2a2b2

L2 =4毿2毺2a3p
L2 =4毿2毺a3

毷
(9灡1灡41)
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由此可得

T=2毿 毺
毷a3/2 (9灡1灡42)

频率毻=1/T 为

毻= 1
2毿

毷
毺
a-3/2 (9灡1灡43)

用能量(E =毷/2a)表示出来,则有

T=毿毷 毺/2 E -3/2 (9灡1灡44)

毻=1
毿毷 2/毺 E 3/2 (9灡1灡45)

附录2暋经典力学中的 Runge灢Lenz矢量

由r和p 构成的矢量,除L=r暳p之外,还有

M =L暳r,暋N =L暳p (9灡1灡46)

由此可得

毺
d
dtM =毺L暳 d

dtr=N暋暋暋暋暋

d
dtN =L暳 d

dtp =L暳 - r
r

dV
d( )r =- 1

r
dV
drM (9灡1灡47)

但

M = (r暳p)暳r=r2p-(r·p)r
而

毺r
d
dt

r
r =毺r

1
rr·

- r·

r2( )r =p- 1
r2 (r·p)r

(利用了rr
·
=r·r

·),所以

M =毺r3 d
dt

r
r 暋暋暋暋 (9灡1灡48)

代入式(9灡1灡47),得

d
dtN+毺r2dV

dr
d
dt

r
r =0

对于Coulomb势V(r)=-毷/r,有

d
dt N+毺毷

r( )r =0 (9灡1灡49)

而

R= 1
毺毷

(p暳L)- r
r =- 1

毺毷
(N+毺毷r/r)

所以

d
dtR =0 (9灡1灡50)

还有
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R2 = 1
毺毷

p暳L- r( )r
2

= 1
毺2毷2(p暳L)·(p暳L)- 2

毺毷
(p暳L)·r

r +1

= 1
毺2毷2p2L2 - 2

毺毷
L2

r +1= 2
毺毷2

p2

2毺
- 毷[ ]r L2 +1=2H

毺毷2L2 +1 (9灡1灡51)

*9灡1灡4暋Bertrand定理及其推广

前面我们从守恒量的分析,讨论了中心力场中经典粒子轨道的闭合性.特别是

氢原子中的电子和三维各向同性谐振子的轨道的闭合性.在经典力学中有一条著

名的定理———Bertrand定理栙:只当中心力为平方反比力或
踿踿踿踿踿踿踿踿踿踿踿踿 Hooke力时

踿踿
,粒子的所
踿踿踿踿

有束缚运动轨道才是闭合的
踿踿踿踿踿踿踿踿踿踿踿踿.(详细证明可参阅文献栚.)

仔细分析Bertrand定理的证明,可以看出,证明中做了如下假定,即中心势场
踿踿踿踿

V(r)取下列幂函数形式
踿踿踿踿踿踿踿踿

,V(r)曍r毻.结论是只当毻=-1(平方反比力)和毻=2
(Hooke力)时,所有束缚运动轨道才是闭合的.进一步分析发现栛,如果放弃

踿踿踿踿V(r)
形式取r的幂函数这个假定,则可能存在其他中心势

踿踿踿踿踿踿踿踿踿
,在角动量合适的情况下
踿踿踿踿踿踿踿踿踿踿

,也
踿

会出现一系列闭合轨道
踿踿踿踿踿踿踿踿踿踿.可以证明,对于屏蔽(screened)Coulomb势和屏蔽各向同

性谐振子势,就会出现这种情况.

1灡 屏蔽Coulomb势

对于屏蔽Coulomb势(采用自然单位,k=毺=1)

V(r)=-1
r -毸

r2暋(0<毸烆1) (9灡1灡52)

此时,轨道方程为[u=1/r,见式(9灡1灡30)]

d毴=-du/ 2E/L2+2u/L2-毩2u2 (9灡1灡53)
式中

毩= 1-2毸/L2暋(0曑毩曑1) (9灡1灡54)
式(9灡1灡53)积分,得

u= 1
r = 1

L2毩2 1+ 1+2EL2毩2cos毩(毴-毴0[ ]) (9灡1灡55)

毴0 为积分常数,而 1+2EL2毩2= 1+2E(L2-2毸)曒0.可以看出,一般情况下,轨
道是不闭合的,而是一系列进动的轨道(图9灡3给出一个例子),进动轨道介于近日
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图9灡3暋屏蔽Coulomb势中电子的进动轨道

取毸=0灡2,E=-0灡5,毩= 1
2 +0灡01暋2.

点圆(perihelioncircle)和远日点圆(aphelioncircle)之间,它们的半径分别为rp=

[1- 1-2毩2L2 E ]/2E 和ra=[1+ 1-2毩2L2 E ]/2E .利用

d
dtp =-

殼

V(r)=-(r+2毸)r/r4

可以证明,在近(远)日点处(r
·
=0)

d
dt

煄R =0,暋煄R= p暳L- 1+2毸æ

è
ç

ö

ø
÷

r
r[ ]r

(9灡1灡56)

矢量煄R 称为推广的Runge灢Lenz矢量,其指向与r相反,其大小为

煄R = 2(H-毸/r2)L2+(1+2毸/r)2 (9灡1灡57)
我们注意到,当毩为无理数时

踿踿踿踿
,粒子轨道
踿踿踿踿

[见(9灡1灡55)式]是不闭合的
踿踿踿踿踿.粒子从任何

一点出发,永远不能回到原来的位置.然而当毩= 1-2毸/L2为任一有理数时
踿踿踿踿踿踿

,粒
踿

子轨道就是闭合的
踿踿踿踿踿踿踿踿

,所以粒子有无穷多条闭合轨道
踿踿踿踿踿踿踿踿踿踿踿

(对应于无穷多个有理数毩,即
对应于适当的轨道角动量
踿踿踿踿踿踿踿踿踿踿踿L).图9灡4中给出了几个最简单的闭合轨道.在踿毩为有

踿踿
理数的情况下
踿踿踿踿踿踿

,粒子绕过力心若干圈以后将回到原来位置
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.表现为近

踿踿踿踿
(远
踿

)日矢量总
踿踿踿踿
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是指向空间某些特定方向
踿踿踿踿踿踿踿踿踿踿踿

,在运动过程中保持不变动
踿踿踿踿踿踿踿踿踿踿踿.它们的取向如下

毴a-毴0 = (2n+1)毿/毩
毴p-毴0 =2n毿/毩

暋n=0,1,2,… (9灡1灡58)

闭合轨道的几何性质只依赖于
踿踿踿踿踿踿踿踿踿踿踿踿踿毩(即角动量

踿踿踿踿L),但不依赖于粒子能量
踿踿踿踿踿踿踿踿踿E.但近

踿踿
(远
踿

)
日矢的长度依赖于
踿踿踿踿踿踿踿踿E.

图9灡4暋屏蔽Coulomb势中电子的闭合轨道(毸=0灡2,E=-0灡5)

(a)毩=1/2 L= 2
3 6( )毸 ;(b)毩=2/3 L= 3

5 10( )毸 ;

(c)毩=3/4 L= 4
7 14( )毸 ;(d)毩=4/5 L= 5

3 2( )毸 .

粒子平面运动轨道的闭合性,意味着粒子的径向运动频率氊r 与角向(旋转)运
动频率氊毴 是可约的(commensurable).可以证明,对于屏蔽Coulomb势(9灡1灡52)

氊r/氊毴 =毩 (9灡1灡59)
当毸=0时,毩=1,氊r/氊毴=1,就回到平常的 Coulomb引力势,煄R 就回到著名的

Runge灢Lenz矢量,R=p暳L-r/r.但必须注意,对于纯 Coulomb势,d
dtR=0在粒
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子的整个闭合轨道
踿踿踿踿踿踿

(椭圆)上都成立
踿踿踿踿.而对于屏蔽Coulomb势(毸曎0),d

dt
煄R=0只在

踿踿
近
踿

(远
踿

)日点处才成立
踿踿踿踿踿踿

,即近日矢和远日矢为守恒量
踿踿踿踿踿踿踿踿踿踿踿.它反映原来的纯 Coulomb势

的动力学对称性 O4 由于受到屏蔽而发生了破缺.

2灡 屏蔽各向同性谐振子势

对于屏蔽三维各向同性谐振子势

V(r)=r2-毸/r2暋(0曑毸烆1) (9灡1灡60)

图9灡5暋屏蔽三维各向同性谐振子势中粒子的闭合轨道(毸=0灡2,E=5)

(a)毩=1/2,L= 2
3 6( )毸 ;(b)毩=2/3,L= 3

5 10( )毸 ;

(c)毩=3/4,L= 4
7 14( )毸 ;(d)毩=4/5,L= 5

3 2( )毸 .

轨道方程为

d毴=-du/ 2E/L2-2/(L2u2)-毩2u2 (9灡1灡61)
毩= 1-2毸/L2

积分式(9灡1灡61),得

u2 = 1
r2 = 1

L2毩2 E+ E2-2L2毩2·cos2毩(毴-毴0[ ]) (9灡1灡62)

同样,一般情况下(毩为无理数),粒子轨道是不闭合的.而当毩为有理数时,轨道变

成闭合.最简单的几条闭合轨道,给于图9灡5中.闭合轨道的近日矢和远日矢的指
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向是

毴p-毴0 =n毿/毩

毴a-毴0 = n+æ

è
ç

ö

ø
÷

1
2 毿/毩

暋(n=0,1,2,…) (9灡1灡63)

还可以证明,对于屏蔽各向同性谐振子势

氊r/氊毴 =2毩 (9灡1灡64)

9灡2暋氢原子的动力学对称性

以下讨论氢原子(Coulomb场)的动力学对称性.首先,9灡2灡1节讨论二维氢原

子,其能谱可以借助于大家较熟悉的角动量代数(SO3 对称性)较简单地得出.然
后,9灡2灡2节讨论三维氢原子的SO4 对称性.在9灡2灡3节中,分析指出,中心力场的

经典粒子除能量和角动量之外,还存在另一种守恒量,它在一般情况下只在远(近)
日点守恒,并不能保证粒子轨道闭合.然后证明,当,而且仅当V(r)为纯 Coulomb
场或屏蔽Coulomb场的情况[9灡1节,式(9灡1灡52)]下,推广的 Runge灢Lenz矢量煄R
和角动量L,在给定能量本征值E<0的诸简并态张开的子空间中,构成一个封闭

的SO4Lie代数.9灡2灡4节讨论n维氢原子束缚态的SOn+1对称性.

9灡2灡1暋二维氢原子的O3 动力学对称性栙

二维类氢原子的 Hamilton量(在质心系中)表示为

H =p2

2毺
-毷

氀
(9灡2灡1)

毺为约化质量,毷=Ze2,氀=xi+yj,氀= x2+y2,p=pxi+pyj.
Runge灢Lenz矢量记为

R= 1
2毺毷

(p暳L-L暳p)-氀/氀 (9灡2灡2)

其中L=(xpy-ypx)k=Lzk 是轨道角动量,式(9灡2灡2)右边圆括号中的第二项是

为保证R为厄米算符而引进的.利用

p暳L+L暳p=2i淈p
式(9灡2灡2)可改写成

R= 1
毺毷

p暳L-i淈
毺毷

p-氀/氀 (9灡2灡3)

即
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Rx = 1
毺毷

pyLz-i淈
毺毷

px -x
氀

Ry =- 1
毺毷

pxLz-i淈
毺毷

py -y
氀

(9灡2灡4)

当淈曻0时,上两式右边第二项消失,R回到经典Runge灢Lenz矢量.容易证明

[Lz,H]=0,暋[R,H]=0 (9灡2灡5)
即除了L=Lzk 之外,R也是守恒量,并处于xy平面内(L·R=0).

经过仔细计算,可以证明

[Lz,Rx]=i淈Ry

[Lz,Ry]=-i淈Rx

[Rx,Ry]= -2H
毺毷

æ

è
ç

ö

ø
÷

2 i淈Lz

(9灡2灡6)

三个算符Rx、Ry、Lz 彼此的对易式中出现了另外的算符H,所以它们并不是封闭

的.但如局限于二维类氢原子的具有一定能量本征值
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿E(<0)的诸简并态张开的子

踿踿踿踿踿踿踿踿踿
空间
踿踿

中讨论问题,则 H 可代之为常数E(<0),三个算符就构成封闭的 Lie代数.
此时,可令

Ax = -毺毷2

2ERx,暋Ay = -毺毷2

2ERy,暋Az =Lz (9灡2灡7)

则

[A毩,A毬]=i淈毰毩毬毭A毭暋(毩,毬,毭=x,y,z) (9灡2灡8)
此即大家熟知的角动量的三个分量(SO3 群的三个无穷小算子)所满足的对易式.
所以二维类氢原子具有

踿踿踿踿踿踿踿踿SO3 动力学对称性
踿踿踿踿踿踿.

还可以证明

R2
x +R2

y =2H
毺毷2 L2

z +淈2
æ

è
ç

ö

ø
÷

4 +1 (9灡2灡9)

从而

A2 曉A2
x +A2

y +A2
z =-淈2

4-毺毷2

2E
(9灡2灡10)

按照角动量代数,A2 的本征值为

l(l+1)淈2,暋l=0,1,2,… (9灡2灡11)
(注意:因 Az=Lz 为轨道角动量,为保证其厄米性,l只能取非负整数

踿踿踿踿.)用式

(9灡2灡11)代入式(9灡2灡10),可知二维类氢原子的束缚态能量本征值只能取

E=El =-毺毷2

2淈2
1

(l+1/2)2 =-毺Z2e4

2淈2n2
2

(9灡2灡12)

n2 = (l+1/2)=1/2,3/2,5/2,…
与微分方程解法得出的能谱相同(见卷I,附录七).与三维氢原子能级的 Bohr
公式
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E=En =-毺Z2e4

2淈2n2,暋n=1,2,3,… (9灡2灡13)

相比,差别仅在于整数主量子数
踿踿踿踿踿踿n换成了半奇数量子数

踿踿踿踿踿踿n2.在大量子数极限下[n
烅1,n2(或l)烅1],两式趋于相同.这符合对应原理.在经典力学中,无论是三维或

二维氢原子,都是平面运动,对于束缚态(E<0),又都是椭圆轨道.
上述能级公式(9灡2灡12)还可如下导出.令

R暲=Rx 暲iRy暋暋暋暋暋 (9灡2灡14)
可以证明

[Lz,R暲]=暲淈R暲 (9灡2灡15)

R-R+= H
2毺毷2(2Lz+淈)2+1 (9灡2灡16)

可见R+ 与R- 分别相当于Lz 本征值的升与降算符.设对易守恒量完全集(H,Lz)
的共同本征态记为 Em暤,

H Em暤=E Em暤

Lz Em暤=m淈 Em暤
(9灡2灡17)

利用式(9灡2灡5)与式(9灡2灡15),可以证明

HR暲 Em暤=ER暲 Em暤

LzR暲 Em暤= (m暲1)淈R暲 Em暤
(9灡2灡18)

即R+ Em暤与R- Em暤仍为(H,Lz)的共同本征态,相应的 H 本征值仍为E,但
Lz 的本征值分别增、减淈.然而在给定能量本征值

踿踿踿踿踿踿踿踿E 之下
踿踿

,角动量不能无限增大
踿踿踿踿踿踿踿踿踿

(否则离心势能趋于曓,因而E曻曓,矛盾),即Lz 本征值必有一个上界
踿踿踿踿踿踿踿踿踿

,记为l(非
负整数).此时

R+ El暤=0 (9灡2灡19)
因而R-R+ El暤=0,利用式(9灡2灡16),得

E
2毺毷2(2l+1)2淈2+1=0 (9灡2灡20)

由此可立即得出能级公式(9灡2灡12).
由上述推导还可看出,对给定能级El,Lz 可以取(2l+1)个可能值.所以能级

踿踿
El 的简并度为

踿踿踿踿踿fl=(2l+1)=2n2=1,3,5,….这些简并态(未归一化)可表示为

(R-)k El暤,暋k=0,1,…,2l (9灡2灡21)
它们的宇称的奇偶性,视(l-k)的奇偶而定.同一能级的诸简并态中可以有不同宇

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
称
踿

,这和体系的动力学对称性有关
踿踿踿踿踿踿踿踿踿踿踿踿踿.对于二维氢原子,在空间反射P(x曻-x,

y曻-y)下,

PRP-1 =-R,暋PLzP-1 =Lz (9灡2灡22)
即守恒量

踿踿踿R为极矢量
踿踿踿踿

,而守恒量
踿踿踿踿Lz 为轴矢量

踿踿踿踿.这就可以理解为何同一条能级的诸

简并态中有的宇称为偶,而有的宇称为奇.
练习暋证明归一化的本征态 Em暤之间有下列递推关系:
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R暲 Em暤= 1
l+1/2

(l暲m+1)(l熀m)Em暲1暤 (9灡2灡23)

9灡2灡2暋三维氢原子的O4 动力学对称性栙

在量子力学中,三维氢原子的Runge灢Lenz矢量为

R= 1
2毺毷

(p暳L-L暳p)-r/r (9灡2灡24)

利用

L暳p+p暳L=2i淈p (9灡2灡25)

R可改写为

R= 1
毺毷

(p暳L-i淈p)-r/r (9灡2灡26)

当淈曻0时,上式将回到经典Runge灢Lenz矢量.可以证明(见本节附录1)
[L,H]=0,暋[R,H]=0 (9灡2灡27)

所以除轨道角动量L 之外,R 也是守恒量.人们熟知,L 的三个分量满足下列对

易式

[L毩,L毬]=i淈毰毩毬毭L毭,暋毩,毬,毭=x,y,z (9灡2灡28)
根据R的定义式(9灡2灡26),可以证明(见本节附录1)

[L毩,R毬]=i淈毰毩毬毭R毭

[R毩,R毬]=-2H
毺毷2i淈毰毩毬毭L毭

(9灡2灡29)

可见6个算符Lx、Ly、Lz、Rx、Ry、Rz 彼此之间的对易式并不封闭,因为式(9灡2灡29)
中出现了另外的算符H.但如局限于氢原子的某一能级E(<0)的诸简并态所张开

的子空间中,H 可代之为常数E(<0).此时可令

A= -毺毷2

2ER (9灡2灡30)

则式(9灡2灡29)可改写成

[L毩,A毬]=i淈毰毩毬毭A毭

[A毩,A毬]=i淈毰毩毬毭L毭

(9灡2灡31)

从式(9灡2灡28)和式(9灡2灡31)可看出,L与A 的6个分量构成一个封闭的Lie代数.
如令

(Lx,Ly,Lz)= (L23,L31,L12)=-(L32,L13,L21)
(Ax,Ay,Az)= (L14,L24,L34)=-(L41,L42,L43)

(9灡2灡32)

则式(9灡2灡28)与式(9灡2灡31)可概括为(淈=1)
[Lij,Lkl]=i(毮ikLjl -毮ilLjk -毮jkLil +毮jlLik) (9灡2灡33)
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这6个反对称张量算符Lij=-Lji(i,j=1,2,3,4)正好构成SO4 群的Lie代数,这
表明三维束缚态氢原子具有SO4 动力学对称性.

还可以证明(本节附录)

R2 =2H
毺毷2(L2+淈2)+1 (9灡2灡34)

因而

A2 =-(L2+淈2)-毺毷2

2E
(9灡2灡35)

考虑到R·L=A·L=0,上式可改写成

(L+A)2 =-毺毷2

2E -淈2 (9灡2灡36)

令

I= 1
2

(L+A),暋K= 1
2

(L-A) (9灡2灡37)

其逆表示式为

L= (I+K),暋A= (I-K) (9灡2灡38)
容易证明

I2 =K2

[I毩,K毬]=0
[I毩,I毬]=i淈毰毩毬毭I毭

[K毩,K毬]=i淈毰毩毬毭K毭 (9灡2灡39)
即I与K 对易,I和K 的分量各自构成群SO3 的一组闭合的Lie代数.I2、K2 的本

征值为

I2 曻I(I+1)淈2,暋K2 曻K(K+1)淈2 (9灡2灡40)

I,K =
0, 1, 2,…

1/2, 3/2, 5/2{ ,…
因此[见式(9灡2灡37)]

(L+A)2 =4I2 曻4I(I+1)淈2

代入式(9灡2灡36),得

-毺毷2

2E = (2I+1)2淈2

由此可得出

E=- 毺毷2

2淈2n2 =-毺Z2e4

2淈2n2

n=(2I+1)=1,2,3,…
(9灡2灡41)

此即著名的Bohr氢原子能级公式.
按式(9灡2灡38)和式(9灡2灡39),L 可以看成大小相等的两个角动量算符I 与K
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的相加,因此

l= I-K ,I-K +1,…,(I+K)

=0,1,2,…,2I
=0,1,2,…,(n-1) (9灡2灡42)

所以能级En 的简并度为

fn = 暺
n-1

l=0

(2l+1)=n2 (9灡2灡43)

从式(9灡2灡42)还可看出,属于En 能级的各简并态,可能是偶宇称态(l偶),也可能

是奇宇称态(l奇).这与体系存在两类守恒量有密切关系,即L 为轴矢量(空间反

射下不变),而R为极矢量(空间反射下改变正负号).

附录暋量子力学中的 Runge灢Lenz矢量

下面证明有关 Runge灢Lenz矢量的几个代数关系.
为此,先给出一些简单的对易式,它们很容易根据r和p 各分量的基本对易式推出.

[r,p2]=2i淈p暋暋暋暋暋 (9灡2灡44)

p·r,p2]=2i淈p2 (9灡2灡45)

r·p-p·r=3i淈 (9灡2灡46)

[r,p·r]= [r,r·p]=i淈r (9灡2灡47)

[p·r,p]= [r·p,p]=i淈p (9灡2灡48)

[p,r-1]=i淈r/r3,[p,r-3]=3i淈r/r5 (9灡2灡49)

[p·r,r-1]=i淈/r (9灡2灡50)

[p2,r-1]=i淈[r-3(r·p)+(p·r)r-3] (9灡2灡51)

[(p·r)p,r-1]=i淈[r-1p+(p·r)rr-3] (9灡2灡52)

p暳L=p2r+i淈p-(p·r)p (9灡2灡53)

证明式(9灡2灡51)、(9灡2灡52)时,用到了式(9灡2灡49).又如证明式(9灡2灡53),

p暳L=p暳(r暳p)=pxrpx +pyrpy +pzrpz -(p·r)p
=px(pxr+i淈i)+py(pyr+i淈j)+pz(pzr+i淈k)-(p·r)p

=p2r+i淈p-(p·r)p
以下分别证明:

(1)[R,H]=0
证明暋利用式(9灡2灡53),可将 Runge灢Lenz矢量表示为

R=1
毺毷

(p暳L-i淈p)-r/r= 1
毺毷

[p2r-(p·r)p]-r/r

所以

[R,r-1]= 1
毺毷

{[p2,r-1]r-[(p·r)p,r-1]}

而利用式(9灡2灡51)、式(9灡2灡52),得

[R,r-1]=i淈
毺毷

{r-3(r·p)r-r-1p} (9灡2灡54)
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另外,

[R,p2]= 1
毺毷

{p2[r,p2]-[(p·r),p2]p}- r
r

,p[ ]2

利用式(9灡2灡44)与式(9灡2灡45),上式的{…}=-r-1[r,p2]-[r-1,p2]r
利用式(9灡2灡51)与式(9灡2灡44)

=-r-12i淈p+i淈r-3(r·p)r+i淈(p·r)r-3r
利用式(9灡2灡46)

=i淈[-2r-1p+r-3(r·p)r+(r·p-3i淈)r-3r]

利用式(9灡2灡49)

=i淈[-2r-1p+r-3(r·p)r+r·(r-3p+3i淈rr-5)r-3i淈r-3r]

=2i淈[-r-1p+r-3(r·p)r] (9灡5灡55)
联合式(9灡2灡54)与式(9灡2灡55),得

[R,H]=0 (9灡2灡56)

(2)R暳R=-2i淈
毺毷2HL (9灡2灡57)

证明

毺2毷2R暳R= {p2r-(p·r)p-毺毷r/r}·{p2r-(p·r)p-毺毷r/r}

利用式(9灡2灡44)、式(9灡2灡48)

毺2毷2R暳R= {p2r-(p·r)p-毺毷r/r}·{rp2 -3i淈p-p(p·r)-毺毷r/r}

=-3i淈p2L-p2L(p·r)+(p·r)Lp2 -毺毷(p·r)Lr-1 +3i淈毺毷r-1L+毺毷r-1L(p·r)

L与标量对易

= {-3i淈p2 -[p2,p·r]-毺毷[p·r,r-1]+3i淈毺毷r-1}L
利用式(9灡2灡45)、式(9灡2灡50)

={-3i淈p2 +2i淈p2 -i淈毺毷r-1 +3i淈毺毷r-1}L

=-i淈(p2 -2毺毷r-1)L=-2i淈毺HL
所以

R暳R=-2i淈
毺毷2HL

(3)R2=2H
毺毷2(L2+淈2)+1

利用

(p暳L)·(p暳L)=p2L2 -(p·L)2 =p2L2暋暋暋暋暋暋暋 (9灡2灡58)
(p暳L)·p= (-L暳p+2i淈p)·p=2i淈p2 (9灡2灡59)

p·(p暳L)=0 (9灡2灡60)
(p暳L)·r= (-L暳p+2i淈p)·r=-(L暳p)·r+2i淈p·r=L2 +2i淈p·r
r·(p暳L)=L2 (9灡2灡61)

得

暋暋暋暋暋毺2毷2R2 =(p暳L-i淈p-毺毷r/r)·(p暳L-i淈p-毺毷r/r)

=p2L2+2淈2p2-毺毷(L2+2i淈p·r)r-1-淈2p2+i淈毺毷(p·r)r-1-毺毷r-1L2

暋+i淈毺毷r-1(r·p)+毺2毷2

=p2L2+淈2p2-2毺毷L2r-1-i淈毺毷[(p·r)r-1-r-1(r·p)]+毺2毷2
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利用式(9灡2灡46)

=p2L2+淈2p2-2毺毷L2r-1-i淈毺毷[(p·r)r-1-r-1(p·r)-3i淈r-1]+毺2毷2

利用式(9灡2灡50)

=p2L2+淈2p2-2毺毷L2r-1-2淈2毺毷r-1+毺2毷2

=(p2-2毺毷r-1)L2+淈2(p2-2毺毷r-1)+毺2毷2

=2毺H(L2+淈2)+毺2毷2

所以

R2 =2H
毺毷2(L2 +淈2)+1

*9灡2灡3暋屏蔽Coulomb场的动力学对称性栙

前面分析了二维和三维氢原子的动力学对称性,并用代数方法得出了它们的

能量本征值和本征态.在9灡1灡1节和9灡1灡2节中讨论了Runge灢Lenz矢量和轨道的

闭合性.在9灡1灡4节中的分析表明,在屏蔽Coulomb场中电子(例如碱金属原子中

的价电子),存在推广的Runge灢Lenz矢量煄R,在远(近)日点煄R 是守恒的.由此得出,
当角动量合适的情况,存在无穷多条闭合轨道.试问:此结论是否只对屏蔽 Cou灢
lomb场[见9灡1灡4节,式(9灡1灡52)]才成立? 分析表明栙 :

定理1暋对于任意中心力场V(r)中的经典粒子,除能量E 和角动量L=r暳p
为守恒量外,还存在一种新的守恒量

踿踿踿踿踿踿踿踿踿
煄R(取粒子质量毺=1)

煄R=p暳L-g(r)r
r

,暋g(r)=rdV
dr = dV

dlnr
(9灡2灡62)

在远
踿

(近
踿

)日点
踿踿

(r
·
踿=踿0)的

踿
煄踿R,即远

踿踿
(近
踿

)日矢
踿踿

,是守恒的
踿踿踿踿

,但这并不一定保证轨道是闭
踿踿踿踿踿踿踿踿踿踿踿踿

合的
踿踿.

证明暋按角动量守恒,d
dtL=0,可得

d
dt

(p暳L)=p
·
暳L

按 Newton定律p
·
=F(r)r

r
,F(r)=-dV

dr
,以及p=r

·,可得

d
dt

(p暳L)=F(r)r
r 暳(r暳r·)

再利用矢量代数恒等式a暳(b暳c)=(a·c)b-(a·b)c,以及r·r
·
=rr

·,得

d
dt

(p暳L)=F(r)
r

[(r·r·)r-r2r·]=-F(r)r2 r·

r -r·r
r[ ]2

=-F(r)r2 d
dt

ræ

è
ç

ö

ø
÷

r

在远(近)日点(r
·
=0),上式=d

dt
[-F(r)r2 r

r
],由此可得
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暋暋d煄R
dt =0,暋煄R= (p暳L)-g(r)r

r
,暋 式中g(r)=-rF(r)=rdV

dr
(9灡2灡63)

定理1得证.

对于屏蔽Coulomb场.V(r)=-1
r-毸

r2,

煄R=p暳L- 1+2毸æ

è
ç

ö

ø
÷

r
r
r

与9灡1灡4节,式(9灡1灡56)相同.
定理2暋当且仅当中心力

踿踿踿踿踿踿踿
场V(r)为纯

踿踿
,或屏蔽
踿踿踿Coulomb场

踿
的情况时,在给定

能量E<0的诸简并态张开的子空间中,煄R 与L 才构成一个封闭的SO4 李代数.
证明暋推广的Runge灢Lenz矢量的量子力学形式为(淈=1)

煄R= 1
2

(p暳L-L暳p)-g(r)r
r =p暳L-ip-g(r)r

r
(9灡2灡64)

首先,L的3个分量满足下列对易式

[L毩,L毬]=i毰毩毬毭L毭 (9灡2灡65)
其次,对于任意g(r)[即V(r)],可以证明(留作练习)

[L毩,煄R毬]=i毰毩毬毭
煄R毭 (9灡2灡66)

而煄R 各分量满足

煄R暳煄R=-2i 1
2p2-3g(r)+rg曚(r)

[ ]2 L (9灡2灡67)

对照式(9灡2灡57)或(9灡2灡29)相比,要求(毺=k=淈=1)
煄R暳煄R=-2iHL (9灡2灡68)

即要求

H =p2

2 -3g(r)+rg曚(r)
2

,暋g(r)=rdV
dr = dV

dlnr
(9灡2灡69)

考虑到 H=p2

2+V(r),所以要求1
2

[3g(r)+rg曚(r)]=-V(r),即

r2d2V
dr2 +4rdV

dr+2V =0 (9灡2灡70)

是Euler型微分方程,其解为

V(r)=C1
1
r +C2

1
r2 (9灡2灡71)

C1 与C2 为两个积分常数.为保证束缚态存在,要求C1<0.上式的解有两种情况:
(i)C2=0,V(r)为纯Coulomb势(吸引),煄R 回到Runge灢Lenz矢量R

煄R=R= 1
2

(p暳L-L暳p)-r
r

(9灡2灡72)

(ii)C2曎0,V(r)为屏蔽Coulomb势,(取C1=-1,C2=-毸)
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V(r)=-1
r -毸

r2暋(0<毸烆1) (9灡2灡73)

煄R 就是推广的Runge灢Lenz矢量[见9灡1灡4节,式(9灡1灡56)],

煄R= 1
2

(p暳L-L暳p)- 1+2毸æ

è
ç

ö

ø
÷

r
r
r

(9灡2灡74)

定理2证毕.
对于二维(xy平面)的任意中心势V(氀)(氀为极坐标),也总可以构造

煄R=p暳L-g(氀)氀/氀,暋g(氀)=氀
dV
d氀

(9灡2灡75)

在远(近)日点处(氀
·=0),d

dt
煄R=0.煄R 的量子形式为

煄R= 1
2

(p暳L-L暳p)-g(氀)氀/氀 (9灡2灡76)

类似可以证明:当,且仅当V(氀)为纯,或屏蔽Coulomb势时(参阅9灡2灡1节),
[Lz,煄Rx]=i煄Ry

[Lz,煄Ry]=-i煄Rx

[煄Rx,煄Ry]=-2iHLz (9灡2灡77)
即在给定束缚态能量E<0的诸简并态张开的子空间中,(Lz,煄Rx,煄Ry)才构成一个

封闭的SO3 李代数.

*9灡2灡4暋n维氢原子的On+1动力学对称性栙

按照上面关于二维和三维氢原子的讨论,可以想到,n维氢原子也具有比其几何对称性 On

更高的动力学对称性.下面证明,它具有 On+1动力学对称性.n维氢原子的 Hamilton量仍表

示为

H = 1
2毺

p2 - 毷
r

(9灡2灡78)

p2 = 暺
n

i=1
p2

i,r= 暺
n

i=1
x2[ ]i

1/2
.显然,它具有SOn 对称性,它的n(n-1)/2个无穷小算符可取为

lij =-lji =xipj-xjpi,暋i曎j=1,2,…,n (9灡2灡79)

它们满足下列对易式

[lij,H]=0暋暋暋暋暋暋暋 (9灡2灡80)

[lij,lkl]=i淈(毮ikljl -毮illjk -毮jklil +毮jllik) (9灡2灡81)

下面证明,n维氢原子存在一个n维矢量守恒量

Ri = 1
毺毷 暺

n

j=1
(j曎i)

pjlij -n-1
2 i淈p[ ]i -xi

r
(9灡2灡82)

暋暋暋暋暋i=1,2,…,n
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[R,H]=0 (9灡2灡83)

作为一个n维矢量,它与SOn 的无穷小算符满足下列对易式

[lij,Rk]=i淈(毮ikRj-毮jkRi) (9灡2灡84)

经过较繁的计算,可以证明R的各分量满足下列对易式

[Ri,Rj]=2i淈
毺毷2(-H)lij (9灡2灡85)

因此,一般说来lij和Rk 并不构成一个完备的Lie代数.但如局限于一定的束缚能级E(E<0)的
诸简并态张开的子空间中,(考虑到 H 与lij对易),式(9灡2灡85)可改写成

[Ri,Rj]=2i淈
毺毷2(-E)lij (9灡2灡86)

这样,我们可以定义一组算符

Lij =

lij, i曎j曑n

毺毷2

-2ERi, i曑n,j=n+1

- 毺毷2

-2ERj, j曑n,i=n+

ì

î

í

ï
ïï

ï
ïï 1

(9灡2灡87)

显然Lij=-Lji(i曎j=1,2,…,n+1),共有(n+1)n/2个独立的反对称算符,联合式(9灡2灡81)、
(9灡2灡84)、(9灡2灡86)和(9灡2灡87),可以得出

[Lij,Lkl]=i淈(毮ikLjl -毮ilLjk -毮jkLil +毮jlLik) (9灡2灡88)

这正是群SOn+1的(n+1)n/2个无穷小算符满足的对易式.这样,这(n+1)n/2个算符就构成了

SOn+1的Lie代数.再考虑到

[Lij,H]=0,暋i曎j=1,2,…,n+1 (9灡2灡89)

这就证明了处于束缚态的n维氢原子具有SOn+1动力学对称性.
下面计算n维氢原子的能级及其简并度.直接计算可以证明

R2 = 暺
n

i=1
R2

i = 1
毺毷22H l2 + n-1( )2

2

淈[ ]2 +1 (9灡2灡90)

式中l2 = 1
2 暺

n

i曎j=1
lijlij 是SOn 群的Casimir算子.由式(9灡2灡90)和式(9灡2灡87),n维氢原子的能量

E(E<0)可以表示为

E=- 毺毷2

2 L2 + n-1( )2
2

淈[ ]2

(9灡2灡91)

式中L2 = 1
2 暺

n+1

i曎j=1
LijLij 是SOn+1 群的Casimir算子.由式(9灡2灡91)可以看出,E只依赖于L2 的本

征值.因此,对于给定L2 本征值,而l2 本征值不同的能级是简并的,即n维氢原子的能级具有比

一般n维中心力场的能级更高的简并度.
为了求得L2 的本征值,可以求解n维氢原子的定态Schr昳dinger方程

殼

2+2毺毷
淈2

1
r +2毺E

淈( )2 氉(x)=0 (9灡2灡92)

采用n维球坐标系(本节附录2),波函数可分离变量

氉(x)=R(r)YJn-1…J1J0
(毴n-2,…,毴1,毴0)暋暋暋暋暋 (9灡2灡93)

0曑 J0 曑J1 曑 … 曑Jn-2暋(J0,J1,…,Jn-2 均为整数)
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YJn-2…J1J0
为n维空间的球谐函数,Jn-2为SOn 群的Casimir算子l2 相应的量子数:

l2YJn-2…J1J0 =Jn-2(Jn-2 +n-2)淈2YJn-2…J1J0
(9灡2灡94)

将式(9灡2灡93)代入方程(9灡2灡92),利用

殼

2的表达式(见本节附录2)及式(9灡2灡94),可得到径向

方程

1
rn-1

d
dr rn-1 d

dr( )R + 1
毬

1
rR-Jn-2(Jn-2 +n-2)

r2 R-毩2R=0 (9灡2灡95)

毬=2毺毷
淈2 ,暋毩2 =-2毺E

淈2 暋(E<0) (9灡2灡96)

考虑到解的渐近行为及束缚态边条件,可以令

R(r)=e-毩rg(r) (9灡2灡97)

可得g(r)满足下列方程:

r2g曞+[(n-1)-2毩r]rg曚-[Jn-2(Jn-2 +n-2)-毬r+毩(n-1)r]g=0
(9灡2灡98)

再考虑到解在r曻0的行为及波函数的统计诠释的要求,对于物理上允许的解,可以令

g(r)=rJn-2f(r) (9灡2灡99)
可得出f(r)满足的方程

r2f曞+[(n+2Jn-2 -1)-2毩r]rf曚+[毬-(n+2Jn-2 -1)毩]rf =0 (9灡2灡100)

令x=2毩r,得

x d2

dx2f+[(2Jn-2 +n-1)-x]df
dx+ 毬

2毩- Jn-2 +n-1( )[ ]2 f=0 (9灡2灡101)

此即合流超几何方程.它的在x曋0邻域的解析解为合流超几何函数,一般为无穷级数.但考虑

到束缚态边条件,要求解必须中断为多项式.这就要求

毬/2毩- Jn-2 +n-1( )2 =nr,暋nr =0,1,2,… (9灡2灡102)

从而给出

毩= 毬/2

nr+Jn-2 +n-1
2

(9灡2灡103)

联合式(9灡2灡96),得出n维氢原子的能级公式

E=EK =-毺毷2

2淈2· 1

K+n-1( )2
2 (9灡2灡104)

K =nr+Jn-2 =0,1,2,…

与式(9灡2灡91)比较,可得出L2 的本征值

L2 =K(K+n-1)淈2,暋K =0,1,2,… (9灡2灡105)

与能量本征值EK 相应的径向波函数为R(r)曍e-毩rrJn-2f(r),

f曍L(毭)
nr

(毼),暋毼=2毩r,暋毭=2Jn-2 +n-2 (9灡2灡106)

是Laguerre多项式.
由式(9灡2灡104)可以看出,EK 只依赖于量子数K(主量子数).K 相同,但Jn-2不同的能级是

简并的.对于给定K=nr+Jn-2,有

nr =0,暋暋 1,…,暋暋K
Jn-2 =K,暋K-1,…,暋0
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Jk =0,1,…,Jk+1,暋k=1,2,…,(n-3)

J0 =-J1,-J1 +1,…,+J1

(9灡2灡107)

因此能级简并度为

fK = 暺
K

Jn-2=0
暺
Jn-2

Jn-3=0

…暺
J2

J1=0

(2J1 +1)= (2K+n-1)(K+n-2)!
K!(n-1)! (9灡2灡108)

不难验证,对于n=2,3情况,式(9灡2灡104)和式(9灡2灡108)给出的能级及其简并度的公式与

9灡2灡1节和9灡2灡2节相同.
本征函数的角度部分的表示式见本节附录2.可以证明,属于能级EK 的诸简并态中,具有

不同宇称.事实上,本征函数的宇称毿为

毿= (-1)Jn-2 (9灡2灡109)

对于给定K,Jn-2可以取K,K-1,…,1,0,所以两种宇称态都存在.这一事实与守恒量完全集中

有两种矢量有关,即角动量lij为“轴矢量暠,而R为“极矢量暠.

附录暋n维空间的球谐函数栙

引进n维空间球坐标(r,毴0,毴1,…,毴n-2)

x1 =rcos毴n-2

x2 =rsin毴n-2cos毴n-3

…

xn-1 =rsin毴n-2sin毴n-3…sin毴1cos毴0

xn =rsin毴n-2sin毴n-3…sin毴1sin毴0

(9灡2灡110)

其中0曑r<曓,0曑毴0曑2毿,0曑毴k曑毿,k曒1.
n维空间线段元ds可如下给出

ds2 =dr2 +r2d毴2
n-2 +r2sin2毴n-2d毴2

n-3 +…+r2sin2毴n-2sin2毴n-3…sin2毴1d毴2
0 (9灡2灡111)

n维空间的Laplace算符为

殼

2= 1
rn-1

灥
灥r rn-1 灥

灥( )r + 1
r2sinn-2毴n-2

灥
灥毴n-2

sinn-2毴n-2
灥

灥毴n-( )2

+…

+ 1
r2sin2毴n-2sin2毴n-3…sin2毴k+1sink毴k

· 灥
灥毴k

sink毴k
灥
灥毴( )k

+…

+ 1
r2sin2毴n-2sin2毴n-3…sin2毴1

灥2

灥毴2
0

(9灡2灡112)

n维各向同性势V(r)中粒子的Schr昳dinger方程

殼

2-2毺
淈2V(r)+2毺

淈2[ ]E 氉(x)=0 (9灡2灡113)

的解可以分离变量

氉(x)=R(r)毃(n-2)(毴n-2)…毃(k)(毴k)…毃(0)(毴0) (9灡2灡114)

从而可得出一系列方程

·843·
栙 Y.K.Qian&J.Y.Zeng,ScienceinChina(SeriesA)36(1993)395.



d2

d毴2
0
+毸( )0 毃(0)(毴0)=0

1
sin毴1

d
d毴1

sin毴1
d

d毴1
毃(1)(毴1( ))- 毸0

sin2毴1
毃(1)(毴1)+毸1毃(1)(毴1)=0

… …

1
sink毴k

d
d毴k

sink毴k
d
d毴k

毃(k)(毴k( ))- 毸k-1

sin2毴k
毃(k)(毴k)+毸k毃(k)(毴k)=0 (9灡2灡115)

… …

1
sinn-2毴n-2

d
d毴n-2

sin(n-2)毴n-2
d

d毴n-2
毃(n-2)(毴n-2[ ])- 毸n-3

sin2毴n-3
毃(n-2)(毴n-2)+毸n-2毃(n-2)(毴n-2)=0

1
rn-1

d
dr rn-1 d

dr( )R -2毺
淈2V(r)-毸n-2

r2 R+2毺E
淈2 R=0

与三维情况类似,角度部分可以先解出.对毴0 部分,物理上可接受的解为

毃(0)(毴0)=exp[iJ0毴0] (9灡2灡116)

毸0 =J2
0,暋暋J0 =0,暲1,暲2,…

对于毃(k)(毴k),k曒1,令cos毴k=zk,则

(1-z2
k)d2

dz2
k
毃(k)-(k+1)zk

d
dzk

毃(k)- 毸k-1

(1-z2
k)毃

(k)+毸k毃(k) =0 (9灡2灡117)

考虑毸k-1=0的情况.此时,要求解在zk=暲1处有界,可得出本征值

毸k =Jk(Jk +1),暋Jk =0,1,2,… (9灡2灡118)

相应的本征函数记为P
(k)
Jk (zk)(其中k曒1),有

P
(k)
Jk (zk)=T

(k-1)/2
Jk (zk) (9灡2灡119)

T毬
n(z)称为 Gegenbauer多项式栙.当k=1时,P

(1)
J1

(z1)=PJ1
(z1),即平常的Legendre多项式.

对于毸k-1曎0,考虑k=1.此时,毸0=J2
0,方程(9灡2灡117)即平常的连带(associated)Legendre

方程.它在zk=暲1处有界的解即为连带Legendre函数,记为

P
(1)J0
J1

(z1)=PJ0
J1

(z1) (9灡2灡120)

对于k>1,毸k-1已经由毃(k-1)(毴k-1)的本征方程解出,毸k-1=Jk-1(Jk-1 +k-1),Jk-1 =0,1,

2,….令

毃(k)(zk) = (1-z2
k)1

2Jk-1g(zk) (9灡2灡121)

代入式(9灡2灡17),得g(z)满足的方程

(1-z2)g曞-(2Jk-1 +k+1)zg曚+(Jk -Jk-1)(Jk +Jk-1 +k)g=0 (9灡2灡122)

其解仍为 Gegenbauer函数.要求毃(k)(zk)在zk=暲1处有界,则要求(Jk曒Jk-1)

Jk -Jk-1 =0,1,2,… (9灡2灡123)

相应的解g(z)为 Gegenbauer多项式,TJk-1+(k-1)/2
Jk-Jk-1

(z).而毃(k)(zk)可记为

P
(k)Jk-1
Jk (z)= (1-z2)1

2Jk-1TJk-1+(k-1)/2
Jk-Jk-1

(z) (9灡2灡124)

由 Gegenbauer多项式的正交归一关系
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曇
1

-1
dz(1-z2)毬T毬

n(z)T毬
m(z)=毮nm

2殻(n+2毬+1)
(2n+2毬+1)殻(n+1) (9灡2灡125)

可求出

曇
1

-1
dz(1-z2)(k-1)/2P

(k)Jk-1
Jk

(z)P
(k)Jk-1J曚k

(z)=毮JkJ曚k
2殻(Jk +Jk-1 +k)

(2Jk +k)殻(Jk -Jk-1 +1)

(9灡2灡126)
此式对k=1,J0<0也适用.

这样,n维空间中正交归一的球谐函数可表示为

YJn-2…J1J0
(毴n-2,…,毴1,毴0)=AJn-2…J1J0P

(n-2)Jn-3
Jn-2

(xn-2)…P
(1)J0
J1

(x1)exp[iJ0毴0]

(9灡2灡127)

曇(氊)
d毟(n)Y*

J曚n-2…J曚1J曚0
YJn-2…J1J0

=毮J曚n-2Jn-2
…毮J曚1J1毮J曚0J0

d毟(n) =sinn-2毴n-2…sink毴k…sin毴1d毴n-2…d毴k…d毴1d毴0 (9灡2灡128)
(氊):暋0曑毴0 曑2毿,暋0曑毴k 曑毿暋(k>1)

归一化常数为

AJn-2…J1J0 = 1
2(n-1)/2 毿 暻

n-2

k=1

(2Jk +k)殻(Jk -Jk-1 +1)
殻(Jk +Jk-1 +k[ ])

1/2
(9灡2灡129)

在空间反射P 下,xi曻-xi,即

毴0 曻毿+毴0,暋毴k 曻毿-毴k暋(k>1)

zk =cos毴k 曻-zk

(9灡2灡130)

利用 T毬
n(-z)=(-1)nT毬

n(z),可得

P
(k)Jk-1
Jk (-z)= (-1)Jk-Jk-1P

(k)Jk-1
Jk

(z) (9灡2灡131)

而

eiJ0(毿+毴0) = (-1)J0exp[iJ0毴0] (9灡2灡132)
所以

PYJn-2…J1J0
(毴n-2,…,毴1,毴0)=YJn-2…J1J0

(毿-毴n-2,…,毿-毴1,毿+毴0)

=(-1)Jn-2YJn-2…J1J0
(毴n-2,…,毴1,毴0) (9灡2灡133)

即宇称为(-1)Jn-2.

9灡3暋各向同性谐振子的动力学对称性

相对于氢原子,各向同性谐振子的Schr昳dinger方程的求解要简单一些.例
如,高维各向同性谐振子,可采用Cartesian坐标,化为若干个彼此独立的一维谐振

子.其根源来自高维各向同性谐振子的特殊的动力学对称性.因此下面先讨论高维

各向同性谐振子,然后分别讨论二维和三维各向同性谐振子.

9灡3灡1暋各向同性谐振子的幺正对称性

k维各向同性谐振子的 Hamilton量表示为(自然单位淈=m=氊=1)
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H = 暺
k

j=1
Hj = 1

2暺
k

j=1

(x2
j +p2

j) (9灡3灡1)

利用正则对易式

[xi,pj]=i毮ij,暋暋i,j=1,2,…,k (9灡3灡2)
可将 H 改写成

H =1
2暺

k

j=1

(xj-ipj)(xj+ipj)+k/2

=1
2暺

k

j=1

(xj+ipj)+ (xj+ipj)+k/2

=1
2暺

k

j=1
xj+ipj

2+k/2 (9灡3灡3)

因此,除了一个常数项k/2外,H 可视为k 维(复)空间的一个“矢量暠(xj+ipj)(j
=1,2,…,k)的模方.因此,在k维(复)空间的幺正变换 U(U+ =U-1)之下

xj+ipj 曻x曚j +ip曚j =U(xj+ipj)U-1 (9灡3灡4)
(x曚j +ip曚j)+ (x曚j +ip曚j)=(xj+ipj)+U+U(xj+ipj)

=(xj+ipj)+ (xj+ipj)
所以

H曚=UHU-1 =H
即

[U,H]=0 (9灡3灡5)
在 U变换下 H 具有不变性.这种幺正变换下的对称性,即k维各向同性谐振子的

动力学对称性,记为 Uk,是由 Hamilton量(9灡3灡1)的特点所决定的.
与一维谐振子的代数解法相似,引进升、降算符

a+
j = 1

2
(xj-ipj),暋aj =1

2
(xj+ipj) (9灡3灡6)

j=1,2,…,k
其逆表示式为

xj = 1
2
(a+

j +aj),暋pj = i
2
(a+

j -aj) (9灡3灡7)

容易证明

[ai,aj]=0,暋[a+
i ,a+

j ]=0
[ai,a+

j ]=毮ij,暋i,j=1,2,…,k (9灡3灡8)
与Bose子的产生和湮没算符的基本对易式相同.利用此对易式,可将 H 改写成

H = (N
暷

+k/2)

N
暷

= 暺
k

i=1
N
暷

i = 暺
k

i=1
a+

iai

(9灡3灡9)
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N
暷

i 与N
暷

为正定厄米算符,其本征值分别为ni =0,1,2,…,N = 暺
k

i=1
ni =0,1,

2,….能量本征值为

EN = N+kæ

è
ç

ö

ø
÷

2
(自然单位),暋N =0,1,2,… (9灡3灡10)

能谱均匀分布,但能级有简并
踿踿踿踿踿

(基态除外).本征态可表示成

n1n2…nk暤= n1暤n2暤… nk暤

= 1
n1!n2!…nk!

a+n11 a+n22 …a+nkk 0暤 (9灡3灡11)

N =n1+n2+…+nk =0,1,2,…
能级的简并度

fN =
N+k-1æ

è
ç

ö

ø
÷

N
=

(N+k-1)!
N!(k-1)! (9灡3灡12)

此乃各向同性谐振子的幺正对称性的表现.
利用产生与湮没算符,可以构成k2 个如下形式的算符:

a+
iaj,暋i,j=1,2,…,k (9灡3灡13)

显然它们能保证总粒子数N 不变,

[a+
iaj,N

暷

]= [a+
iaj,H]=0 (9灡3灡14)

可以证明

[a+
iaj,a+

kal]=毮jka+
ial-毮ila+

kaj (9灡3灡15)
这k2 个算符构成群 Uk 的Lie代数.可以把它们进行适当的线性组合,使之为厄米算

符,用作为体系一组合适的守恒量[如式(9灡3灡18)].当然,这种线性组合是不唯一的.

具体问题中如何选取它们,要根据问题的侧重而定.如 把N
暷

=暺
k

i=1
a+

iai (或H)除外,

则其余(k2-1)个线性独立的算符构成群SUk(U+ =U-1,detU=1)的Lie代数.

9灡3灡2暋二维各向同性谐振子

二维各向同性谐振子的 Hamilton量为(自然单位)

H = 1
2

(x2+y2+p2
x +p2

y)=N
暷

x +N
暷

y+1,暋N
暷

x =a+
xax,N

暷

y =a+
yay (9灡3灡16)

能量本征态可以选为守恒量完全集(N
暷

x,N
暷

y)的共同本征态 nxny暤

nxny暤= 1
nx!ny!

a+nxx a+nyy 0暤 (9灡3灡17)

nx,ny =0,1,2,…

它也是N
暷

=N
暷

x+N
暷

y(即能量 H)的本征态,能量本征值为

EN = (N+1)(自然单位),暋N =0,1,2,… (9灡3灡18)
能级简并度为fN=N+1.
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利用升、降算符,还可以构造下列守恒量

Lz =i(a+
yax -a+

xay)

Q1 = (a+
xax -a+

yay)

Qxy =a+
xay +a+

yax

(9灡3灡19)

nxny暤也是Q1=N
暷

x-N
暷

y 的本征态,本征值为(nx-ny).(Lz,Q1,Qxy)构成SU2 李

代数.如把 H(或N
暷

=N
暷

x+N
暷

y)包含进去,则构成 U2 李代数.
试做下列幺正变换,令

a暲= 1
2
(ax 熀iay),暋a+

暲= 1
2
(a+

x 暲ia+
y) (9灡3灡20)

它们满足与式(9灡3灡8)相似的对易关系

[ar,as]=0,暋[a+
r ,a+

s ]=0
[ar,a+

s ]=毮rs,暋r,s=+,-
(9灡3灡21)

定义

N
暷

r =a+
rar,r=+,-

其本征值为n+ ,n- =0,1,2,….利用这些算符,诸守恒量表示为

H = (N
暷

++N
暷

-+1)

Lz =N
暷

+-N
暷

-

Q1 = (a+
+a-+a+

-a+)

Qxy =-i(a+
+a--a+

-a+)

(9灡3灡22)

(N
暷

+ ,N
暷

- )的共同本征态记为 n+n- 暤

n+n-暤= 1
n+!n-!

(a+
+)n+ (a+

-)n- 0暤 (9灡3灡23)

它们也是(H,Lz)的共同本征态

H n+n-暤= (n++n-+1)n+n-暤

Lz n+n-暤= (n+-n-)n+n-暤
(9灡3灡24)

还可以证明(淈=1)
[Lz,a+

暲]=暲a+
暲

[Lz,a暲]=熀a暲

(9灡3灡25)

可见a+
+ 与a- 是Lz 本征值的升算符,而a+ 与a+

- 则为降算符.
在荷电粒子的量子场论中,可以把场看成二维各向同性谐振子场.a+

+ 产生一

个正电荷粒子,a- 消灭一个负电荷粒子,都使电荷增加1(自然单位).a+ 消灭一个

正电粒子,a+
- 产生一个负电荷粒子,都使电荷减少1.N

暷

+ 、N
暷

- 分别表示正、负荷电

粒子数算符,Lz=N+ -N- 则可表示电荷算符.二维各向同性谐振子场还可用来

描述晶格的振动,振动量子称为声子.
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9灡3灡3暋三维各向同性谐振子

三维各向同性谐振子的 Hamilton量表示为

H = (a+
xax +a+

yay +a+
zaz+3/2) (9灡3灡26)

能量本征值为(自然单位)

EN = (N+3/2) (9灡3灡27)

N =nx +ny +nz

nx,ny,nz,N =0,1,2,…
本征态记为

nxnynz暤= 1
nx!ny!nz!

(a+
x)nx(a+

y)ny(a+
z )nz 0暤 (9灡3灡28)

由此易于求出能级EN 的简并度为(注)

fN = 1
2

(N+1)(N+2) (9灡3灡29)

[注]群SU3 的不可约表示(毸毺)的维数是

f[(毸毺)]= 1
2

(毸+1)(毺+1)(毸+毺+2)

这里毸=f1-f2,毺=f2-f3,而[f1,f2,f3]是下列 Young图的标记

对称表示(毸毺)=(N0)的维数f[(N0)]=1
2

(N+1)(N+2),与EN 能级简并度相同.属于EN 能

级的诸简并态荷载SU3 的不可约(对称)表示(N0).

为了显示在转动下的变换性质,引进球张量算符是方便的.
令

a+
0 =a+

z ,暋a+
暲1 =熀 1

2
(a+

x 暲ia+
y) (9灡3灡30)

容易证明

[ar,a+
s ]=毮rs,暋[ar,as]= [a+

r ,a+
s ]=0

r,s=0,暲1
(9灡3灡31)

令

N
暷

r =a+
rar,r=0,暲1暋暋 (9灡3灡32)

其本征值为

nr =0,1,2,…,暋r=0,暲1 (9灡3灡33)
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Hamilton量可写成

H = (N
暷

0+N
暷

+1+N
暷

-1+3/2) (9灡3灡34)
本征值仍如式(9灡3灡27)所示,但N=n0+n+1+n-1,相应的本征态可记为

n0n+1n-1暤= 1
n0!n+1!n-1!

(a+
0)n0(a+

+1)n+1(a+
-1)n-1 0暤 (9灡3灡35)

可以证明,它是角动量的z分量Lz 的本征态.利用式(9灡3灡8)和(9灡3灡30)之逆,Lz

可表示成

Lz = (xpy -ypx)=-i(a+
xay -a+

yax)= (N
暷

+1-N
暷

-1) (9灡3灡36)
所以

Lz n0n+1n-1暤= (n+1-n-1)n0n+1n-1暤=m n0n+1n-1暤 (9灡3灡37)

m = (n+1-n-1)

但一般说来,n0n+1n-1暤不是守恒量L
暷

2 的本征态,而是L
暷

2 的若干本征态的叠加.
可以计算出.在给定N 下,L=N,N-2,N-4,…(曒0).

9灡4暋超对称量子力学方法

在卷I,10灡1节中,介绍了Schr昳dinger的一维谐振子的因式分解法和能量升、
降算符的概念栙.在20世纪80年代初,Witten在量子场论中为了把Fermi子场和

Bose子场联系起来,提出了超对称性概念栚.后来,Schr昳dinger的因式分解法和超

对称性概念被推广,用以处理一般的一维势阱V(x)中粒子的能量本征方程,形成

超对称量子力学(supersymmetricquantummechanics)方法栛.

9灡4灡1暋Schr昳dinger因式分解法的简要回顾

在介绍超对称量子力学方法之前,先简要回顾一下一维谐振子的Schr昳dinger
因式分解法.

考虑一维谐振子的能量本征方程(自然单位淈=氊=m=1),
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H氉= 1
2 - d2

dx2 +xæ

è
ç

ö

ø
÷

2
氉=E氉 (9灡4灡1)

引进算符

a= 1
2

d
dx+æ

è
ç

ö

ø
÷x ,暋a+= 1

2
- d

dx+æ

è
ç

ö

ø
÷x (9灡4灡2)

容易证明

aa+= 1
2 - d2

dx2 +x2+æ

è
ç

ö

ø
÷1 ,a+a= 1

2 - d2

dx2 +x2-æ

è
ç

ö

ø
÷1 (9灡4灡3)

所以

[a,a+]=1 (9灡4灡4)
而 Hamilton量可以因式分解为

H =a+a+1
2 =N

暷

+1
2

(9灡4灡5)

N
暷

=a+a=N
暷

+ 为正定厄米算符,可以证明其本征值为(卷I,10灡1节)

n=0,1,2,… (9灡4灡6)
因此能量本征值(自然单位淈氊)为

En = n+æ

è
ç

ö

ø
÷

1
2

,暋n=0,1,2,… (9灡4灡7)

相应的本征态氉n 简记为 n暤.利用算符a+ ,归一化的本征态 n暤可表示成

n暤= 1
n!

(a+)n 0暤 (9灡4灡8)

不难证明

a+ n暤= n+1n+1暤

an暤= nn-1暤
(9灡4灡9)

所以a+ 和a分别为能量升
踿踿踿

、降算符
踿踿踿

,它们把相邻的能量本征态联系起来
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

试分别考虑下列两个 Hamilton量的本征值和本征态之间的关系,

H-=a+a,暋H+=aa+ (9灡4灡10)

H-氉
(-)
n =E(-)

n 氉
(-)
n ,暋H+氉

(+)
n =E(+)

n 氉
(+)
n (9灡4灡11)

容易证明,H- 与 H+ 的本征值和本征态之间有下列关系(见图9灡6).
(1)除 H- 的基态能量E(-)

0 =0外,H- 与 H+ 的能谱完全相同,且

E(-)
n+1 =E(+)

n = (n+1) (9灡4灡12)
(2)

氉
(+)
n = 1

n+1
a氉

(-)
n+1= 1

E(-)
n+1

a氉
(-)
n+1 (9灡4灡13)

氉
(-)
n+1 = 1

n+1
a+氉

(+)
n = 1

E(+)
n

a+氉
(+)
n (9灡4灡14)
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图9灡6

9灡4灡2暋超对称量子力学方法,一维Schr昳dinger方程的因式分解

试把Schr昳dinger的谐振子因式分解法推广,用以研究一般的一维势阱
踿踿踿踿V(x)

中粒子能量的本征值问题
踿踿踿踿踿踿踿踿踿踿踿

,

H氉n(x)= -淈2

2m
d2

dx2 +V(x[ ])氉n(x)=En氉n(x) (9灡4灡15)

一维规则势阱中粒子的束缚能级是不简并的.基态波函数氉0(x)(束缚态),除两端

边界点以外,无节点
踿踿踿.设想氉0(x)满足下列势阱的能量本征方程,相应本征值为

踿踿踿踿0,

H-氉0(x)= -淈2

2m
d2

dx2 +V- (x[ ])氉0(x)=0 (9灡4灡16)

由上式可看出,

V- (x)= 淈2

2m
氉曞0(x)
氉0(x) (9灡4灡17)

所以,H- 可以写成

H-= 淈2

2m - d2

dx2 +氉曞0(x)
氉0(x[ ]) (9灡4灡18)

容易看出,如定义下列算符:

A = 淈
2m

d
dx-氉曚0

氉
æ

è
ç

ö

ø
÷

0
,暋A+= 淈

2m
- d

dx-氉曚0
氉

æ

è
ç

ö

ø
÷

0
(9灡4灡19)

则 H- 可以因式分解如下:

H-=A+A =-淈2

2m
d2

dx2 +V- (x) (9灡4灡20)
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由式(9灡4灡19),显然

A氉0 =0 (9灡4灡21)
考虑到A 与A+ 不对易,按式(9灡4灡19),可以构造如下的 Hamilton量

H+=AA+=-淈2

2m
d2

dx2 +V+ (x)

V+ (x)=-淈2

2m
氉曞0(x)
氉0(x)+淈2

m
氉曚0(x)2

氉0(x)2 (9灡4灡22)

试问:H+ 与 H- 的本征谱和本征态有什么关系?
设

H-氉
(-)
n =E(-)

n 氉
(-)
n ,暋H+氉

(+)
n =E(+)

n 氉
(+)
n (9灡4灡23)

可以看出

H+A氉
(-)
n =AA+A氉

(-)
n =AH-氉

(-)
n =E(-)

n A氉
(-)
n (9灡4灡24)

即A氉
(-)
n 是H + 的本征态,相应本征值为E(-)

n .换言之,如氉
(-)
n 是H - 的本征态(本

征值E(-)
n ),则A氉

(-)
n 为H + 的本征态,本征值仍为E(-)

n .
与此类似,

H-A+氉
(+)
n =A+AA+氉

(+)
n =A+ H+氉

(+)
n =E(+)

n A+氉
(+)
n (9灡4灡25)

即:如氉
(+)
n 为H + 本征态(本征值E(+)

n ),则 A+氉
(+)
n 为 H - 的本征态,本征值也

是E(+)
n .
利用式(9灡4灡21),可以看出,H-氉0=A+A氉0=0,即氉0 是 H- 的本征态,相应

本征值为0.所以可以把氉0 记为氉
(-)
0 ,而相应本征值E(-)

0 =0.注意,氉0 并非 H+ 的

本征态.因此按照以上分析可以看出,除
踿 H- 的最低能级

踿踿踿踿踿E(-)
0 =0之外

踿踿
,H+ 与

踿 H-

的能谱彼此一一对应
踿踿踿踿踿踿踿踿踿

,即

E(+)
n =E(-)

n+1,暋n=0,1,2,… (9灡4灡26)
式(9灡4灡24)中把n曻n+1,得

H+A氉
(-)
n+1 =E(-)

n+1A氉
(-)
n+1 =E(+)

n A氉
(-)
n+1

试与 H+氉
(+)
n =E(+)

n 氉
(+)
n 比较,考虑到一维势阱的束缚能级不简并,可知A氉

(-)
n+1曍

氉
(-)
n .考虑归一化条件后,得

氉
(+)
n = [E(-)

n+1]-1/2A氉
(-)
n+1 (9灡4灡27)

这与谐振子的关系式(9灡4灡13)相似.类似有

氉
(-)
n+1 = [E(+)

n ]-1/2A+氉
(+)
n (9灡4灡28)

这与谐振子的关系式(9灡4灡14)相似.
H+ 与 H- 的本征能谱和能态的关系如图9灡7所示.
图9灡7与图9灡6相比,有下列两点不同:
(1)图9灡6所示谐振子(以及 H- ,H+ )的能谱为均匀分布

踿踿踿踿.而图9灡7所示一

般一维势阱V(x)中(以及 H- 、H+ )的能谱分布一般是不均匀
踿踿踿.
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图9灡7

(2)图9灡6所示谐振子的升降算符a+ 与a,不仅把 H- 的能级E(-)
n+1与 H+ 的

相应能级E(+)
n 联系起来,而且把 H+ 或 H- 自身的相邻能级(En 与En暲1)联系起

来.而图9灡7所示移动算符
踿踿踿踿

(shiftoperators)A 与A+ ,则只涉及 H- 的能级E(-)
n+1与

H+ 的相应能级E(+)
n 之间的关系,而不涉及

踿踿踿 H- (或 H+ )本身的相邻能级之间的
踿踿踿踿踿踿踿踿踿踿

升
踿

、降
踿.

超势

定义

W(x)=- 淈
2m

氉曚0(x)
氉0(x) (9灡4灡29)

除了一个常数因子外,W(x)就是氉0(x)的对数微商.上式的解可表示成

氉0(x)=exp - 2m
淈曇

x

dxW(x
é

ë
êê

ù

û
úú) (9灡4灡30)

这里要求W(x)能保证氉0(x)平方可积.W(x)称为超势
踿踿

栙(superpotential).于是算

符A 与A+ 可以表示成
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栙 按W(x)的定义,可得

W曚(x)=- 淈
2m

氉曞0

氉0
-氉曚2

0

氉( )2
0

,暋W(x)2=-淈2

2m
氉曚2

0

氉2
0

所以

W(x)2- 淈
2m

W曚(x)=淈2

2m
氉曞0(x)
氉0(x)=V-(x)

这是超势W(x)满足的一阶非线性微分方程(Ricatti方程).



A = 淈
2m

d
dx+W(x),暋A+=- 淈

2m
d
dx+W(x) (9灡4灡31)

由此可得

A+A =-淈2

2m
d2

dx2 +W(x)2- 淈
2m

W曚(x)

AA+=-淈2

2m
d2

dx2 +W(x)2+ 淈
2m

W曚(x)
(9灡4灡32)

[A,A+]= 2淈
2m

W曚(x) (9灡4灡33)

而

H-=A+A =-淈2

2m
d2

dx2 +W(x)2- 淈
2m

W曚(x)

=-淈2

2m
d2

dx2 +V- (x) (9灡4灡34)

H+=AA+ =-淈2

2m
d2

dx2 +W(x)2+ 淈
2m

W曚(x)

=-淈2

2m
d2

dx2 +V+ (x) (9灡4灡35)

式中

V暲 (x)=W(x)2暲 淈
2m

W曚(x) (9灡4灡36)

显然

1
2

[V+ (x)+V- (x)]=W(x)2 (9灡4灡37)

1
2

[V+ (x)-V- (x)]= 淈
2m

W曚(x) (9灡4灡38)

把 H- 与 H+ 联合起来,写成超对称 Hamilton量形式

Hs =
H- 0
0 H

æ

è
ç

ö

ø
÷

+
=

A+A 0
0 AA

æ

è
ç

ö

ø
÷

+

= -淈2

2m
d2

dx2 +W(x)[ ]2 - 淈
2m

W曚(x)氁z (9灡4灡39)

氁z=
1 0æ

è
ç

ö

ø
÷

0 -1
是Pauli矩阵.

例暋无限深方势阱

V(x)=
0, 0<x<L
曓, x<0,x>{ L

(9灡4灡40)

能量本征函数与本征值为(卷I,3灡2灡1节)
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氉n(x)= 2
Lsin

(n+1)毿x
L

,暋0曑x曑L,暋n=0,1,2,… (9灡4灡41)

En =
(n+1)2毿2淈2

2mL2 = (n+1)2E0

基态能量E0=毿2淈2/2mL2.显然V- (x)=V(x)-E0,

E(-)
n =En -E0 =n(n+2)毿2h2

2mL2 (9灡4灡42)

氉
(-)
n (x)=氉n(x),暋n=0,1,2,…

利用氉0(x)= 2
Lsin毿x

L
,可求出

W(x)=- 淈
2m

氉曚0(x)
氉0(x)=- 淈

2m
毿
Lcot 毿x( )L 暋(0<x<L)

W曚(x)= 淈
2m

毿2

L2csc2 毿x( )L

A = 淈
2m

d
dx+W(x)= 淈

2m
d
dx- 毿

Lcot 毿x( )[ ]L

V+ (x)=W(x)2 + 淈
2m

W曚(x)=毿2淈2

mL2 cot2 毿x( )L +1/[ ]2 (9灡4灡43)

人们早已知道,无限深方势阱的能谱,除基态外,与毿2淈2

mL2cot2 毿x( )L
势阱的能谱相同(见本节附录

1).按上述超对称量子力学方法,利用算符A,从无限深方势阱的各激发态波函数可以构造出

V+ (x)势阱的各能量本征态

氉
(+)
n (x)曍 d

dx- 毿
Lcot毿x( )L sin

(n+2)毿x[ ]L
(9灡4灡44)

例如,最低的两个能量本征函数为

氉
(+)
0 (x)曍 d

dx- 毿
Lcot毿x( )L sin2毿x

L 曍sin2 毿x( )L

氉
(+)
1 (x)曍 d

dx- 毿
Lcot毿x( )L sin3毿x

L 曍sin毿x
Lsin2毿x

L

*9灡4灡3暋形状不变性

非相对论量子力学中,某些一维势阱的束缚态有解析解
踿踿踿踿.其内在原因何在? 这

些势阱有什么内在对称性? Gendenshtein对此作了深入的探讨,提出了“形状不
踿踿踿

变性
踿踿

暠(shapeinvariance)的概念栙.
定义暋设V暲 (x)满足下列条件

V+ (x,a0)=V- (x,a1)+R(a1) (9灡4灡45)
式中a0 代表一个

踿踿
(或一组

踿踿
)参数
踿踿

,a1=f(a0)是a0 的函数,R(a1)与踿x无关
踿踿

,称为余

式,则称势V暲 具有形状不变性.式(9灡4灡45)表明,V+ 与V- 的函数形式相似
踿踿踿踿踿踿

,只是
踿踿

参数不同
踿踿踿踿.
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具有形状不变性的势阱的束缚能级可如下求出.试构造以下 Hamilton量

系列:

H(s),暋暋s=0,1,2,… (9灡4灡46)
其中

H(0)=H-,H(1)=H+,…

H(s)=-淈2

2m
d2

dx2 +V- (x,as)+暺
s

k=1
R(ak) (9灡4灡47)

as =fs(a0)=f[f[…f(a0)]…]
(f函数运算s次)

即

a1 =f(a0),a2 =f(a1)=f(f(a0)),…

由此可以看出,H(s+1)和 H(s)有下列关系:

H(s+1)=-淈2

2m
d2

dx2 +V- (x,as+1)+暺
s+1

k=1
R(ak)

=-淈2

2m
d2

dx2 +V+ (x,as)+暺
s

k=1
R(ak) (9灡4灡48)

比较式(9灡4灡47)与式(9灡4灡48),可见从 H(s)曻H(s+1),只在于把V- (x,as)曻

V+ (x,as),而余式部分 暺
s

k=1
R(ak)(与x无关)完全相同.通常称 H(s+1)和 H(s)构成

超对称伴(supersymmetricpartner)Hamilton量.按9灡4灡2节的分析,除了
踿踿 H(s)的

踿
最低一条能级外
踿踿踿踿踿踿踿

,H(s)与
踿 H(s+踿1)的能谱完全相同

踿踿踿踿踿踿踿
[H(s)与V- (x,as)相应,H(s+1)与

V+ (x,as)相应,而余式部分相同,且与x无关].
现在来考虑 Hamilton量系列,H(n)曻H(n-1)曻…曻H(1)=H+ 曻H(0)=H- ,

其中

H(0)=H-=-淈2

2m
d2

dx2 +V- (x,a0)

H(1)=H+=-淈2

2m
d2

dx2 +V- (x,a1)+R(a1)

=-淈2

2m
d2

dx2 +V+ (x,a0) (9灡4灡49)

H(0)=H- 除了其最低能级E(-)
0 =0之外,激发能级与 H(1)=H+ 的能级完全相

同.从式(9灡4灡49)可以看出,H(1)的最低能级(如存在束缚态的话)为R(a1),而这

正是 H- 的第一激发能级所在.如此继续往上推,可看出 H(s)的最低能级(如存在

束缚态)为 暺
s

k=1
R(ak).由此可以得出V- (x,a0)势阱的第n激发能级(如存在束缚

态)与基态能级(取为0,E(-)
0 =0)之差为
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E(-)
n = 暺

n

k=1
R(ak) (9灡4灡50)

例暋讨论势阱V(x)=-V0sech2毬x(V0>0)的形状不变性.
势阱V(x)=-V0sech2毬x(见图9灡9)中的粒子能量本征态的解析解已找出(见本节附录2).

基态波函数为

氉0(x)曍 (sech毬x)s,暋s= 1
2 暋 8mV0

淈2毬2 +1-
æ

è
ç

ö

ø
÷1 (9灡4灡51)

按式(9灡4灡29),超势W(x)为

W(x)=- 淈
2m

[ln氉0(x)]曚=毩tanh毬x,暋毩= 淈毬s
2m

(9灡4灡52)

W曚(x)=毩毬sech2毬x
由此,以及式(9灡4灡36)

V暲 (x)=W(x)2 暲 淈
2m

W曚(x) (9灡4灡53)

可得

V- (x,毩)=毩2 -毩 毩+
淈毬
2

æ

è
ç

ö

ø
÷

m
sech2毬x

V+ (x,毩)=毩2 -毩 毩-
淈毬
2

æ

è
ç

ö

ø
÷

m
sech2毬x

(9灡4灡54)

由此可知

V- x,毩- 淈毬
2

æ
è
ç

ö
ø
÷

m = 毩- 淈毬
2

æ
è
ç

ö
ø
÷

m

2

- 毩- 淈毬
2

æ
è
ç

ö
ø
÷

m
毩sech2毬x

=V+ (x,毩)-毩2 + 毩- 淈毬
2

æ
è
ç

ö
ø
÷

m

2

即

V+ (x,毩)=V- x,毩-淈毬
2( )m +毩2 - 毩- 淈毬

2
æ
è
ç

ö
ø
÷

m

2
(9灡4灡55)

与式(9灡4灡45)比较,可知

a0 =毩,暋a1 =f(a0)=f(毩)= 毩- 淈毬
2

æ
è
ç

ö
ø
÷

m
R(a1)=a2

0 -a2
1

因而

as =fs(a0)=a- s淈毬
2m

,暋s=0,1,2,… (9灡4灡56)

由此可知,势阱V- (x,毩)=V- (x,a0)的第n激发能级为

E(-)
n =暺

n

k=1
R(ak)= 暺

n

k=1

(a2
k-1 -a2

k)=a2
0 -a2

n =毩2 - 毩- n淈毬
2

æ
è
ç

ö
ø
÷

m

2

=淈2毬2

2m
[s2 -(s-n)2]

=淈2毬2

2m
1
2

8mV0

淈2毬2 +1-[ ]1
2

2

- 1
2

8mV0

淈2毬2 +1- n+( )[ ]1
2{ }

2

(9灡4灡57)

显然E(-)
0 =0.上式与Schr昳dinger方程的解析解(见本节附录2)
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En =-淈2毬2

2m
1
2

8mV0

淈2毬2 +1- n+( )[ ]1
2

2

(9灡4灡58)

的(En-E0)的结果完全一致.

附录1暋V(x)=V0cot2(毿毲x)势阱的能谱栙

粒子的能量本征方程为

-淈2

2m
d2

dx2 +V0cot2毿毲( )x 氉(x)=E氉(x) (9灡4灡59)

令

氉(x)= (sin毿毲x)-2毸u(x) (9灡4灡60)

式中无量纲参数毸为

毸= 1
4 暋 8mV0

毿2淈2毲2 +1-
æ

è
ç

ö

ø
÷1 (9灡4灡61)

u(x)满足下列方程:

d2u
dx2 -4毿毲毸cot(毿毲x)du

dx+4毿2毲2(毻2 -毸2)u=0 (9灡4灡62)

式中

毻= m
2毿2淈2毲2(E+V0) (9灡4灡63)

为另一个无量纲参数.引进变量z=cot2(毿毲x),则式(9灡4灡62)化为超几何方程

z(1-z)d
2u

dz2 + 1
2 -(1-2毸)[ ]z du

dz+(毻2 -毸2)u=0 (9灡4灡64)

与超几何方程的标准式[见式(9灡4灡83)]比较,相应的参数为毩=-(毻+毸),毬=(毻-毸),毭=1/2.方

程(9灡4灡64)的一个解(偶函数)为

u1 =F(-毻-毸,毻-毸,1/2;z) (9灡4灡65)

它在z=0点(即x=1/2毲=L/2)取有限值.另一个解(奇函数)为

u2 = z F(-毻-毸+1/2,毻-毸+1/2,3/2;z) (9灡4灡66)

在z=0点趋于曓.
为便于利用束缚态边条件(在z=1,即x=0,L点),可利用下列公式:

F(毩,毬,毭;z)= (1-z)-毩F毩,毭-毬,毭;z
z-( )1

(9灡4灡67)

此时,u1 和u2 可以表示成

u1 = (1-z)毻+毸F -毻-毸,1
2 -毻+毸,1

2
;z
z-( )1 暋暋暋暋 (9灡4灡68a)

u2 = z (1-z)毻+毸-1/2F -毻-毸+1/2,1-毻+毸,3
2

;z
z-( )1

(9灡4灡68b)

为保证z曻1时波函数趋于0(束缚态),式(9灡4灡67)作为 z
z( )-1

的幂级数,必须中断为一个多项
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栙 附录1和附录2中的解析解,可参阅D.terHaar,ProblemsinQuantumMechanics,第15题和第14
题.关于超几何方程与超几何函数,可参阅王竹溪,郭敦仁,特殊函数概论.北京:科学出版社,1979.第4章.



式.对于(9灡4灡68a),就要求(-毻-毸)或(1/2-毻+毸)为0或负整数.但仔细分析表明,只有第二种

情况,即毻-毸-1/2=k=0,1,2,…时,所得波函数才满足束缚态条件.类似,对于(9灡4灡68b),要
求毻-毸-1=k=0,1,2,….概括起来,即要求

毻-毸=n/2,暋n=1,2,3,… (9灡4灡69)

即毻2=(毸+n/2)2,代入式(9灡4灡63),得

E=En = 毿2淈2

2mL2(n2 +4毸n+4毸2)-V0 (9灡4灡70)

再利用式(9灡4灡61),可知V0=(2毸2+毸)毿2淈2/mL2,因而

En = 毿2淈2

2mL2(n2 +4毸n-2毸),暋n=1,2,3,… (9灡4灡71)

这就是图9灡8所示势阱中粒子的能级.

图9灡8
V(x)=V0cot2(毿毲x)(L=1/毲,长

度自然单位,表征势阱宽度.)

按式(9灡4灡43),

V+ (x)=毿2淈2

mL2 cot2 毿x( )L +[ ]1
2 =V(x)+ 毿2淈2

2mL2

(9灡4灡72)

式中

V(x)=V0cot2 毿x( )L
,暋V0 =毿2淈2/mL2(9灡4灡73)

由式(9灡4灡61)和(9灡4灡73),可得

毸= 1
4

8mV0L2

毿2淈2 +1-[ ]1 =1/2 (9灡4灡74)

所以[利用式(9灡4灡71)]

E(+)
n =En + 毿2淈2

2mL2 = 毿2淈2

2mL2(n2 +4毸n-2毸+1)

=毿2淈2

2mL2n(n+2),暋n=1,2,3,… (9灡4灡75)

而式(9灡4灡42)给出

E(-)
n = 毿2淈2

2mL2n(n+2),n=0,1,2,… (9灡4灡76)

可见除E(-)
0 =0外,E(+)

n 与E(-)
n+1能级一一对应.

附录2暋V(x)=-V0sech2毬x势阱中粒子的束缚能级

势阱(V0>0)具有反射不变性,见图9灡9,粒子的能量本征方程为

-淈2

2m
d2

dx2 -V0sech2毬( )x 氉(x)=E氉(x) (9灡4灡77)

V0(阱深)为强度参数,毬-1为势阱特征长度.引进无量纲参数

毸= 1
4

8mV0

淈2毬2 +1-[ ]1 (9灡4灡78)

作函数变换,令

氉= (sech毬x)2毸u (9灡4灡79)

则
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图9灡9

d2u
dx2 -4毸毬tanh毬x

du
dx+4毬2(毸2 -毷2)u=0 (9灡4灡80)

式中毷= -mE/2淈2毬2(E<0),是与能量E有关的无量纲参数.作变量替换,令

z=-sh2毬x (9灡4灡81)

则式(9灡4灡80)化为超几何方程

z(1-z)d
2u

dz2 + 1
2 -(1-2毸)[ ]z du

dz-(毸2 -毷2)u=0 (9灡4灡82)

与超几何方程的标准形式

z(1-z)d
2u

dz2 +[毭-(毩+毬+1)z]du
dz-毩毬u=0 (9灡4灡83)

比较,相应参数为毩=毷-毸,毬=-(毷+毸),毭=1/2.方程(9灡4灡82)的两个线性独立解(在z=0点,

即x=0点解析)可取为

u1 =F(毩,毬,毭;z)=F(-毸+毷,-毸-毷,1/2;z) (9灡4灡84a)

u2 = z F(毩+1/2,毬+1/2,毭+1;z)

= z F(-毸+毷+1/2,-毸-毷+1/2,3/2;z) (9灡4灡84b)

它们分别给出偶宇称和奇宇称解.根据束缚态条件,式(9灡4灡84)中的无穷级数解必须中断为一

个多项式.对于(9灡4灡84a),要求毩(=-毸+毷)或毬(=-毸-毷)为非负整数.但分析可以发现,从后

一条件(毬=-毸-毷为非负整数)得出的波函数氉(x)在x曻暲曓处呈指数上升,不满足束缚态要

求.因此,只能要求另一个解-毩=(毸-毷)=l=0,1,2,….再利用E=-淈2毬2

2m
(2毷)2,以及毷=毸-l,

就可得出偶宇称能级如下:

El =-淈2毬2

2m
1
2

8mV0

淈2毬2 +1-2l-1/[ ]2
2

,暋l=0,1,2,… (9灡4灡85)

对于(9灡4灡84b)解,类似分析可知,只当毸-毷-1/2=m=0,1,2,…时,才满足束缚态要求,从而

得出奇宇称能级

Em =-淈2毬2

2m
1
2

8mV0

淈2毬2 +1-(2m+1)-1/[ ]2
2

(9灡4灡86)

m =0,1,2,…

上两式可合并表示成

En =-淈2毬2

2m
1
2

8mV0

淈2毬2 +1- n+( )[ ]1
2

2

,暋n=0,1,2,… (9灡4灡87)

上式中n要求满足
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n< 1
2

8mV0

淈2毬2 +1-[ ]1
2

(9灡4灡88)

以保证En<0(束缚态).对于图9灡9所示势阱,E>0为游离态.

*9灡5暋径向Schr昳dinger方程的因式分解

一维谐振子能量本征值问题的一种代数解法———因式分解法和升、降算符的

概念,源于20世纪40年代Schr昳dinger的工作.后来,在20世纪80年代发展起来

的超对称量子力学方法中,又得到进一步发展和应用,升、降算符被用来联系超对
踿踿踿踿

称伴
踿踿

(supersymmetricpartner)Hamilton量的相应能态
踿踿踿踿踿踿.现有的超对称量子力学方

法主要用来处理一维体系,但也被用以处理中心力场中的粒子的径向Schr昳dinger
方程栙.众所周知,一维规则势阱的束缚态是不简并的,只需用一个量子数来标记,
所以只需引进一类升降算符即可把相邻的能量本征态联系起来.而中心力场(二
维、三维,以及更高维)的能级一般都有简并.特别是,具有某种动力学对称性的中

心力场,如Coulomb势和各向同性谐振子势,能级还存在进一步简并(l简并等).
因此,需要引进多种升降算符把同一个

踿踿踿踿踿踿踿踿踿踿踿踿踿踿 Hamilton量的相邻能量本征态联系起来
踿踿踿踿踿踿踿踿踿踿踿踿踿.

进一步分析还发现,径向Schr昳dinger方程的因式分解与相应的经典粒子的

动力学对称性和轨道的闭合性有密切关系.可以证明,从径向
踿踿踿Schr昳dinger方程的

踿踿踿
因式分解所导出的升
踿踿踿踿踿踿踿踿踿

、降算符
踿踿踿

,与保证经典粒子轨道的闭合性的守恒量等价
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

栚,而
它们的物理根源都是体系的几何与动力学对称性.

*9灡5灡1暋三维各向同性谐振子的四类升、降算符栛

三维各向同性谐振子势V(r)=1
2M氊2r2 中粒子的能量本征方程为

H氉= -淈2

2M
1
r

d2

dr2r+ l
暷

2

2Mr2 +1
2M氊2ræ

è
ç

ö

ø
÷

2
氉=E氉 (9灡5灡1)

l
暷

为角动量算符.氉取为对易守恒量完全集(H,l
暷

2,l
暷

z)的共同本征态

氉=
氈l(r)
r Ym

l (毴,氉),暋l=0,1,2,…;暋m =l,l-1,…,-l (9灡5灡2)

氈l(r)满足下列径向方程(取自然单位淈=M=氊=1):
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H(l)氈l(r)=E氈l(r)暋暋暋暋暋

H(l)=-1
2

d2

dr2 +l(l+1)
2r2 +1

2r
2 (9灡5灡3)

上式可改写成

D(l)氈l(r)=毸l暋氈l(r),暋毸l =-2E

D(l)= d2

dr2 -l(l+1)
r2 -r2 =-2H(l)

(9灡5灡4)

定义依赖于角动量l的两类算符

A+(l)= d
dr-l+1

r +r,暋A- (l)= d
dr+l

r -r (9灡5灡5)

B+(l)= d
dr-l+1

r -r,暋B- (l)= d
dr+l

r +r (9灡5灡6)

容易证明

A- (l+1)A+ (l)=D(l)+(2l+3)

A+ (l-1)A- (l)=D(l)+(2l-1) (9灡5灡7)

B- (l+1)B+ (l)=D(l)-(2l+3)

B+ (l-1)B- (l)=D(l)-(2l-1) (9灡5灡8)
利用式(9灡5灡7)、(9灡5灡8)和(9灡5灡4),不难证明

D(l)[A+ (l-1)氈l-1]= (毸l-1+2)[A+ (l-1)氈l-1] (9灡5灡9a)

D(l)[A- (l+1)氈l+1]= (毸l+1-2)[A- (l+1)氈l+1] (9灡5灡9b)

D(l)[B+ (l-1)氈l-1]= (毸l-1-2)[B+ (l-1)氈l-1] (9灡5灡10a)

D(l)[B- (l+1)氈l+1]= (毸l+1+2)[B- (l+1)氈l+1] (9灡5灡10b)

由式(9灡5灡9a)可 以 看 出,如氈l-1 是 D(l-1)的 本 征 态,本 征 值 为毸l-1,则

A+(l-1)氈l-1是D(l)的本征态,本征值为毸l-1+2,即相应能量[参见式(9灡5灡4)]本征

值减小1.因此算符A+ 的作用是使量子态的角动量
踿踿踿l增加

踿踿1,同时使能量减小
踿踿踿踿1.同

样,从式(9灡5灡9b)可看出,算符A- 的作用是使角动量
踿踿踿l减小

踿踿1,同时使能量增加
踿踿踿踿1.

类似地,从式(9灡5灡10)可看出,B+ (B- )算符的作用是使角动量增加
踿踿踿踿踿

(减小
踿踿

)1,
同时使能量也增加

踿踿踿踿踿
(减小
踿踿

)1.为了更明显表示算子A 和B 的这种性质,不妨把它们

改记为

A+(l)曻A(l朁,N朂)= d
dr-l+1

r +r

A-(l)曻A(l朂,N朁)= d
dr+l

r -r
(9灡5灡11)

B+(l)曻A(l朁,N朁)= d
dr-l+1

r -r

B- (l)曻B(l朂,N朂)= d
dr+l

r +r
(9灡5灡12)
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式中N 是标记能量的量子数[见本节附录1,E=N+3/2,N=l+2nr,nr=0,1,

2,…为径向波函数的节点数(不包括r=0和r=曓点)].
联合算子A 和B,还可以构造出另外两类算子C 和D(见图9灡10).利用式

(9灡5灡11)、(9灡5灡12)、(9灡5灡3)和(9灡5灡4),可以证明

A((l+1)朂,N朁)B(l朁,N朁)=D(l)-2rd
dr+2r2-1

B((l+1)朂,N朂)A(l朁,N朂)=D(l)+2rd
dr+2r2+1

(9灡5灡13)

用式(9灡5灡13)对角动量和能量的本征态 l,N暤运算,得

暋
A((l+1)朂,N朁)B(l朁,N朁)l,N暤=-2rd

dr-r2+Næ

è
ç

ö

ø
÷+2 l,N暤

B((l+1)朂,N朂)A(l朁,N朂)l,N暤=2rd
dr+r2-Næ

è
ç

ö

ø
÷-1 l,N暤

(9灡5灡14)

根据A、B 算子的物理意义,算子A((l+1)朂,N朁)B(l朁,N朁)的作用是使
踿N(能

踿
量
踿

)增加
踿踿2,但

踿l不变
踿踿

,而算子B((l+1)朂,N朂)A(l朁,N朂)是使N 减小
踿踿2,但保持

踿踿
l不变

踿踿.这样就得出下列一类升、降算子:

C(l,N朁朁)=rd
dr-r2+(N+2)

C(l,N朂朂)=rd
dr+r2-(N+1)

(9灡5灡15)

类似地可以证明(见图9灡10)

暋
A((l-1)朂,N朁)B(l朂,N朂)=D(l)+2l-1

r
d
dr+l

(2l-1)
r2

A((l+1)朁,N朂)B(l朁,N朁)=D(l)-2l+3
r

d
dr+

(l+1)(2l+3)
r2

(9灡5灡16)

用式(9灡5灡16)作用于角动量和能量的本征态 l,N暤上,得

A((l-1)朂,N朁)B(l朂,N朂)l,N暤

= (2l-1)1
r

d
dr+l

r2 -2N+3
2l-[ ]1 l,N暤

A((l+1)朁,N朂)B(l朁,N朁)l,N暤

=-(2l+3)1
r

d
dr-l+1

r2 +2N+3
2l+[ ]3 l,N暤 (9灡5灡17)

根据算子A 和B 的物理意义,A((l-1)朂,N朁)B(l朂,N朂)的作用是使角动量
踿踿踿l

减小
踿踿2,但保持能量不变

踿踿踿踿踿踿
,而A((l+1)朁,N朂)暳B(l朁,N朁)的作用是使角动量

踿踿踿l
增加
踿踿2,同时保持能量不变

踿踿踿踿踿踿.由此,可得出另一类升、降算子D

D(l朂朂,N)= 1
r

d
dr+l

r2 -2N+3
2l-

æ

è
ç

ö

ø
÷

1
(9灡5灡18a)
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D(l朁朁,N)= 1
r

d
dr-l+1

r2 +2N+3
2l+

æ

è
ç

ö

ø
÷

3
(9灡5灡18b)

这样就找出了三维各向同性谐振子的四类升、降算子A、B、C 和D,以及相应

的选择规则和守恒量子数(见表9灡1和图9灡10).

图9灡10暋三维各向同性谐振子的四类升、降算符

应该提到,根据径向方程(9灡5灡3)的合流超几何函数解的递推关系,也可直接

找出算子C和D 的表示式(9灡5灡15)和式(9灡5灡18)(见下面附录1).

表9灡1

升、降算子 l暋暋 nr N=l+2nr 守恒量子数

A(l朁,N朂)
A(l朂,N朁)

l曻l+1
l曻l-1

nr曻nr-1
nr曻nr+1

N曻N-1
N曻N+1

l+nr=N-nr

B(l朁,N朁)
B(l朂,N朂)

l曻l+1
l曻l-1

nr曻nr

nr曻nr

N曻N+1
N曻N-1

nr

C(l,N朁朁)
C(l,N朂朂)

l曻l
l曻l

nr曻nr+1
nr曻nr-1

N曻N+2
N曻N-2

l

D(l朁朁,N)
D(l朂朂,N)

l曻l+2
l曻l-2

nr曻nr-1
nr曻nr+1

N曻N
N曻N

N
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能量和角动量本征态式(9灡5灡2)中,角动量部分的波函数(球谐函数)是大家熟知的.径向波

函数氈lnr
可以如下求出.考虑到算子A(l朁,N朂)的作用,而nr 的极小值为零,可以看出

A(l朁,N朂)氈l,nr=0 = d
dr-l+1

r +( )r氈l,0(r)=0 (9灡5灡19)

解之,可得出nr=0的所有径向波函数

氈l,0 ~rl+1e-r2/2,暋l=0,1,2,…

用A((l+1)朂,N朁)对式(9灡5灡19)运算,利用式(9灡5灡7),得

[D(l)+(2l+3)]氈l,0 = [毸l,0 +(2l+3)]氈l,0 =0
所以毸l,0=-(2l+3),即

El,nr=0 =l+3/2,暋l=0,1,2,… (9灡5灡20)

这是E=N+3/2的特殊情况(nr=0,N=l)(见本节附录1).

从氈l,0(l=1,2,…)出发,依次用 A(l朂,N朁),A((l-1)朂,N朁),…运算,可得氈l-1,1,

氈l-2,2,…,氈0,l.这样即可求出所有径向波函数.

附录1

根据方程(9灡5灡3)的解在r曻0和r曻曓的渐近行为,可以令氈l(r)=rl+1e-r2/2u(r),u(r)

满足

u曞+ 2
r

(l+1-r2)u曚-(毸l+2l+3)u=0 (9灡5灡21)

令毼=r2,上式化为合流超几何方程

毼
d2u
d毼2 +[l+3/2-毼]du

d毼
- 1

4
[毸l+2l+3]u=0 (9灡5灡22)

满足氈l(0)=0的方程(9灡5灡3)的解,可表成合流超几何函数F(毩,毭,r2),其中

毩= 1
4

(毸l+2l+3),毭=l+3/2 (9灡5灡23)

对于束缚态,要求 F 中断为一个多项式,即要求毩= -nr(nr =0,1,2,…).由此得出 E=
(l+2nr)+3/2,或记为

E=EN =N+3/2,暋N =l+2nr =0,1,2,… (9灡5灡24)
相应的本征函数(径向)为

氈l,nr(r)曍rl+1e-r2/2F(-nr,l+3/2,r2) (9灡5灡25)

对给定的能级(N),简并度为fN =(N+1)(N+2)/2.
利用合流超几何函数的微商公式和基本递推关系:

(1)d
dxF(毩,毭,x)=毩

毭F(毩+1,毭+1,x)

(2)(毭-毩)F(毩-1,毭,x)-毩F(毩+1,毭,x)=(毭-2毩-x)F(毩,毭,x)
(3)毭(毭-1)F(毩,毭-1,x)+(毭-毩)xF(毩,毭+1,x)=毭(毭-1+x)F(毩,毭,x)
(4)毭F(毩-1,毭,x)+xF(毩,毭+1,x)=毭F(毩,毭,x)
(5)(毭-1)F(毩,毭-1,x)-毩F(毩+1,毭,x)=(毭-毩-1)F(毩,毭,x)
(6)(毭-毩)xF(毩,毭+1,x)+毩毭F(毩+1,毭,x)=毭(毩+x)F(毩,毭,x)
(7)(毭-1)F(毩,毭-1,x)-(毭-毩)F(毩-1,毭,x)=(毩-1+x)F(毩,毭,x)
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可导出下列递推关系:

(8)毭F(毩+1,毭,x)-xF(毩+1,毭+1,x)=毭F(毩,毭,x)

(9)毭(毭-毩)F(毩-1,毭,x)-axF(毩+1,毭+1,x)=毭(毭-毩-x)F(毩,毭,x)

(10)(毭-毩)F(毩,毭+1,x)+毩F(毩+1,毭+1,x)=毭F(毩,毭,x)

(11)毭(毭-1)F(毩,毭-1,x)-毩xF(毩+1,毭+1,x)=毭(毭-1)F(毩,毭,x)

利用这些公式,可以证明

2毩+x d
d[ ]x F(毩,毭,x2)=2毩F(毩+1,毭,x2) (9灡5灡26)

2(毭-毩-x2)+x d
d[ ]x F(毩,毭,x2)=2(毭-毩)F(毩-1,毭,x2) (9灡5灡27)

-2毩
毭 +1

x
d
d[ ]x F(毩,毭,x2)=2毩(毭-毩)

毭2(毭+1)x
2F(毩+1,毭+2,x2) (9灡5灡28)

2(毭-1)-2(毭-毩-1)
毭-2 x2+x d

d[ ]x F(毩,毭,x2)=2(毭-1)F(毩-1,毭-2,x2) (9灡5灡29)

由式(9灡5灡26)~式(9灡5灡29)即可导出算子C和D 的表示式(9灡5灡15)和式(9灡5灡18).

*9灡5灡2暋二维各向同性谐振子的四类升、降算符栙

二维各向同性谐振子的能量本征方程为

H氉= -淈2

2M
灥2

灥氀2 +1
氀

灥
灥氀

+1
氀2

灥2

灥氉
æ

è
ç

ö

ø
÷

2 +1
2M氊2氀[ ]2 氉=E氉 (9灡5灡30)

取氉为对易守恒量完全集 H,l
暷

z=-i淈灥
灥

æ

è
ç

ö

ø
÷

氄
的共同本征态

氉=
氈m(氀)

氀
eim氄,暋m =0,暲1,暲2,… (9灡5灡31)

氈m(氀)满足下列径向方程(取自然单位淈=M=氊=1):

H(m)氈m(氀)=E氈m(氀)暋暋暋暋暋暋暋暋暋暋

H(m)=-1
2

d2

d氀2 +
(m-1/2)(m+1/2)

2氀2 +1
2氀

2 (9灡5灡32)

上式可改写成

D(m)氈m(氀)=毸m暋氈m(氀),暋毸m =-2E

D(m)曉 d2

d氀2 -
(m-1/2)(m+1/2)

氀2 -氀2 =-2H(m)
(9灡5灡33)

先讨论m曒0的情况,(由于径向方程中只含m2,m曒0的结果,可自然延拓到m曑0
的情况).与三维各向同性谐振子相似,可定义两类升、降算符

暋暋A+ (m)= d
d氀

-m+1/2
氀

+氀,暋A- (m)= d
d氀

+m-1/2
氀

-氀 (9灡5灡34)
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暋暋B+ (m)= d
d氀

-m+1/2
氀

-氀,暋B- (m)= d
d氀

+m-1/2
氀

+氀 (9灡5灡35)

可以证明,它们满足下列因式分解关系式:

A- (m+1)A+ (m)=D(m)+2(m+1)

A+ (m-1)A- (m)=D(m)+2(m-1)
(9灡5灡36)

B- (m+1)B+ (m)=D(m)-2(m+1)

B+ (m-1)B- (m)=D(m)-2(m-1)
(9灡5灡37)

利用式(9灡5灡36)、式(9灡5灡37)和式(9灡5灡33),可以证明

D(m)[A+ (m-1)氈m-1]= (毸m-1+2)A+ (m-1)氈m-1 (9灡5灡38a)

D(m)[A- (m+1)氈m+1]= (毸m+1-2)A- (m+1)氈m+1 (9灡5灡38b)

D(m)[B+ (m-1)氈m-1]= (毸m-1-2)B+ (m-1)氈m-1 (9灡5灡39a)

D(m)[B- (m+1)氈m+1]= (毸m+1+2)B- (m+1)氈m+1 (9灡5灡39b)

从式(9灡5灡38a)可以看出,如氈m-1 是 D(m-1)的 本 征 态,本 征 值 为毸m-1,则

A+ (m-1)氈m-1是 D(m)的本征态,本征值为毸m-1+2,即相应能量 E[参见式

(9灡5灡33)]本征值减小1.因此算符A+ 的作用在于使量子态的角动量m 增加1,同
时使能量减小1.类似地,从式(9灡5灡38b)可看出算符A- 的作用是使m 减小1,同
时使能量增加1.从式(9灡5灡39)可知B+ (B- )算符的作用在于使m 增加(减小)1,
同时使能量也增加(减小)1.根据A,B 算子的这种性质,不妨把它们改记为

A+ (m)曻A(m朁,N朂)= d
d氀

-m+1/2
氀

+氀

A- (m)曻A(m朂,N朁)= d
d氀

+m-1/2
氀

-氀
(9灡5灡40)

B+ (m)曻B(m朁,N朁)= d
d氀

-m+1/2
氀

-氀

B- (m)曻B(m朂,N朂)= d
d氀

+m-1/2
氀

+氀
(9灡5灡41)

式中N 是标记能量的量子数.[E=N+1,N= m +2n氀,n氀=0,1,2,…是径向波

函数的节点数(氀=0,曓点除外).]
与三维各向同性谐振子中相似,按照A、B 的物理意义,可以构造出另外两类

算子C和D(见图9灡11)

C(m,N朁朁)=氀
d
d氀

-氀2+N+3/2暋暋暋

C(m,N朂朂)=氀
d
d氀

+氀2-N-1/2 (9灡5灡42)

D(m朂朂,N)= 1
氀

d
d氀

+m-1/2
氀2 -N+1

m-1
(9灡5灡43a)
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D(m朁朁,N)= 1
氀

d
d氀

-m+1/2
氀2 +N+1

m+1
(9灡5灡43b)

图9灡11暋二维各向同性谐振子的四类升、降算符

考虑到径向方程(9灡5灡32)中只出现 m2 ,径向波函数氈-m=氈m,可把以上所

述的升、降算子的表示式延拓到m曑0情况.此时算子C的形式不变,而A 与B 有

下列关系:

A((-m)朂,N朁)=B(m朁,N朁),或B((-m)朁,N朁)=A(m朂,N朁)

A((-m)朁,N朂)=B(m朂,N朂),或B((-m)朂,N朂)=A(m朁,N朂)
(9灡5灡44)

而对算子D,有

D((-m)朁朁,N)=D(m朂朂,N),暋m 曎暲1 (9灡5灡45)

对于m=暲1,考虑到氈-1=氈1,所以可取

D((-1)朁朁,N)=D(1朂朂,N)=1 (9灡5灡46)
这样,我们就给出了二维各向同性谐振子的四类升、降算子A、B、C、D 的表示

式,以及有关的选择定则和守恒量子数,见表9灡2.

表9灡2

升、降算子 暋 m 暋 n氀 N= m +2n氀 守恒量子数

A(m朁,N朂)
A(m朂,N朁)

m曻m+1
m曻m-1

n氀曻n氀-1
n氀曻n氀+1

N曻N-1
N曻N+1

m +n氀,N-n氀

B(m朁,N朁)
B(m朂,N朂)

m曻m+1
m曻m-1

n氀曻n氀

n氀曻n氀

N曻N+1
N曻N-1

n氀

C(m,N朁朁)
C(m,N朂朂)

m曻m
m曻m

n氀曻n氀+1
n氀曻n氀-1

N曻N+2
N曻N-2

m

D(m朁朁,N)
D(m朂朂,N)

m曻m+2
m曻m-2

n氀曻n氀-1
n氀曻n氀+1

N曻N
N曻N

N
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附录2暋二维各向谐振子的径向方程的求解

考虑到解在氀曻0和氀曻曓的渐近行为,令

氈m(氀)=氀 m -1/2e-氀2/2u (9灡5灡47)
则u满足

u曞+ 2 m +1
氀

-2( )氀u曚-(毸m +2 m +2)u=0

令毼=氀2,上式化为合流超几何方程

毼
d2u
d毼2 +(m +1-毼)du

d毼
- m +1

2 +毸m( )4 u=0 (9灡5灡48)

满足氈m(0)=0的方程(9灡5灡32)的解,可表成合流超几何函数F(毩,毭;氀2),其中

毩= m +1
2 +毸m

4
,暋毭= m +1

对于束缚态,要求F中断为一个多项式,即要求毩=-n氀(n氀=0,1,2,…),即毸m =-2(m +1)

-4n氀,E= m +1+2n氀,或记为

E=EN =N+1,暋暋N = m +2n氀 =0,1,2,… (9灡5灡49)
与三维各向同性谐振子相似,根据合流超几何函数的微商公式和递推关系,也可以推导出

算符C和D 的表示式(9灡5灡42)和式(9灡5灡43).

*9灡5灡3暋三维氢原子的四类升、降算符

三维氢原子的径向方程为(自然单位e=淈=M=1)

H(l)氈l(r)=E氈l(r),暋H(l)=-1
2

d2

dr2 +l(l+1)
2r2 -1

r
(9灡5灡50)

可改记为

D(l)氈l(r)=毸l暋氈l(r),暋毸l =-2E

D(l)=-2H(l)= d2

dr2 -l(l+1)
r2 +2

r

(9灡5灡51)

引进与角动量l有关的算符

A+ (l)= d
dr-l+1

r + 1
l+1

A- (l)= d
dr+l

r -1
l暋(l>0)

(9灡5灡52)

容易证明栙

A- (l+1)A+ (l)=D(l)-1/(l+1)2

A+ (l-1)A- (l)=D(l)-1/l2,暋l>0
(9灡5灡53)

以及
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D(l)[A+ (l-1)氈l-1]=毸l-1A+ (l-1)氈l-1

D(l)[A- (l+1)氈l+1]=毸l+1A- (l+1)氈l+1

(9灡5灡54)

由式(9灡5灡54)可看出,如氈l-1是D(l-1)的本征态,本征值为毸l-1,则A+ (l-1)涚l-1

为D(l)的本征态,本征值仍为毸l-1.因此,算符A+ 的作用是使角动量增加
踿踿踿踿踿1,但保

踿踿
持能量不变
踿踿踿踿踿.类似地,算符A- 的作用是使角动量减小

踿踿踿踿踿1,也保持能量不变
踿踿踿踿踿踿踿.所以A暲

分别为角动量的升、降算符.为更明显展示算符A暲 的这种作用,不妨改记为(n为

主量子数)

A+ (l)曻A(l朁,n)= d
dr-l+1

r + 1
l+1

A- (l)曻A(l朂,n)= d
dr+l

r -1
l暋(l>0)

(9灡5灡55)

与各向同性谐振子不同,直接从氢原子的径向方程的因式分解,只能导出一类升、
降算符A暲 (l).但根据径向波函数的解及合流超几何函数的递推关系(见本节附录

3),可以找出另外三类升、降算符如下:

B(l,n朁)= rd
dr- r

n+1+[ ]n M n
n+
æ

è
ç

ö

ø
÷

1

B(l,n朂)= rd
dr+ r

n-1-[ ]n M n
n-
æ

è
ç

ö

ø
÷

1

(9灡5灡56)

C(l朁,n朁) {= [(l+1)(n+1)+r]d
dr- r

n+1

-
(l+1)2(n+1)

r +(n-l-1 })M n
n+
æ

è
ç

ö

ø
÷

1
(9灡5灡57a)

C(l朂,n朂) {= [l(n-1)+r]d
dr+ r

n-1+l2(n-1)
r -(n-1 })M n

n-
æ

è
ç

ö

ø
÷

1
(9灡5灡57b)

D(l朂,n朁) {= [l(n+1)-r]d
dr+ r

n+1+l2(n+1)
r -(n+l })M n

n+
æ

è
ç

ö

ø
÷

1
(9灡5灡58a)

D(l朁,n朂) {= [(l+1)(n-1)-r]d
dr- r

n-1

-
(l+1)2(n-1)

r +(n+l+1 })M n
n-
æ

è
ç

ö

ø
÷

1
(9灡5灡58b)

式中算子M 为标度算符(scalingoperator),定义如下

M(k)f(x)=f(kx) (9灡5灡59)
与算子A、B、C、D 相应的选择定则和守恒量子数列于表9灡3.三维氢原子的能级及

算子A、B、C、D 的作用如图9灡12所示.
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表9灡3

升、降算子 暋 l 暋 nr n=l+nr+1暋暋暋暋 守恒量子数

A(l朁,n)

A(l朂,n)
l曻l+1

l曻l-1

nr曻nr-1

nr曻nr+1

n曻n

n曻n
n,l+nr

B(l,n朁)

B(l,n朂)
l曻l

l曻l

nr曻nr+1

nr曻nr-1

n曻n+1

n曻n-1
l

C(l朁,n朁)

C(l朂,n朂)
l曻l+1

l曻l-1

nr曻nr

nr曻nr

n曻n+1

n曻n-1
nr

D(l朂,n朁)

D(l朁,n朂)
l曻l-1

l曻l+1

nr曻nr+2

nr曻nr-2

n曻n+1

n曻n-1
n+l,2l+nr

图9灡12暋三维氢原子的四类升、降算符

附录3

在束缚态边界条件下,可求出氢原子的能量本征值为

E=En =-1/(2n2),暋n=l+nr+1,nr =0,1,2,… (9灡5灡60)
径向波函数为

氈lnr 曍rl+1e-r/(l+nr+1)F -nr,2l+2, 2r
l+nr+( )1

(9灡5灡61)
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或表示成

氈ln 曍毼l+1
n e-毼n/2F[-(n-l-1),2l+2,毼n],暋毼n =2r

n
(9灡5灡62)

nr 为径向波函数节点数(r=0,曓点除外),n为主量子数.能级En 具有l简并性(l=0,1,…,

n-1),简并度为n2.
利用合流超几何函数的递推关系式,可以证明:

毩+x d
d( )x F(毩,毭;x)=毩F(毩+1,毭;x)

(毭-毩-x)+x d
d[ ]x F(毩,毭;x)= (毭-毩)F(毩-1,毭;x)

(毩+x)-(毭+x)d
d[ ]x F(毩,毭;x)=

(毭-毩)(毭+1-毩)
毭(毭+1) F(毩,毭+2;x)

[(毭-1)(毭-2)+毩x]+x(毭+2-x)d
d{ }x F(毩,毭;x)= (毭-1)(毭-2)F(毩,毭-2;x)

-毩+(毭-x)d
d[ ]x F(毩,毭;x)=毩(毩+1)

毭(毭+1)xF(毩+2,毭+2;x)

(毩-1)x+(毭-1-x)(毭-2-x)+(毭-2-x)x d
d[ ]x F(毩,毭;x)

= (毭-1)(毭-2)F(毩-2,毭-2;x)

利用上述公式及径向波函数(9灡5灡62),即可求出升、降算符B、C 和 D 的表示式(9灡5灡56)、

式(9灡5灡57)和式(9灡5灡58).

根据算符A 的物理意义(见表9灡3)以及nr 最小值为0,可知A(l朁,n)氈l,nr=0=0,

d
dr-l+1

r + 1
l+( )1

氈l,nr=0(r)=0 (9灡5灡63)

其解为氈l,nr=0(r)曍rl+1e-r/(l+1).这是波函数(9灡5灡61)的特例(nr=0),即圆轨道波函数,是给定

能级中角动量最大(l=n-1)的态.对式(9灡5灡62)依次用A(l朂,n),A((l-1)朂,n),…作用,即

可求出径向波函数氈l-1,1,氈l-2,2,…,氈0,l.变动l(l=0,1,…),即可求出全部径向波函数.

*9灡5灡4暋二维氢原子的四类升、降算符

二维氢原子的径向方程为(淈=M=e=1)

H(m)氈m(氀)=E氈m(氀)暋暋暋暋暋暋

H(m)=-1
2

d2

d氀2 +
(m -1/2)(m +1/2)

2氀2 -1
氀
(9灡5灡64)

可表示成

D(m)氈m(氀)=毸m氈m(氀),暋毸m =-2E

D(m)=-2H(m)= d2

d氀2 + 1
4氀2 -m2

氀2 +2
氀

= d2

d氀2 -
(m -1/2)(m +1/2)

氀2 +2
氀

(9灡5灡65)
它与三维氢原子的径向方程(9灡5灡50)有很大的相似性,利用三维氢原子的计算结
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果[形式上把l(l+1)曻(m -1/2)(m +1/2)],容易得出二维氢原子的有关公

式[直接从径向方程(9灡5灡65)出发,也可得同样的公式].四类升、降算子的表示式

如下(m曒0情况):

A(m朁,n)= d
d氀

-m+1/2
氀

+ 1
m+1/2暋暋

A(m朂,n)= d
d氀

+m-1/2
氀

- 1
m-1/2

(9灡5灡66)

B(m,n朁)= 氀
d
d氀

- 氀
n+1+[ ]n M n

n+
æ

è
ç

ö

ø
÷

1

B(m,n朂)= 氀
d
d氀

+ 氀
n-1-[ ]n M n

n-
æ

è
ç

ö

ø
÷

1
(9灡5灡67)

C(m朁,n朁) {= [(m+1/2)(n+1)+氀]d
d氀

- 氀
n+1

-
(m+1/2)2(n+1)

氀
+n-m-1/ }2 M n

n+
æ

è
ç

ö

ø
÷

1

C(m朂,n朂) {= [(m-1/2)(n-1)+氀]d
d氀

+ 氀
n-1

(9灡5灡68a)

+
(m-1/2)2(n-1)

氀
-n+m-1/ }2 M n

n-
æ

è
ç

ö

ø
÷

1
(9灡5灡68b)

D(m朂,n朁) {= [(m-1/2)(n+1)-氀]d
d氀

+ 氀
n+1

+
(m-1/2)2(n+1)

氀
-n-m+1/ }2 M n

n+
æ

è
ç

ö

ø
÷

1
(9灡5灡69a)

D(m朁,n朂) {= [(m+1/2)(n-1)-氀]d
d氀

- 氀
n-1

-
(m+1/2)2(n-1)

氀
+n+m+1/ }2 M n

n-
æ

è
ç

ö

ø
÷

1
(9灡5灡69b)

考虑到式(9灡5灡65)只与m2 有关,所以氈-m=氈m,上列公式容易推广到m曑0
情况.此时,算子A 满足下列关系式:

A((-m)朁,n)=A(m朂,n)

A((-m)朂,n)=A(m朁,n) (9灡5灡70)
算子B 的表示式不变.算子C和D 变化如下:

C((-m)朁,n朁)=-D(m朂,n朁)

C((-m)朂,n朂)=-D(m朁,n朂)

D((-m)朂,n朁)=-C(m朁,n朁)
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D((-m)朁,n朂)=-C(m朂,n朂) (9灡5灡71)
算子A、B、C、D 相应的选择定则和守恒量子数列于表9灡4.二维氢原子的能级及算

子A、B、C、D 的作用如图9灡13所示.

图9灡13暋二维氢原子的四类升、降算符

表9灡4

升、降算子 m n氀 n= m +n氀+1/2 守恒量子数

A(m朁,n)
A(m朂,n)

m曻m+1
m曻m-1

n氀曻n氀-1
n氀曻n氀+1

n曻n
n曻n

n,m +n氀

B(m,n朁)
B(m,n朂)

m曻m
m曻m

n氀曻n氀+1
n氀曻n氀-1

n曻n+1
n曻n-1

m

C(m朁,n朁)
C(m朂,n朂)

m曻m+1
m曻m-1

n氀曻n氀

n氀曻n氀

n曻n+1
n曻n-1

n氀

D(m朂,n朁)
D(m朁,n朂)

m曻m-1
m曻m+1

n氀曻n氀+2
n氀曻n氀-2

n曻n+1
n曻n-1

n+ m ,2 m +n氀

*9灡5灡5暋径向Schr昳dinger方程的可因式分解性

以下证明,只当中心力场
踿踿踿踿踿踿V(r)为各向同性谐振子势或

踿踿踿踿踿踿踿踿踿踿 Coulomb势时
踿踿

,径向
踿踿

Schr昳dinger方程才能因式分解
踿踿踿踿踿踿踿踿

而得出能量和角动量的升、降算符.对于各向同性

谐振子,直接从径向方程的因式分解可以导出两类
踿踿

(能量和角动量
踿踿踿踿踿踿

)升
踿

、降算符
踿踿踿

,而
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对于Coulomb势,则只能导出一类升降算符
踿踿踿踿踿踿

栙.
中心力场V(r)中粒子的径向方程为

H(l)氈l(r)=E氈l(r)暋暋暋暋

H(l)=-1
2

d2

dr2 +l(l+1)
2r2 +V(r) (9灡5灡72)

可改写成

D(l)氈l(r)=毸l氈l(r),暋毸l =-2E暋暋暋 (9灡5灡73)

D(l)=-2H(l)= d2

dr2 -l(l+1)
r2 -2V(r)

定义与角动量l有关的升、降算符

A+ (l)= d
dr-l+1

r +f(l,r)

A- (l)= d
dr+l

r +g(l,r) (9灡5灡74)

式中f(l,r)与g(l,r)待定,以满足因式分解的要求,即
A- (l+1)A+ (l)=D(l)+c1(l)

A+ (l-1)A- (l)=D(l)+c2(l) (9灡5灡75)
这里c1(l)和c2(l)与r无关,待定.利用式(9灡5灡74),易于证明

A- (l+1)A+ (l)=d2

dr2 -l(l+1)
r2 +[f(l,r)+g(l+1,r)]d

dr+df(l,r)
dr

+[f(l,r)-g(l+1,r)](l+1)
r +g(l+1,r)f(l,r)

A+ (l-1)A- (l)=d2

dr2 -l(l+1)
r2 +[g(l,r)+f(l-1,r)]d

dr+dg(l,r)
dr

+[f(l-1,r)-g(l,r)]l
r +f(l-1,r)g(l,r)

(9灡5灡76)
比较式(9灡5灡75)、式(9灡5灡76),可得

f(l,r)=-g(l+1,r)暋暋暋暋暋暋暋暋暋暋暋暋暋 (9灡5灡77)

-2V(r)+c1(l)=df(l,r)
dr +2f(l,r)l+1

r -f(l,r)2 (9灡5灡78)

-2V(r)+c2(l)=-df(l-1,r)
dr +2f(l-1,r)l

r -f(l-1,r)2

(9灡5灡79)
假设V(r)与角动量l无关.式(9灡5灡79)中l换成(l+1),并从式(9灡5灡78)中减去,
可得

·183·
栙 Y.F.Liu,Y.A.LeiandJ.Y.Zeng,Phys.Lett.A231(1997)9.



df(l,r)
dr =a(l),暋a(l)= 1

2
[c1(l)-c2(l+1)] (9灡5灡80)

由此可得

f(l,r)=a(l)r+b(l) (9灡5灡81)

b(l)为积分常数.把上式代入式(9灡5灡78)或式(9灡5灡79),可得

2V(r)+2b(l)l+1
r -a(l)2r2-2a(l)b(l)r

=1
2

[c1(l)+c2(l+1)]-2(l+1)a(l)+b(l)2 (9灡5灡82)

上式对于任何一点r和任意l值都应成立.从上式左边含有r的三项可以看出,与
l无关的中心势V(r)只能是下列三种形式之一:

(i)V(r)曍 1
r

;暋(ii)V(r)曍r2;暋(iii)V(r)曍r (9灡5灡83)

以下分别讨论.
(i)V(r)曍1/r
由式(9灡5灡82)可得a(l)=0,f(l,r)=b(l)=1/(l+1).此时,除了一个相加性

常数外,V(r)=-1/r,即 Coulomb吸引势.由式(9灡5灡80)和式(9灡5灡81),可求出

c1(l)=c2(l+1),c1 (l)= -1/(l+1)2,c2 (l)= -1/l2,(l>0).因 此,由 式

(9灡5灡74),得

A+ (l)= d
dr-l+1

r + 1
l+1

A- (l)= d
dr+l

r -1
l暋(l>0) (9灡5灡84)

而式(9灡5灡75)化为

A- (l+1)A+ (l)=D(l)- 1
(l+1)2

A+ (l-1)A- (l)=D(l)-1
l2 暋(l>0) (9灡5灡85)

直接利用式(9灡5灡84)计算也可得出上式.式(9灡5灡84)与(9灡5灡85)正是9灡5灡3节中

已得出的结果[见式(9灡5灡52)与式(9灡5灡53)],A暲 (l)正是角动量的升、降算符.
(ii)V(r)曍r2

由式(9灡5灡82)可得b(l)=0,a(l)=常数.取自然单位,让a(l)2=1,则得

V(r)=r2/2(各向同性谐振子),而a(l)=暲1.
对于a(l)=+1,相应的升、降算符记为A暲 ,

A+ (l)= d
dr-l+1

r +r,暋A- (l)= d
dr+l

r -r (9灡5灡86)

对于a(l)=-1,相应的升、降算符记为B暲 ,

B+ (l)= d
dr-l+1

r -r,暋B- (l)= d
dr+l

r +r (9灡5灡87)
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此时,式(9灡5灡75)化为

A- (l+1)A+ (l)=D(l)+(2l+3)

A+ (l-1)A- (l)=D(l)+(2l-1)

B- (l+1)B+ (l)=D(l)-(2l+3)

B+ (l-1)B- (l)=D(l)-(2l-1) (9灡5灡88)
直接利用式(9灡5灡86)与式(9灡5灡87)计算,也可得出上式.此即9灡5灡1节中已得到的

各向同性谐振子的两类角动量和能量的升、降算符.
(iii)V(r)曍r
由式(9灡5灡82)可得a(l)=b(l)=0,但此时得出的V(r)=常数.所以线性中心

势V(r)曍r被排除.
本节结论得证.

*9灡5灡6暋n维氢原子和各向同性谐振子的四类升、降算符栙

1灡n维氢原子

Hamilton量为(淈=M=e=1)

H
暷

=p
暷2

2 - 1
r

r= 暺
n

i=1
x2

i ,暋p
暷2 = 暺

n

i=1
p
暷2

i

(9灡5灡89)

对于n曒2的情况,H 的简并态可取为对易守恒量完全集(H,C
暷

2,C
暷

3,…,C
暷

n)的共同本征态

(这里C
暷

i 是SOi 群的Casimir算符,i=2,3,…,n),即

氉(x)=R(r)YJn-2Jn-3…J1J0
(毴n-2,毴n-3,…,毴1,毴0) (9灡5灡90)

0曑 J0 曑J1 曑 … 曑Jn-3 曑Jn-2

YJn-2Jn-3…J1J0
是n维空间的球谐函数,而Jn-2是与C

暷

n 相应的量子数.

C
暷

nYJn-2Jn-3…J1J0 =Jn-2(Jn-2 +n-2)YJn-2Jn-3…J1J0
(9灡5灡91)

径向波函数R(r)满足下列方程:

1
rn-1

d
dr rn-1 d

d( )r -Jn-2(Jn-2 +n-2)
r2 + 2

r +2[ ]E R(r)=0 (9灡5灡92)

令

氈(r)=r(n-1)/2R(r) (9灡5灡93)

则氈(r)满足下列方程:

d2

dr2 - 1
r2 Jn-2(Jn-2 +n-2)+ n-1( )2

n-1
2 -( )[ ]1 + 2

r +2{ }E 氈(r)=0

(9灡5灡94)
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对于三维氢原子(J1=l=0,1,2,…),上式化为大家熟悉的径向方程

d2

dr2 -l(l+1)
r2 + 2

r +2[ ]E 氈(r)=0 (9灡5灡95)

对于二维氢原子(J0=m,m =0,1,2,…)

d2

dr2 -
(m -1/2)(m +1/2)

r2 + 2
r +2[ ]E 氈(r)=0 (9灡5灡96)

比较式(9灡5灡94)、式(9灡5灡95)与式(9灡5灡96),对于n维氢原子,如定义

ln =Jn-2 +n-1
2 -1暋(n曒2) (9灡5灡97)

则式(9灡5灡94)~式(9灡5灡96)都可表示成相同的形成

d2

dr2 -ln(ln +1)
r2

2
r +2[ ]E 氈(r)=0 (9灡5灡98)

按照处理三维氢原子的经验,相应的角动量升、降算符可表示为

A(ln朁,N)=d
dr-ln +1

r + 1
ln +1

=d
dr-Jn-2 +(n-1)/2

r + 1
Jn-2 +(n-1)/2

(9灡5灡99)

A(ln朂,N)=d
dr+ln

r - 1
ln

=d
dr+Jn-2 +(n-3)/2

r - 1
Jn-2 +(n-3)/2

N 为主量子数.

n维氢原子的束缚态波函数和能量为

氈(r)曍e-r/Nr Jn-2 +(n-1)/2F -nr,2Jn-2 +n-2,2r( )N
nr =0,1,2,…

E=EN =-1/2N2,暋N = K+n-1( )2

K =nr+ Jn-2 =0,1,2,… (9灡5灡100)

F是合流超几何函数.对于三维氢原子,

氈(r)曍e-r/Nrl+1F -nr,2l+2,2r( )N
N =nr+l+1=1,2,3,… (9灡5灡101)

对于二维氢原子,

氈(r)曍e-r/Nr m +1F -nr,2 m +1,2r( )N
N =nr+ m +1/2=1/2,3/2,5/2,… (9灡5灡102)

利用合流超几何函数的递推关系和标度算符 M(k)f(x)=f(kx),就可以导出其他三类升

降算符

B(ln,N朁)= rd
dr- r

N +1+( )N M N
N +( )1

B(ln,N朂)= rd
dr+ r

N -1-( )N M N
N -( )1 暋(N >1)

(9灡5灡103)
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C(ln朁,N朁) {= [(ln +1)(N+1)+r]d
dr- r

N +1

-
(ln +1)2(N+1)

r +(N-ln -1 })M N
N +( )1

C(ln朂,N朂) {= [ln(N-1)+r]d
dr+ r

N -1+l2
n(N-1)

r

-(N-ln })M N
N -( )1 暋(N >1)

(9灡5灡104)

D(ln朂,N朁) {= [ln(N+1)-r]d
dr+ r

N +1+l2
n(N+1)

r -(N+ln })M N
N +( )1

D(ln朁,N朂) {= [(ln +1)(N-1)-r]d
dr- r

N -1

-
(ln +1)2(N-1)

r +(N+ln +1 })M N
N -( )1 暋(N >1)

(9灡5灡105)

这四类算符相应的选择定则如下:

殼ln 殼nr 殼N 守恒量子数

A 暲1 熀1 0 N(或E)

B 0 暲1 暲1 ln

C 暲1 0 暲1 nr

D 熀1 暲2 暲1 N+ln

2灡n维各向同性谐振子

与氢原子相似,在三维各向同性谐振子的升降算符中,把l换成ln=Jn-2+(n-1)/2-1[见

式(9灡5灡97)],即可得出n维各向同性谐振子的各类升、降算符.其中算符A 和B 可以直接从径

向Schr昳dinger方程的因式分解得出

A(ln朁,N朂)= d
dr-ln +1

r +r

A(ln朂,N朁)= d
dr+ln

r -r
(9灡5灡106)

B(ln朁,N朁)= d
dr-ln +1

r -r

B(ln朂,N朂)= d
dr+ln

r +r
(9灡5灡107)

而借助于它们,可以构造出其他两类升降算符

C(ln,N朁朁)=rd
dr-r2 +N+n+1

2

C(ln,N朂朂)=rd
dr+r2 -N-n-1

2

(9灡5灡108)
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D(ln朂朂,N)= 1
r

d
dr+ln

r2 -2N+n
2ln -1

D(ln朁朁,N)= 1
r

d
dr+ln +1

r2 +2N+n
2ln +3

(9灡5灡109)

四类升降算符相应的选择定则如下:

殼ln 殼nr 殼N 守恒量

A 暲1 熀1 熀1 N-nr

B 暲1 0 暲1 nr

C 0 暲1 暲2 ln

D 暲2 熀1 0 N(或E)

n(n曒2)维各向同性谐振子的径向波函数和能量本征值为

氈(r)曍e-r2/2r Jn-2 +(n-1)/2F(-nr,Jn-2 +n/2,r2)

nr =0,1,2,… (9灡5灡110)

E=EN = (N+n/2),暋N =2nr+ Jn-2 =0,1,2,…

对于三维各向同性谐振子(J1=l=0,1,2,…,N=2nr+l=0,1,2,…),

氈(r)曍e-r2/2rl+1F(-nr,l+3/2,r2) (9灡5灡111)

对于二维各向同性谐振子(J0=m,m =0,1,2,…,N=2nr+ m =0,1,2,…),

氈(r)曍e-r2/2r m +1/2F(-nr,m +1,r2) (9灡5灡112)

*9灡5灡7暋一维谐振子与氢原子

在9灡4灡1节中已讨论过一维谐振子的因式分解,并导出了升、降算符a+ = 1
2

x- d
d( )x

和

a=1
2

x+ d
d( )x

,它们把具有相反宇称的相邻能量本征态
踿踿踿踿踿踿踿踿踿踿踿踿

联系起来.但应注意,形式上与三维各

向同性谐振子(V(r)=r2/2,r曒0)相应的一维谐振子势为

V(x)=
x2/2, x曒0
曓, x<{ 0

(9灡5灡113)

其能级为EN =(N+1/2),N=1,3,5,….而通常所说的一维谐振子势为V(x)=x2/2(-曓<x
<+曓),具有反射对称性,而相邻能态的宇称相反.由此可以理解,为什么对于n维(n曒2)各向

同性谐振子存在两类升、降算符A暲 和B暲 ,其形式与a+ 和a不相同.但可以利用算符A 和B 的

乘积,即算符C,作为宇称相同的相邻能级之间的升
踿踿踿踿踿踿踿踿踿踿踿踿踿

、降算符
踿踿踿.事实上,对于三维各向同性谐振子

(见9灡5灡1节)

A(1朂,N朁)B(0朁,N朁)=C(l=0,N朁朁)= d2

dr2 +r2 -2rd
dr-1 (9灡5灡114)

与一维谐振子的联系相同宇称的相邻能级的算符

2a+a+= d2

dx2 +x2 -2x d
dx-1 (9灡5灡115)

形式上相同,选择定则为:殼N=2,宇称不变.
与三维氢原子的Comlomb势形式上相应的一维氢原子势为
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V(x)=
- 1

x
, x>0

曓, x曑
{

0
(9灡5灡116)

在物理上这是可以实现的.例如,当一个电子被限制在一块很大的电介质平板(法线方向为x
轴)的上方(x>0)运动时,按电象法可求出其静电势为

V(x)=- 毩
x

,暋x>0

毩= e2

4
毰-1
毰+( )1 >0 (9灡5灡117)

(毰为介电常数),形式上与式(9灡5灡116)相同.此时,能量本征方程与三维氢原子的径向方程(l=
0情况)完全相同,边条件也一样,因此能级为

En =-1/2n2,暋n=1,2,3,… (9灡5灡118)

是不简并的
踿踿踿踿.由此可以理解,为什么对于一维氢原子,不存在与三维氢原子那种联系相同能量的

简并态的角动量升、降算符A暲 类似的算符.但可以构造与三维氢原子类似的能量升、降算符

B(l=0,N朁)= x d
dx- x

n+1+( )n M n
n+( )1

B(l=0,N朂)= x d
dx+ x

n-1-( )n M n
n-( )1

,暋(n>1) (9灡5灡119)
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第10章暋时 间 反 演

根据波函数的统计诠释,Wigner曾经论证过栙:量子力学中的对称性变换
踿踿踿踿踿

,或
踿

为幺正变换
踿踿踿踿踿

,或为反幺正变换
踿踿踿踿踿踿踿.但对于连续对称性变换

踿踿踿踿踿踿踿踿踿踿
,则必为幺正变换
踿踿踿踿踿踿踿.对于离

踿踿踿
散的对称性变换
踿踿踿踿踿踿踿

,则可能出现反幺正变换
踿踿踿踿踿踿踿踿踿踿.最常碰到的反幺正变换就是时间反演

踿踿踿踿
(timereversal).

关于时间反演概念,人们常常感到很神秘.但正如 Wigner曾经着重指出那

样,“时间反演态
踿踿踿踿踿

暠并不意味着真正时间倒流
踿踿踿踿踿踿踿踿踿踿踿

,而只不过是
踿踿踿踿踿

“运动方向的倒转
踿踿踿踿踿踿踿

暠(re灢
versalofdirectionofmotion).两个逆向的运动过程(见图10灡1所示两例)中,粒子

的运动状态互为时间反演态,但时间都是正向流动,因果关系也是相同的.所以时

间反演概念并没有什么神秘的东西.
Wigner还指出,量子体系的时间反演不变性并不导致相应的某种守恒量

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
(这
踿

一点和时间反演算符是一个反线性算符有密切关系
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

).尽管如此,时间反演不变性

可以导致一个反应过程与其逆过程的概率之间存在一定的关系(例如反应过程中

的细致平衡关系
踿踿踿踿踿踿

).此外,还可能导致某些选择规则.在某些情况下还可以导致能级

简并(例如,Kramers简并,见10灡2灡5节).
时间反演态概念在金属的超导理论和原子核物理的对关联理论中有广泛的应

用.在粒子物理中,关于相互作用的时间反演不变性问题,有过长期的探讨.实验分

析表明,强作用和电磁作用具有时间反演不变性.但有确切的实验证据(如中性 K
介子的衰变)表明,在弱作用中时间反演不变性不完全成立

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.
时间反演不变性只存在于微观过程中
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.在宏观世界中

踿踿踿踿踿踿
,基于热力学的熵增加原
踿踿踿踿踿踿踿踿踿踿

理
踿

,运动过程是不可逆的
踿踿踿踿踿踿踿踿踿

,时间反演不变性不存在
踿踿踿踿踿踿踿踿踿踿.这里涉及从微观世界到宏观世

界过渡时出现的退相干
踿踿踿

(decoherence)现象,是一个值得深入探讨的问题栚.
在10灡1节中先分析时间反演态概念以及如何写出一个量子态的时间反演态.

10灡2节讨论时间反演不变性.10灡3节讨论力学量按照时间反演下的变换性质进行

分类,并给出涉及时间反演态的矩阵元公式.这些公式不但本身很有用,而且通过

它们可以熟悉一下反幺正算符的运算特点.在此之前,由于量子力学的读者习惯于

线性算符和幺正算符的运算规则,对于反幺正算符的运算往往容易出错,所以我们

单列一节进行讨论,以便初学者正确掌握反幺正算符的运算规则.
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10灡1暋时间反演态与时间反演算符

在经典力学中,设处于两个状态A 和Ar 下的粒子,在轨道上各点的速度数值
踿踿踿踿踿踿踿踿踿踿踿

相同
踿踿

,但方向相反
踿踿踿踿踿

,则称A 与Ar 态互为时间反演态(图10灡1中给出两个简单的例

子).更仔细一点说,设在A 态下粒子在时刻t的位置为r,动量为p(角动量为l=r
暳p,…),而在Ar 态下(在两态下粒子位置重合的时刻

踿踿踿踿踿踿踿踿踿
,取为
踿踿t=0),粒子在时刻t曚

=-t的位置为r,动量为-p(角动量为-l,…),则称Ar 态为A 态的时间反演态

(timereversedstate).反之亦然.

图10灡1暋经典力学中的时间反演态

A 与Ar 互为时间反演态.Ar 与A 的画图实际应该重合,

暋 只是为了看得清楚,才把它们分开画

与经典力学中时间反演态的物理意义对比,一个量子态氉的时间反演态氉r 要

求满足下列条件:
时间反演态氉r 下在时刻(-t)暋 量子态氉下在时刻t

粒子坐标r的平均值= 粒子坐标r的平均值

粒子动量p 的平均值=-(粒子动量p的平均值)
粒子角动量l的平均值=-(粒子角动量l的平均值) (10灡1灡1)

下面先讨论无自旋的粒子
踿踿踿踿踿踿.我们将看到,如取

氉r =K氉=氉
* (10灡1灡2)

则可以满足式(10灡1灡1)的要求,K 为取复共轭算符.在此之前,我们先举几个例

子,写出时间反演态在坐标表象中的表示式,然后普遍地论证式(10灡1灡2)的写法的

确满足式(10灡1灡1)所提出的要求.

例1暋考虑自由粒子的动量本征态(未计及归一化),在时刻t表示为

氉(r,t)=exp[i(p·r-Et)/淈] (10灡1灡3)
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动量本征值为p,能量E=p2/2m.式(10灡1灡3)描述的是一个定态,代表沿p方向传播的平面单

色波.它相应的在时刻
踿踿t的时间反演态

踿踿踿踿踿踿
为

exp(-ip·r/淈-iEt/淈) (10灡1灡4)

动量本征值为-p,能量仍为E=p2/2m,代表往-p方向传播的平面单色波,记为氉r(r,t曚),t曚=
-t.在时刻t的量子态氉r(r,-t)与t时刻量子态氉(r,t)相对应.而在(-t)时刻

踿踿
,时间反演态波
踿踿踿踿踿踿

函数
踿踿

则为

氉r(r,t)=exp(-ip·r/淈+iEt/淈)=氉
* (r,t) (10灡1灡5)

所以氉r=氉
* =K氉.

例2暋设一维自由粒子用一个很窄的波包来描述[图10灡2(a)],是一个非定态.在时刻t表

示为

氉(x,t)=曇氄(p)expipx/淈-ip2

2m淈
æ
è
ç

ö
ø
÷t dp (10灡1灡6)

它所描述的波包沿x轴正方向运动,在此态下坐标x的平均值 煀x 代表经典粒子坐标,波包的群

速度相应于经典粒子的速度.与氉相应的时间反演态氉r 应该是描述沿x 轴负方向运动的波包.
在t时刻,它用下列波函数来描述:

氉r(x,t)=曇氄* (p)exp -ipx/淈-ip2t
2m

æ
è
ç

ö
ø
÷

淈
dp (10灡1灡7)

如图10灡2(b),t时刻的量子态氉r(x,t曚)=氉r(x,-t)与t时刻氉(x,t)相对应.而在(-t)时刻

氉r(x,t)=曇氄* (p)exp -ipx/淈+ip2t
2m

æ
è
ç

ö
ø
÷

淈
dp=氉

* (x,t) (10灡1灡8)

氉r(x,t)描述的波包位置在B点,运动方向沿(-x)轴方向,与波包氉(x,t)在t时刻的位置相同,

但运动方向相反.从式(10灡1灡8)与式(10灡1灡6)也可得出氉r=K氉.

图10灡2暋量子力学中量子态氉及其时间反演态氉r

设一个粒子的 Hamilton量不显含t,能量就是守恒量.设体系处于能量本征

态氉E(r),定态波函数表示为

氉E(r,t)=氉E(r)exp(-iEt/淈) (10灡1灡9)
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在定态下
踿踿踿踿

,坐标和动量的平均值都与时间无关
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.所以在寻找时间反演态氉r 满足的

条件式(10灡1灡1)中,可以不考虑计算平均值的时刻
踿踿踿踿踿踿踿踿踿踿踿

,即只要氉E(r)的时间反演态

氉Er满足下列要求:
(氉Er,r氉Er)= (氉E,r氉E)
(氉Er,p氉Er)=-(氉E,p氉E)

…
(10灡1灡10)

下面我们将看到,如取
氉Er(r)=K氉E(r)=氉

* (r)
则条件式(10灡1灡10)可以满足.

下面我们普遍地证明:对于无自旋粒子,如果取氉r=K氉=氉
*,则可以满足式

(10灡1灡1)的要求.即对于无自旋的粒子,时间反演算符

T =K* (10灡1灡11)

暋暋首先考虑粒子坐标的平均值暣r暤.前已提到,在(-t)时刻,时间反演态用氉r(r,

t)=氉
* (r,t)描述.在此时刻

暣r暤=曇(氉
* (r,t))*r氉

* (r,t)d3r

=曇氉
* (r,t)r氉(r,t)d3r (10灡1灡12)

后一式正是处于氉态下的粒子在时刻t的坐标的平均值.
其次,处于时间反演态下的粒子在时刻(-t)时动量的平均值为

暣p暤=曇(氉
* (r,t))* (-i淈

殼

)氉* (r,t)d3r

分部积分后,得
暣p暤=-曇氉

* (r,t)(-i淈

殼

)氉(r,t)d3r (10灡1灡13)

后者正是在氉态下的粒子的动量在时刻t的平均值的负值,即满足与经典力学中

时间反演态同样的要求.
类似还可以讨论角动量的平均值.这样,我们就论证了式(10灡1灡2)的正确性.

以上讨论的是无自旋的粒子.
下面我们来证明,对自旋为1/2的粒子,与量子态

踿踿踿踿氉(r,t)相应的时间反演态
踿踿踿踿踿踿踿踿

(反向运动态
踿踿踿踿踿

)为

氉r(r,t曚)=T氉(r,t曚)=T氉(r,-t)
即

T =-i氁yK (10灡1灡14)
为时间反演算符,氁y 为Pauli矩阵.

对于粒子坐标r,动量p(以及轨道角动量l等)的平均值的计算,由于它们与

自旋自由度无关,而(-i氁y)
+ (-i氁y)=氁

2
y=1,因而与式(10灡1灡12)、式(10灡1灡13)的

结果相似,结论不变.
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下面只讨论自旋角动量的平均值.在时间反演态T氉 之下,在时刻(-t)粒子氁
的平均值为

暣氁暤=曇[-i氁yK氉(r,t)]+氁[-i氁yK氉(r,t)]d3r

=曇焿氉(r,t)(-i氁y)
+氁(-i氁y)氉

* (r,t)d3r

=曇焿氉(r,t)氁y(i氁x +j氁y +k氁z)氁y氉
* (r,t)d3r

=曇焿氉(r,t)(-i氁x +j氁y -k氁z)氉
* (r,t)d3r

焿氉表示氉 的转置.利用

焺氁x =氁x,暋焺氁y =-氁y,暋焺氁z =氁z

可得

暣氁暤=-曇氉+ (r,t)氁氉(r,t)d3r (10灡1灡15)

后者正是氉态下的粒子的氁 在t时刻的平均值取负号.自旋并无经典力学对应,但
其动力学性质与轨道角动量相似.式(10灡1灡15)说明,自旋为1/2的粒子的时间反

演态氉r=T氉(T=-i氁yK)的取法,满足物理上的要求[见式(10灡1灡1),与轨道角动

量同样要求].

练习暋按式(10灡1灡14),T=-i氁yK,K(取复共轭)为反幺正算符.令T=UK,U=-i氁y.证明

U 为幺正算符.

角动量本征态的时间反演态

下面先讨论几个最简单的情况.

1曘自旋为1/2的粒子的sz 的本征态氈ms,在sz 表象中,

氈1
2 =

æ

è
ç

ö

ø
÷

1
0

,暋氈- 1
2 =

æ

è
ç

ö

ø
÷

0
1

其时间反演态表示为

T氈ms =-i氁yK氈ms

在Pauli表象中

-i氁y =
0 -1æ

è
ç

ö

ø
÷

1 0
得

T氈1
2 =

æ

è
ç

ö

ø
÷

0
1

=氈- 1
2

T氈- 1
2 =-

æ

è
ç

ö

ø
÷

1
0

=-氈1
2
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概括起来,
T氈ms = (-1)

1
2-ms氈-ms

(10灡1灡16)

2曘轨道角动量(l2,lz)的共同本征态 Ym
l

按通常用的球谐函数的Condon灢Shortley(C.S.)定义,

TYm
l = Ym*

l = (-1)mY-m
l (10灡1灡17)

其形式与式(10灡1灡16)有所不同.因此有人改变Ym
l 的定义,令

Ym
l =il(Ym

l )C.S. (10灡1灡18)

即添上一个相因子il.在此新定义下

TYm
l =K[il(Ym

l )C.S.]= (-1)l-mY-m
l (10灡1灡19)

其形式就与式(10灡1灡16)相似了.
3曘总角动量(l2,j2,jz)的共同本征态

氉jm = 暺
ms暣ml暤

暣lml
1
2msjm暤Yml

l氈ms (10灡1灡20)

按式(10灡1灡16)与式(10灡1灡19),氉jm的时间反演态为

T氉jm = 暺
ms(ml)

暣lml
1
2msjm暤(-1)l-mlYml

l (-1)
1
2-ms氈-ms

利用CG系数的对称性关系

暣lml
1
2msjm暤= (-1)-(l+1

2-j)暣l-ml
1
2-msj-m暤

可得出

T氉jm= (-1)j-m 暺
ms(ml)

暣l-ml
1
2-msj-m暤Y-ml

l 氈-ms

= (-1)j-m
氉j-m (10灡1灡21)

其形式与式(10灡1灡16)、式(10灡1灡19)一致.习惯上,记(-1)j-m
氉j-m=氉j煆m .

不难证明,时间反演算符
踿踿踿踿踿踿T 的作用

踿踿踿
,除了一个可能的相因子差异外
踿踿踿踿踿踿踿踿踿踿踿踿踿

,与绕
踿踿y轴

踿
(或
踿x轴

踿
)旋转
踿踿毿角的算符

踿踿踿踿Ry(毿)[或
踿Rx(毿)]的作用是等效的

踿踿踿踿踿踿踿
,它们都把
踿踿踿踿氉jm态变成

踿踿踿
氉j-踿m态

踿
,因为

Ry(毿)氉jm= 暺
m曚
Dj

m曚m(0,毿,0)氉jm曚 = 暺
m曚
dj

m曚m(毿)氉jm曚

= 暺
m曚

(-1)j+m曚毮m曚,-m氉jm曚 = (-1)j-m
氉j-m =氉j煆m (10灡1灡22)

而

Rx(毿)氉jm= 暺
m曚
Dj

m曚m -毿
2

,毿,毿æ

è
ç

ö

ø
÷

2 氉jm曚 = 暺
m曚

eim曚毿/2(-1)j+m曚毮m曚,-me
-im毿/2

氉jm曚

=e-im毿(-1)j-m
氉j-m = (-1)m氉j煆m (10灡1灡23)
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空穴态

原子或原子核壳模型中的“空穴态暠,是指从满壳组态抽去一个粒子所形成的

态.例如,从(2j+1)个粒子填满的j壳中抽去一个粒子而形成的空穴态,记为

|(jm)-1暤.对于空穴态|(jm)-1暤,当添加一个氉jm态粒子,并反对称化后,就构成满

壳态|J=0暤,即

A 暺
m
氉jm旤(jm)-1{ }暤曍旤J=0暤 (10灡1灡24)

A表示反对称化算符.但另一方面,J=0态也可如下构成:

旤J=0暤= 暺
m

暣jmj-m旤00暤氉jm氄j-m

= 1
2j+1暺m

(-1)j-m
氉jm氄j-m 曍 暺

m
氉jm氄j煆m (10灡1灡25)

与式(10灡1灡24)比较,可见空穴态
踿踿踿|(jm)-1暤在转动下的变换性质

踿踿踿踿踿踿踿踿踿
,与单粒子态
踿踿踿踿踿氄jm

的时间反演态
踿踿踿踿踿踿氄j煆m 相同

踿踿.

10灡2暋时间反演不变性

10灡2灡1暋经典力学中的时间反演不变性

图10灡3暋
(a)粒子在静势场中运动,具有时间反演不变性;

(b)粒子在给定外磁场
踿踿踿踿踿

中运动,不具有时间反演不变性

如图10灡3所示,设在t=0时刻粒子在空间P 点,位置记为r(0),速度为

v(0).在外力作用下,在t时刻粒子到达Q 点,位置为r(t),速度为v(t).若在t时

刻有一个相同的粒子从Q 点出发,但速度反向,即为-v(t),则在2t时刻,我们将

发现有两种可能的结局:
(1)粒子回到P 点,即位置为r(0),但速度反向,即为-v(0)[图10灡3(a)].这

种情况下,我们称力学规律在时间反演下具有不变性.例如,在静势场(staticpo灢
tential)中V(r)的粒子的运动就具有此性质[注1].
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(2)粒子不回到P 点.我们称力学规律不具有时间反演不变性.例如,一个带

电粒子在给定的外磁场
踿踿踿B中运动[图10灡3(b)],在2t时刻粒子将达到P曚点,而不

是回到P 点[注2].

[注1]暋对于只依赖于粒子坐标的静势场V(r),作用力F=-

殼

V(r),Newton方程具有时

间反演不变性,原因在于加速度是时间的偶函数.以一维运动为例,设t=0时刻,粒子坐标x(0)

与其时间反演态的坐标xr(0)重合,则在任何时刻t,xr(t)=x(-t),速度x
·
r(t)= d

dtxr(t)=

- d
d(-t)x(-t)=-x

·(-t),而

md2xr(t)
dt2 =md2x(-t)

dt2 =md2x(-t)
d(-t)2 =F[x(-t)]=F[xr(t)]

即时间反演态xr(t)满足的 Newton方程与x(t)相同.此即 Newton方程的时间反演不变性.
(注2)暋对于外磁场

踿踿踿B 中的荷电粒子运动,时间反演不变性不成立,并不意味着电动力学

中时间反演不变性不成立.如把产生磁场B的电流也看成体系的一部分,在进行时间反演变换

时,磁场B将反向,则时间反演不变性将得到保持.但这不是此处所说的“给定的外磁场暠的含

义.参阅:K.Gottfried,QuantumMechanics,Vol.1,p.314.Benjamin,1974;或见 R.Shan灢
ker,PrinciplesofQuantam Mechanics,2nd.ed.p.303.PlenumPress,NewYork,1994.

10灡2灡2暋量子力学中的时间反演不变性

量子力学中时间反演不变性的表述,与经典力学有相似之处,但也有不同的地

方.这是由于量子态的描述(用 Hilbert空间中一个矢量来描述)及其动力学规律

(含时间一次微商的Schr昳dinger方程中出现虚数i的特点所带来的.
与经典力学一样,如果在图10灡4(a)所示的相继的四个过程之后,体系回到原

来状态,则称该量子力学体系具有时间反演不变性栙,即
(时间平移t)·(时间反演)·(时间平移t)·(时间反演)=1

(桇) (栿) (栻) (栺)
或等当地表示成[图10灡4(b)]

(时间平移t)·(时间反演)=(时间反演)·(时间平移-t)
(桇曚) (栿曚) (栻曚) (栺曚)

按照Schr昳dinger方程

i淈灥
灥t氉

(t)=H氉(t) (10灡2灡1)

方程的解在形式上可表示为(设 H 不显含t)

氉(t)=e-iHt/淈
氉(0) (10灡2灡2)
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e-iHt/淈即时间平移算符.设T 为时间反演算符,图10灡4(b)的要求可表示为

e-iHt/淈T =TeiHt/淈 (10灡2灡3)

图10灡4

试考虑无穷小时间平移毮t,则
e-iH毮t/淈T =TeiH毮t/淈

即

(1-iH毮t/淈)T =T(1+iH毮t/淈)

毮t是任意的,所以

-iHT =TiH (10灡2灡4)
按照波函数的统计诠释,这里只有两种选择.

(1)T 为幺正算符,于是

-iHT =iTH
即

HT =-TH (10灡2灡5)
亦即

THT-1 =-H
但由此我们将得出 H 的本征值无下界的结论.因为假设

H氉=E氉 (10灡2灡6)
即氉为H 的本征态,相应本征值为E.利用式(10灡2灡5),有
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HT氉=-TH氉=-TE氉=-E(T氉) (10灡2灡7)
可见T氉也是H 的本征态,相应的本征值为(-E).一般说来,H(包含有动能项)
的本征值是无上界的,因此(-E)无下界,即 H 的本征值无下界.这在物理上是难

以接受的,应予以摒弃.
(2)T 为反幺正算符.此时由式(10灡2灡4)可得出

HT =TH暋 或 暋[T,H]=0 (10灡2灡8)
这并不带来什么困难,是物理上允许的.所以时间反演算符

踿踿踿踿踿踿T 应该为反幺正算符
踿踿踿踿踿踿踿踿.

这是 Wigner得出的重要结论.
按8灡2节,式(8灡2灡20),一个反幺正算符总可以表示成

T =UK (10灡2灡9)
其中U 为幺正算符,K 为取复共轭运算.这样,式(10灡2灡8)可以表示为

HUK =UKH
上式左乘U+ ,右乘K-1,可得

H* =U+ HU (10灡2灡10)
因此,如果能找到一个幺正变换

踿踿踿踿踿踿踿踿踿踿踿U,并且使式
踿踿踿踿

(10灡2灡10)成立
踿踿

,则体系具有时间反演
踿踿踿踿踿踿踿踿踿

不变性
踿踿踿.例如,对于无自旋粒子,前面已证明T=K,即U=1,此时式(10灡2灡10)归
结为

H* =H (10灡2灡11)

10灡2灡3暋Schr昳dinger方程与时间反演不变性

下面讨论无自旋粒子
踿踿踿踿踿

在实势场
踿踿踿V(r)=V* (r)中的运动.Schr昳dinger方程为

i淈灥
灥t氉

(r,t)= -淈2

2毺

殼

2+V(ræ

è
ç

ö

ø
÷)氉(r,t) (10灡2灡12)

取复共轭

-i淈灥
灥t氉

* (r,t)= -淈2

2毺

殼

2+V(ræ

è
ç

ö

ø
÷)氉

* (r,t) (10灡2灡13)

把t曻-t,则

i淈灥
灥t氉

* (r,-t)= -淈2

2毺

殼

2+V(ræ

è
ç

ö

ø
÷)氉

* (r,-t) (10灡2灡14)

可以看出,时间反演态氉
* (r,-t)满足的方程(10灡2灡14)与氉(r,t)满足的方程

(10灡2灡12)完全相同.因此,若氉(r,t)是Schr昳dinger方程的一个解,则相应的时间

反演态氉
* (r,t曚)=氉

* (r,-t)也是Schr昳dinger方程的一个解.这就是Schr昳dinger
方程的时间反演不变性,这是由实势V* =V(因而 H* =H)得以保证的[参阅

式(10灡2灡11)].
对于一般情况,Schr昳dinger方程

i淈灥
灥t氉

(t)=H氉(t) (10灡2灡15)
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取复共轭,有

-i淈灥
灥t氉

* (t)=H*氉* (t)

把t曻t曚=-t,得栙

i淈灥
灥t氉

* (-t)=H*氉
* (-t)

假设 H* =U+HU[见式(10灡2灡10)],则

i淈灥
灥t氉

* (-t)=U+ HU氉
* (-t)

用U 对上式运算,得

i淈灥
灥tU氉

* (-t)=HU氉
* (-t) (10灡2灡16)

可以看出,时间反演态氉r(t曚)=UK氉(-t)=U氉
* (-t)满足的Schr昳dinger方程

(10灡2灡16)与氉(t)满足的方程(10灡2灡15)相同.设氉(t)是Schr昳dinger方程的解,则
相应的时间反演态UK氉(-t)也是Schr昳dinger方程的解.这就是Schr昳dinger方

程的时间反演不变性.它由条件式(10灡2灡10)得以保证.
Wigner指出,一个量子体系具有时间反演不变性,[T,H]=0,并不导致什么

守恒量.这是因为T 是反线性算符的缘故.在量子力学中(采用 Schr昳dinger图

像),不显含t的算符A 随时间的演化遵守如下规律:

d
dtA = 1

i淈
[A,H] (10灡2灡17)

因此,如[A,H]=0,则d
dtA=0,即A 为守恒量.但要小心,在推导式(10灡2灡17)时,

用到了
踿踿踿A 为线性算符的性质

踿踿踿踿踿踿踿踿
栚.如A 为反线性算符,就得不出式(10灡2灡17).

10灡2灡4暋T2 本征值与统计性的关系

按照时间反演算符T 的物理意义,T2氉与氉 应表示同一个量子态,因而它们

最多可以差一个常数因子.令
T2 =cI (10灡2灡18)

(I为恒等算符).下面证明

c=暲1 (10灡2灡19)
证明1暋试计算(T氄,氉),氄与氉 是两个任意的量子态.暂时令T氄=f,利用反

幺正算符的性质[见10灡2节,式(10灡2灡19)],可知

(T氄,氉)= (f,氉)= (T氉,Tf)= (T氉,T2氄)=c(T氉,氄) (10灡2灡20)
重复类似的运算,得
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栚

通常采用Schr昳dinger图像,并假设 H 不随时间改变.若换到相互作用图像中,或 H 显含t,则条件

(10灡2灡11)应换为 H*(-t)=U+H(t)U.
参阅,卷栺,5灡1节.



(T氄,氉)=c2(T氄,氉)
由此得c2=1,所以,c=暲1.

证明2暋利用T=UK,U 为幺正算符UU+ =U+U=I,而K 为取复共轭运算,
因此

T2 =UKUK =UU*

但T2=cI,所以

UU* =cI
左乘U+ ,得

U* =cU+

转置得

U+=cU*

右乘U,得
I=cU*U =c2U+U =c2I

所以c2=1,c=暲1.证毕.
对于无自旋粒子,T=K,T2=K2=1,所以

c=+1暋(无自旋粒子) (10灡2灡21)
对于自旋为1/2的粒子,

T=-i氁yK
T2= (-i氁yK)(-i氁yK)=氁yK氁yK

=氁y氁
*
y =-氁2

y =-1
所以

c=-1暋(自旋为1/2的粒子) (10灡2灡22)
更一般说,对于Bose子c=+1;对于Fermi子,c=-1.对于Bose子组成的多

体系c=+1.对于由N 个Fermi子组成的多体系,c=(-1)N.
例暋一个角动量为J的体系,

T氉JM = (-1)J-M
氉J-M

T2氉JM = (-1)J-MT氉J-M = (-1)J-M+J+M
氉JM = (-1)2J氉JM

所以

c= (-1)2J =
+1,暋J= 整数(包括0)

-1,暋J={ 半奇数
(10灡2灡23)

10灡2灡5暋Kramers简并

对于一个 Fermi子,c=-1.试问氄 与T氄 是否代表同一个量子态? 在式

(10灡2灡20)中,取氉=氄,得
(T氄,氄)=-(T氄,氄)=0 (10灡2灡24)

这表明对于一个Fermi子,T氄态与氄 态正交,因此代表不同的态.
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假设体系具有时间反演不变性,[T,H]=0.此时,如氄是H 的一个本征态,则
容易看出T氄也是H 的一个本征态,而且它们对应的能量本征值相同.但T氄与氄
是两个不同的态,所以 H 的本征态出现简并.这称为 Kramers简并.

10灡3暋力学量的分类与矩阵元的计算

在7灡3灡1节中我们讨论过力学量按照它们在转动下的性质进行分类,并引进

了不可约张量的概念.在卷栺,5灡4灡3节中,我们讨论过力学量按照它们在空间反

射下的性质而分成偶算符和奇算符两类.与此类似,力学量也可以按照它们在时间
踿踿踿踿踿踿踿踿踿踿踿踿踿

反演下的性质分为两类
踿踿踿踿踿踿踿踿踿踿.

设力学量算符F 在时间反演T 之下

TFT-1 =毲F (10灡3灡1)

上式中毲2=1.上式也可以表示为T-1FT=毲F.若毲=+1,则称F 为第一类算符
踿踿踿踿踿.

例如,粒子坐标r,动能p2/2m,静势V(r),角动量平方(l2,s2,j2),自旋轨道耦合

毼(r)s·l,电四极矩Q 等,都属于这一类.若毲=-1,则称F 为第二类算符
踿踿踿踿踿.例如,粒

子的动量p,角动量l,自旋s,总角动量j,磁矩毺等,都属于这一类.
以下讨论涉及时间反演态的矩阵元.令

旤焵毻暤=T旤毻暤 (10灡3灡2)

表示|毻暤的时间反演态栙.下面计算涉及时间反演态的矩阵元暣焻毺|F|焵毻暤,暣毺|F|焵毻暤等.
利用反幺正算符的性质(参阅8灡2节)

(T氉毺
,FT氉毻)= (T氉毺

,TT-1FT氉毻)=毲(T氉毺
,TF氉毻)

=毲(F氉毻,氉毺
)=毲(氉毺

,F氉毻)*

所以

暣焻毺 F焵毻暤=毲暣毺 F毻暤* (10灡3灡3)
特例暋毺=毻(平均值)

暣焵毻F焵毻暤=毲暣毻F毻暤* (10灡3灡4)

若F 为可观测量(F+ =F),则暣毻|F|毻暤为实,因而

暣焵毻F焵毻暤=毲暣毻F毻暤 (10灡3灡5)

另外,
(氉毺

,FT氉毻)= (氉毺
,TT-1FT氉毻)=毲(氉毺

,TF氉毻)
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栙 例如,设|毻暤=|jm暤为(j2,jz)的共同本征态,则|焵毻暤=(-1)j-m|j-m暤.注意:对于 Fermi子,由于

T2=-1,所以|毻暤=-T|焵毻暤.



=毲(TTF氉毻,T氉毺
)=c毲(F氉毻,T氉毺

)

=c毲(T氉毺
,F氉毻)*

所以

暣毺 F焵毻暤=c毲暣焻毺 F毻暤* (10灡3灡6)

=
-毲暣焻毺 F毻暤* , 对于Fermi子

+毲暣焻毺 F毻暤* , 对于Bose{ 子

利用c2=1,毲
2=1,上式还可表示成

暣焻毺 F毻暤=c毲暣毺 F焵毻暤* (10灡3灡7)
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第11章暋相对论量子力学

Schr昳dinger方程是量子力学的基本方程,是非相对论性的.在此方程中,时间

与空间坐标显然处于不同等的地位,

i淈灥
灥t氉= -淈2

2m

殼

2+æ

è
ç

ö

ø
÷V 氉

Schr昳dinger方程描述的粒子,概率(或粒子数)是守恒的.在这里没有粒子产生和

湮没的现象.事实表明,Schr昳dinger方程对于描述原子和分子的绝大多数现象,甚
至包括低能核物理的许多现象,是很成功的.这不足为怪,因为在原子和分子中,粒
子运动速度远比光速小(v/c曋10-2),相对论效应是很小的,所以Schr昳dinger方程

是一个好的近似栙.但一涉及高能领域
踿踿踿踿踿踿

,实物粒子产生与湮没就是一个普通现象
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

高能现象涉及的不仅是粒子数相同的各量子态,更多的是涉及粒子数不同的量子

态.在此领域,非相对论性的Schr昳dinger方程就无能为力了.
差不多与Schr昳dinger方程提出的同时,就有人提出了相对论性波动方程栚.

在自由粒子的情况下,方程表示为

-淈2 灥2

灥t2氉= (-淈2c2 殼
2+m2c4)氉

习惯上称为 Klein灢Gordon方程,见 11灡1 节.与 Schr昳dinger方程明显不同,在

Klein灢Gordon方程中出现了波函数对时间的二次导数.如果与非相对论性的

Schr昳dinger方程一样,把 Klein灢Gordon方程看成描述单粒子的波动方程,则不仅

对于描述粒子的产生、湮没或转化,无能为力,而且还将遇到新的严重困难(见

11灡1节).由于这些原因,Klein灢Gordon方程在提出后达7年之久,未引起人们重

视.直到1934年,Pauli和 Weisskopf才给予它以新的解释栛:它不是一个单粒子波

动方程,而是一个场方程(正如 Maxwell方程是电磁场方程一样),并对它进行量

子化.之后,才重新引起人们注意.由于 Klein灢Gordon方程中的波函数只有一个分

量,它所描述的粒子是没有自旋的
踿踿踿踿踿踿踿踿踿踿踿踿.在实验上发现(1947年)毿介子(自旋为0)后,

人们才普遍用 Klein灢Gordon方程来描述毿介子场.
为了克服 Klein灢Gordon方程所碰到的负概率困难,Dirac提出电子的相对论
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栛

在原子核中,v/c曋1/4,相对论效应也比较小.
E.Schr昳dinger,Ann.derPhysik81(1926)109;O.Klein,Z.Phys.37(1926)895;41(1927)

407;W.Gordon,Z.Phys.40(1926)117.
W.PauliandV.Weisskopf,Helv.Phys.Acta.7(1934)709.



性波动方程栙.为了把电子的自旋自由度考虑进去,Dirac从一开头就引进了多分
踿踿

量波函数
踿踿踿踿

(见11灡2节),并定义一个正定的概率密度,在 Dirac理论中,电子具有自

旋1/2(淈)而内禀磁矩毺B= e淈
2mc

(Bohr磁子)乃是方程的必然后果.根据电子在

Coulomb引力势中的Dirac方程,还可以对氢原子光谱的精细结构给予满意的说
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

明
踿.所以,尽管把Dirac方程看成一个单电子方程还存在负能级的困难,它所取得

的成功仍然引起人们很大的重视,并在相当长一段时期中被人们视为唯一可信的

相对论性波动方程.在Pauli和 Weisskopf(1934)重新解释 Klein灢Gordon方程之

后,人们才认识到,Klein灢Gordon方程,Dirac方程以及 Maxwell方程都应理解为场方

程,分别描述自旋为0,1
2

(淈)以及淈(静质量m=0)的场,分别被称为标量(scalar)场、

旋量(spinor)场和矢量(vector)场(m=0)的场方程.在本章中,我们先引进 Klein灢Gor灢
don方程和Dirac方程,然后着重讨论Dirac方程的基本性质以及所取得的主要成果.
但讨论仍局限在单粒子波动方程的框架内栚,还不涉及场的量子化.

我们知道,在相对论性理论中,人们一些习惯的概念要作相应的修改.例如,讨
论粒子在空间的概率分布密度氀(x,y,z,t),就涉及在某一时刻粒子的坐标的概

念.在非相对论量子力学中,认为粒子在一定时刻可以有完全确切的空间坐标,或
者说粒子可以确切地定域于空间某一点,而在相对论量子力学中

踿踿踿踿踿踿踿踿踿
,不可能把单粒子
踿踿踿踿踿踿踿

局域到比它的
踿踿踿踿踿踿Compton波长

踿踿毸-踿C=踿淈/踿mc
还要小的空间区域
踿踿踿踿踿踿踿踿

中.例如,把粒子定域

到殼x<毸-C/4区域中,按照不确定度关系

殼p燁 淈
2

1
殼x曋2淈/毸-C =2mc

因而粒子能量

E= c2p2+m2c4 曋 c2(殼p)2+m2c4 >2mc2

在这样高能量情况下,可能出现“粒子对暠产生现象,因而讨论一个孤立的单粒子的

位置概率分布就失去意义.所谓“负概率暠的困难,就与此有密切关系.对于光子,m
=0,v=c,没有非相对论情况.把一个光子定域于空间一点是不可能的,这是人们

已熟知的.
尽管如此,也还存在这样一种情况,即在有些问题中,粒子产生和湮没等现象

的影响并不很严重.此时,从单粒子理论也可得出许多重要的结果.例如,从 Dirac
方程出发,可以给出氢原子光谱的精细结构、电子自旋和内禀磁矩、自旋 轨道耦合
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P.A.M.Dirac,Proc.Roy.Soc.(London)A117(1928)610.
参阅:W.Pauli,DieAllgemeinenPrinzipenderWellenMechanik,HandbuchderPhysik,Band24

(Springer灢Verlage,1946);P.A.M.Dirac,ThePrinciplesofQuantum Mechanics,4thed.OxfordUniversity
Press,1958;M.E.Rose,RelativisticElectronTheory,JohnWiley&Sons,1961;L.Schiff,QuantumMechan灢
ics,3rded.,McGraw灢Hill,1967;R.Shanker,PrinciplesofQuantumMechanics,2nded.,PlenumPress,1994.



作用(Thomas项)等,都与实验相当符合.Dirac还预言了正电子(positron,电子的

“反粒子暠)的存在,并在1932年被观测证实栙.当然,要进一步更细致地说明实验

结果(如电子的反常磁矩、氢原子能级的Lamb移动等),或处理粒子产生和湮没不

可忽略的一些现象,单粒子理论就无能为力了.关于把场进行量子化,并用以描述

高能物理领域中粒子产生和湮没等现象的内容,读者可参阅量子场论的书籍.

11灡1暋Klein灢Gordon方程

在非相对论量子力学中,自由粒子的波动方程为

i淈灥
灥t氉

(r,t)=-淈2

2m

殼

2氉(r,t) (11灡1灡1)

这个方程可以在经典自由粒子的能量 动量关系式

E= p2

2m
(11灡1灡2)

中作如下替换:

E 曻i淈灥
灥t

,暋暋p曻-i淈

殼

(11灡1灡3)

并作用于波函数氉(r,t)上而得到.按deBroglie假定,具有一定动量(能量)的自由

粒子,相应的波为平面单色波

氉(r,t)曍exp[i(k·r-氊t)] (11灡1灡4)
其中波矢k和角频率氊 与粒子动量p 和能量E 的关系如下:

p=淈k,暋暋E=淈氊 (11灡1灡5)
按式(11灡1灡2)与式(11灡1灡5),平面单色波(11灡1灡4)显然满足方程(11灡1灡1).容易证

明,描述自由粒子的一般波函数,即波包(由许多平面单色波叠加而成)

氉(r,t)=曇氄(k)exp[i(k·r-氊t)]d3k (11灡1灡6)

也满足波动方程(11灡1灡1).
从方程(11灡1灡1)出发,可以得出(卷栺,2灡2灡2节)

灥
灥t氀+

殼

·j=0 (11灡1灡7)

其中

氀=氉
*
氉曒0暋暋暋暋暋 (11灡1灡8)

j=-i淈
2m

(氉
* 殼

氉-氉

殼

氉
* ) (11灡1灡9)

= 1
2m氉

*p
暷

氉+复共轭项 =Re氉
*v暷氉
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v
暷
=p

暷

/m 为速度算符,氀为粒子在空间的概率密度,j为概率流密度.式(11灡1灡7)
反映局域的(local)概率守恒.对于得出此结果,方程(11灡1灡1)中只含有波函数对时

间的一次微商是至关紧要的.
以上做法,可以自然地推广到相对论情况.按照特殊相对论,自由粒子的能量

动量关系为(设m 为粒子的静质量)

E2 =c2p2+m2c2 (11灡1灡10)
试作与式(11灡1灡3)同样的替换,并作用于波函数氉(r,t)上,则得

-淈2 灥2

灥t2氉= (-淈2c2 殼

2+m2c4)氉 (11灡1灡11)

这就是自由粒子的 Klein灢Gordon方程.不难证明,平面单色波式(11灡1灡4)或波包

式(11灡1灡6)都满足此 Klein灢Gordon方程.但应注意,此时氊与k的关系应为

淈2氊2 =淈2c2k2+m2c4 (11灡1灡12)
按式(11灡1灡10),粒子能量为

E=暲 p2c2+m2c4 =暲 淈2c2k2+m2c4 (11灡1灡13)

图11灡1

这里出现了“负能量暠问题.所谓“负能量暠问题在

相对论力学(无论是经典力学,或者量子力学)中
普遍存在.但在经典力学领域,由于能量是连续

变化,而观测到的粒子的初始能量总是正的(E
曒mc2>0),所以在以后任何时刻,能量保持为

正,不会引起什么麻烦.但在量子力学中,粒子可

以跃迁(图 11灡1),“负能量暠困难就应认真对

待了.
与上述困难密切相关的还有“负概率暠困难.

由氉
* 暳(11灡1灡11)-氉暳(11灡1灡11)* ,可得出

-淈2 灥
灥t氉

* 灥
灥t氉-氉

灥
灥t氉[ ]* =-淈2c2 殼

·(氉
* 殼

氉-氉

殼

氉* )

令

j=-i淈
2m

(氉
* 殼

氉-氉

殼

氉
* )

氀= i淈
2mc2 氉

* 灥
灥t氉-氉

灥
灥t氉

æ

è
ç

ö

ø
÷

* (11灡1灡14)

则

灥
灥t氀+

殼

·j=0 (11灡1灡15)

形式上与非相对论情况下的式(11灡1灡7)一样.但按式(11灡1灡14),氀不一定是正定
踿踿踿踿踿踿

的
踿

,所以很难把氀解释为粒子在空间的概率密度.历史上曾经有过各种尝试,企图

修改氀和j 的定义来克服此困难,但均未成功.其要害是 Klein灢Gordon方程中含
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有波函数对时间的二阶导数
踿踿踿踿踿踿踿踿踿踿踿

,因而氀不可避免地含有氉 和灥
灥t氉.对于含有对时间的

二阶导数的波动方程,只当氉(r,t=0)和灥氉
灥t t=0

都给定后,才能确定它在t>0时刻

的解氉(r,t).但初条件氉(r,t=0)和灥氉
灥t t=0

是可以任意给定的.因此得出的氀(r,t)

完全有可能在空间某些区域中为正,而在另外一些区域中为负.由于这个严重困

难,Klein灢Gordon方程被搁置达7年之久.直到1934年,Pauli与 Weisskopf把

Klein灢Gordon方程重新解释为场方程,并把q氀与qj 分别解释为电荷密度和电流

密度(q为粒子电荷,可正可负),并把灥
灥t

(q氀)+

殼

·(qj)=0解释为局域的电荷守

恒(但粒子数不一定守恒).现在人们已认识到,应该把 Klein灢Gordon方程看成一

个标量场
踿踿踿

(scalerfield)方程
踿踿

,场量子的自旋为
踿踿踿踿踿踿踿0,可用来描述自旋为

踿踿踿踿踿踿踿踿0的粒子
踿踿踿

,例如

毿介子.显然,用它来描述自旋为1
2

的粒子(如电子、质子或中子)是不恰当的.

1灡 非相对论极限

在非相对论极限(v/c烆1)情况下,粒子的能量(正)可近似表示为

E=mc2(1+p2/m2c2)1/2

曋mc2+p2/2m- p4

8m3c2 +… (11灡1灡16)

第一项是粒子静质量所相应的能量,第二项为非相对论中粒子的动能,第三项是相

对论修正中的首项.令

氉(r,t)=氄(r,t)exp(-imc2t/淈) (11灡1灡17)
(目的是把不变的静质量相应能量的影响分离出去.)代入 Klein灢Gordon方程,即
可得出栙

暋暋栙i淈 灥
灥t氉= i淈 灥

灥t氄+mc2( )氄 exp(-imc2t/淈)曋mc2氄exp(-imc2t/淈)[因非相对论极限下i淈 灥
灥t氄曍Et氄,

而Et(动能)烆mc2]

-淈2 灥2

灥t2氉= -淈2 灥2

灥t2氄+2mc2i淈 灥
灥t氄+m2c4( )氄 exp(-imc2t/淈)

曋 2mc2i淈 灥
灥t氄+m2c4( )氄 exp(-imc2t/淈)

代入方程(11灡1灡11),即得出方程(11灡1灡18).

i淈灥
灥t氄

(r,t)=-淈2

2m

殼

2氄(r,t) (11灡1灡18)

这正是非相对论情况下自由粒子的Schr昳dinger方程.
用式(11灡1灡17)代入式(11灡1灡14),得
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氀(r,t)=氄
* (r,t)氄(r,t)曒0 (11灡1灡19)

此时,氀是正定的
踿踿踿踿

,因而可赋予粒子的空间分布密度以概率密度的意义.

2灡 有电磁场的情况

设粒子荷电q,在电磁势(A,毤)中运动.与非相对论情况一样,作下列替换:

p曻P-q
c
A暋暋(P=-i淈

殼

)

i淈灥
灥t曻i淈灥

灥t-q毤 (11灡1灡20)

于是 Klein灢Gordon方程化为

i淈灥
灥t-qæ

è
ç

ö

ø
÷毤
2

氉= c2 P-q
c

æ

è
ç

ö

ø
÷A
2

+m2c
é

ë
êê

ù

û
úú

4
氉 (11灡1灡21)

在非相对论极限下,同样令

氉=氄exp(-imc2t/淈) (11灡1灡22)
代入式(11灡1灡21),得栙

暋暋栙 暋暋暋 i淈 灥
灥t-q( )毤 氉= mc2氄+ i淈 灥

灥t-q( )毤[ ]氄 exp(-imc2t/淈)

暋暋暋暋暋暋 i淈 灥
灥t-q( )毤

2

氉= m2c4氄+2mc2 i淈 灥
灥t-q( )毤 氄+ i淈 灥

灥t-q( )毤
2

[ ]氄 ·exp(-imc2t/淈)

曋 m2c4毤+2mc2 i淈 灥
灥t-q( )毤[ ]氄 exp(-imc2t/淈)

i淈灥
灥t氄 = 1

2m P-q
c

æ

è
ç

ö

ø
÷A
2

+q
é

ë
êê

ù

û
úú毤氄 (11灡1灡23)

这正是非相对论情况下荷电q的粒子在电磁势(A,毤)中的Schr昳dinger方程.

练习暋试把 Klein灢Gordon方程应用于氢原子中的电子,此时q=-e毤=+e/r,A=0,方程

(11灡1灡21)相应的能量本征方程

(-淈2c2 殼

2 +m2c4)氉= E+e2

( )r
2

氉 (11灡1灡24)

取氉为能量和角动量(l2,lz)的共同本征态,

氉(r)=Rl(r)Ym
l (毴,氄)

l=0,1,2,…;暋m =l,l-1,…,-l
(11灡1灡25)

则Rl(r)满足径向方程

d2

dr2 + 2
r

d
dr+ B

r - C
r2 -( )[ ]A Rl(r)=0 (11灡1灡26)

式中

A = E2 -m2c4 /淈2c2,B=2Ee2/淈2c2

C=l(l+1)-毩2,暋毩=e2/淈c曋1/137(精细结构常数)

考虑到在r曻0和r曻曓时Rl 的渐近行为,不妨令
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R(r)=r毭e-r/毬G(r),暋毬= A -1,暋毭= (l+1/2)2 -毩2 - 1
2

试求出G(r)满足的方程.可以证明要求G(r)中断为一个多项式的条件为

B/2 A = (nr+l+1)+毭-l=n+毭-l (11灡1灡27)

nr=0,1,2,…,n=nr+l+1=1,2,3,…分别是径向量子数和主量子数.由此可以得出能量本征

值E

E=mc2 1+毩2

n曚( )2

-1/2

暋暋暋暋暋暋暋 (11灡1灡28)

n曚= (nr+1/2)+[(l+1/2)2 -毩2]1/2,暋nr,l=0,1,2,…
对精细结构常数毩作幂级数展开,可得出

E/mc2 =1-毩2

2n2 -毩4

2n4
n

(l+1/2)-[ ]3
4 +… (11灡1灡29)

n=nr+l+1=1,2,3,…
给定n下,l=0,1,…,n-1.所以能级的精细结构分裂

殼E=En,l=n-1 -En,l=0 =毩4

n3
n-1

n-1/( )2 mc2 (11灡1灡30)

其值约为 Dirac方程求得的裂距的2倍,而与实验观测明显不符栙.

3灡Klein灢Gordon方程的协变形式

为了明显展示方程的相对论不变性,常把它们写成协变的(covariant)形式.令
x毺 = (r,ict)

A毺 = (A,i毤)

p毺 = (p,iE/c)

j毺 = (j,ic氀)

(11灡1灡31)

则自由粒子的 Klein灢Gordon方程(11灡1灡11)可写成

灥
灥x毺

灥
灥x毺

氉=m2c2

淈2 氉 (11灡1灡32)

在上式中,对重复的指标毺要求和,毺=1,2,3,4,下同,而方程(11灡1灡15)化为

灥
灥x毺

j毺 =0 (11灡1灡33)

荷电粒子在电磁场中的 Klein灢Gordon方程(11灡1灡21)则可写成:

灥
灥x毺

-
iq
淈c

Aæ

è
ç

ö

ø
÷毺

2

氉=m2c2

淈2 氉 (11灡1灡34)

上式也可以从自由粒子的 Klein灢Gordon方程(11灡1灡32)作如下替换

灥
灥x毺

曻 灥
灥x毺

-
iq
淈c

A毺
(11灡1灡35)

而得出.

·804·
栙 参阅钱伯初、曾谨言,量子力学习题精选与剖析,第三版,18灡3题灡北京:科学出版社,2008.



11灡2暋Dirac方程

11灡2灡1暋Dirac方程的引进

Dirac试图解决 Klein灢Gordon方程遇到的困难,在1928年提出了电子的相对

论性波动方程.作为描述单电子的波动方程,他考虑了如下几条原则栙:
(1)保证概率密度正定,即氀(r,t)曒0;
(2)保证概率守恒,即

d
dt曇(全)

氀(r,t)d3x=0

(3)作为相对论性波动方程,要求方程具有Lorentz不变性,(即在各惯性参考

系中,方程的形式不变).
Dirac参照非相对论量子力学中Pauli描述电子的二分量波函数的理论(即考

虑电子的一个新自由度———自旋),提出电子的波函数应写成多分量的形式,即

氉毻(r,t),暋暋毻=1,2,…,N (11灡2灡1)
或写成列矢(columnvector)

氉=

氉1(r,t)

氉2(r,t)
汅

氉N(r,t

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

)

(11灡2灡1曚)

电子的空间概率密度定义为

氀(r,t)= 暺
N

毻=1
氉

*
毻 (r,t)氉毻(r,t)

= (氉
*
1 (r,t),氉

*
2 (r,t),…)

氉1(r,t)

氉2(r,t)
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

汅

=氉+ (r,t)氉(r,t) (11灡2灡2)
式中氉

+ 是氉的复共轭转置,表示成行矢(rowvector)形式

氉+ (r,t)= (氉
*
1 (r,t),氉

*
2 (r,t),…,氉

*
N (r,t)) (11灡2灡3)

由式(11灡2灡2)定义的氀(r,t)显然是正定的.
为保证概率守恒,即

d
dt曇(全)氀(r,t)d3x= 暺

毻曇
灥氉

*
毻

灥t
·氉毻+氉

*
毻 ·灥氉毻

灥
æ

è
ç

ö

ø
÷

t d3x=0 (11灡2灡4)
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栙 参阅 W.Pauli,DieAllgemeinenPrinzipenderWellenMechanik,HandbuchderPhysik,Band24.
Springer灢Verlage,1946.



当氉毻 已给定时,灥
灥t氉毻 就不能随便取.所以波动方程只能含波函数对时间的一次微

踿踿踿踿踿踿踿踿踿踿踿踿踿
商
踿.再根据相对论不变性条件(3),空间坐标应与时间坐标处于同等的地位,波动方

程中也只应出现波函数对空间坐标的一次微商
踿踿踿踿踿踿踿踿踿踿踿踿踿.因此,Dirac建议,自由电子的相对

论性波动方程取为

1
c

灥
灥t氉毻+暺

毺

毩毻毺·

殼

氉毺 +imc
淈毬毻毺氉

æ

è
ç

ö

ø
÷

毺 =0 (11灡2灡5)

其中系数毩(毩x,毩y,毩z)和毬无量纲.由于氉是N 分量波函数,毩和毬均为N暳N 矩

阵.考虑到时间与空间的均匀性,毩和毬应与(r,t)无关,即为常数矩阵元组成的矩

阵.若采用矩阵形式,式(11灡2灡5)可简记为

1
c

灥
灥t氉+毩·

殼

氉+imc
淈毬氉=0 (11灡2灡6)

或写成与Schr昳dinger方程相似的形式

i淈灥
灥t氉=H氉 (11灡2灡7)

H =-i淈c毩·

殼

+mc2
毬=c毩·p+mc2

毬
此即自由电子的 Dirac方程.矩阵毩 与毬 的性质待定.但应注意:(a)Dirac方程

(11灡2灡7)中氉为多分量波函数,而Schr昳dinger方程中的波函数为单分量;(b)Di灢
rac方程(11灡2灡7)中只含动量算符p的一次项,而Schr昳dinger方程中则含p2 项.

首先,为保证概率守恒,要求 H 为厄米算符,即要求毩和毬为厄米矩阵,

毩+=毩,暋暋毬+=毬 (11灡2灡8)
即

毩*
毻毺 =毩毺毻

,暋暋毬
*
毻毺 =毬毺毻

利用此性质,不难从式(11灡2灡7)推出概率守恒方程

1
c

灥
灥t

(氉+氉)+氉+毩·

殼

氉+(

殼

氉+)·毩氉=0 (11灡2灡9)

令

氀=氉+氉= 暺
毻
氉

*
毻氉毻暋暋暋暋

j=c氉+毩氉=c暺
毻毺
氉

*
毻毩毻毺氉毺

(11灡2灡10)

则

灥
灥t氀+

殼

·j=0 (11灡2灡11)

此即局域的概率守恒的表示式.
其次,与电磁场方程类比.我们知道,电场E和磁场B 的各分量满足的联立方

程组(Maxwell方程),是含它们对时间的一阶微商的方程.但它们每一个单个分量

满足的波动方程,则是含时间和空间坐标的二阶微商的方程(D狆Alembert方程).
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与此类比,对于Dirac波函数,我们也要求它的每一个单个分量满足时间和空间坐

标的二阶微分方程,即

1
c2

灥2

灥t2氉-

殼

2氉+m2c2

淈2 氉=0 (11灡2灡12)

(当m=0时,上式称为D狆Alembert方程.)式(11灡2灡12)与Klein灢Gordon方程形式

上相似,但 Klein灢Gordon方程中波函数氉只有一个分量,而式(11灡2灡12)中的氉是

一个多分量波函数.换言之,它的每一个分量单独都满足方程(11灡2灡12).
下面来讨论,要求氉满足方程(11灡2灡12)会对Dirac方程中的毩和毬有什么限

制.试用

1
c

灥
灥t-暺

3

i=1
毩i

灥
灥xi

-imc
淈

æ

è
ç

ö

ø
÷毬

从左对式(11灡2灡6)运算,得

1
c

灥
灥t- 暺

i
毩i

灥
灥xi

+imc
淈

æ

è
ç

ö

ø
÷[ ]毬

暋· 1
c

灥
灥t+ 暺

k
毩k

灥
灥xk

+imc
淈

æ

è
ç

ö

ø
÷[ ]毬 氉=0

即

1
c2

灥2

灥t2 -暺
ik
毩i毩k

灥
灥xi

灥
灥xk

+m2c2

淈2 毬2-imc
淈 暺

i

(毩i毬+毬毩i)灥
灥x[ ]

i
氉=0

算符次序对称化后,上式化为

1
c2

灥2

灥t2氉-1
2暺

ik

(毩i毩k+毩k毩i)灥
灥xi

灥
灥xk

氉+m2c2

淈2 毬
2
氉-imc

淈 暺
i

(毩i毬+毬毩i)灥
灥xi

氉=0

(11灡2灡13)
与式(11灡2灡12)比较,就要求

1
2

(毩i毩k+毩k毩i)=毮ik (11灡2灡14a)

毬
2 =1 (11灡2灡14b)

毩i毬+毬毩i =0 (11灡2灡14c)
其中式(11灡2灡14a)即

毩2
i =1,暋暋i=x,y,z

毩i毩k =-毩k毩i,暋暋i曎k (11灡2灡14a曚)
概括起来,式(11灡2灡14)可表示成:

(1)毩2
x=毩2

y=毩
2
z=毬

2=1;
(2)毩x、毩y、毩z、毬之中任何两个算符都是反对易的.

式(11灡2灡14)及厄米性要求式(11灡2灡8),概括了毩与毬的全部代数性质.
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11灡2灡2暋电子的速度算符,电子自旋

自由电子的Dirac方程为[见式(11灡2灡7)]

i淈灥
灥t氉=H氉暋暋暋暋

H =c毩·p+毬mc2 (11灡2灡15)
显然

[p,H]=0 (11灡2灡16)
即动量为守恒量.这是意料中的事,因为自由电子具有空间均匀性.

考虑到

d
dtx = 1

i淈
[x,H]= 1

i淈
[x,c毩·p+毬mc

2]= 1
i淈

[x,c毩xpx]=c毩x

所以

v曉r
·
=c毩 (11灡2灡17)

即c毩 可视为相对论电子的速度算符.此外,粒子流密度公式(11灡2灡10)也可以表

示成

j=氉+c毩氉=氉+v氉 (11灡2灡18)
其物理意义就容易理解了.

其次,考虑电子轨道角动量随时间的变化

d
dtlx= 1

i淈
[lx,H]= c

i淈
[lx,毩xpx +毩ypy +毩zpz]

= c
i淈

{毩x[lx,px]+毩y[lx,py]+毩z[lx,pz]}

=c(毩ypz-毩zpy)=c(毩暳p)x
所以

d
dtl=c(毩暳p) (11灡2灡19)

或

[l,H]=i淈c(毩暳p) (11灡2灡20)
这表明自由电子的轨道角动量

踿踿踿踿踿l并不守恒
踿踿踿踿.但是对于一个自由电子,空间是各向同

性的,理应要求角动量守恒.但以上计算表明,轨道角动量却不守恒.这就迫使人们

要求:电子除了轨道角动量之外
踿踿踿踿踿踿踿踿踿踿踿

,还应有内禀
踿踿踿踿踿

(intrinsic)角动量
踿踿踿

,即自旋
踿踿踿.当然,实验

上早已证实电子具有自旋 (ss=淈/2,它在任何方向的分量都只可能是暲1
2 )淈 .令

j=l+s (11灡2灡21)
人们自然会想到,尽管自由电子的轨道角动量不守恒,它的总角动量应该是守

恒量.
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试问:应如何表达s,才能使总角动量j守恒? 即满足

[j,H]=0 (11灡2灡22)
试引进算符毑,满足如下代数关系

[毑,毬]=0,暋[毑i,毩i]=0,暋i=x,y,z
[毑i,毩j]=2i毰ijk毩k (11灡2灡23)

则可以证明

1
2毑,[ ]H =-ic(毩暳p) (11灡2灡24)

因此,如令

s= 淈
2毑 (11灡2灡25)

则

[s,H]=-i淈c(毩暳p) (11灡2灡26)

因而式(11灡2灡22)得以满足.此外,电子自旋s=淈
2毑 应该符合实验上观测到的性

质,即要求毑的任何方向的分量只能取暲1,即要求

毑2
x =毑2

y =毑2
z =1 (11灡2灡27)

另外,由于s=淈
2毑具有角动量的性质,按角动量代数的一般理论,要求

[si,sj]=i淈毰ijksk (11灡2灡28)
由此可得出

[毑i,毑j]=2i毰ijk毑k (11灡2灡29)
从式(11灡2灡27)与式(11灡2灡29)可以看出,(毑x,毑y

,毑z)的代数性质与 Pauli算符

(氁x,氁y,氁z)相同.
概括起来讲,Dirac方程描述的粒子具有内禀角动量

踿踿踿踿踿踿踿
,其值为淈/2.对于自由电

子,虽然轨道角动量与自旋分别不是守恒量,但总角动量却是守恒量.

11灡2灡3暋毩与毬的矩阵表示

用Dirac方程来处理问题时,一般说来,并不一定需要毩和毬 的矩阵表示,而
只需要利用它们的代数性质.但如要了解波函数各分量的信息,则可采用一定的表

象,把毩和毬的矩阵表示明显写出来.设矩阵维数为N(待定).
(1)按式(11灡2灡14c),

毬毩i =-毩i毬= (-I)毩i毬
I为N暳N 单位矩阵.取上式两边矩阵相应的行列式值[注意det(-I)=(-1)N],
得

det毬·det毩i = (-1)Ndet毩i·det毬
所以
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(-1)N =1
即要求

N = 偶数 (11灡2灡30)
(2)考虑N=2.在卷栺,11灡1灡3节中已知,Pauli矩阵氁x、氁y、氁z 和I(2暳2单位

矩阵)构成4个线性独立的2暳2矩阵,任何2暳2矩阵均可用它们的线性组合来表

示.可以证明,找不到一个2暳2非零矩阵能够与氁x,氁y,氁z 均反对易.所以毩,毬不能

表示为2暳2矩阵,因而至少应取N=4.
(3)其次,考虑毩与毬的4暳4矩阵表示并不是唯一的,它们可以有不同的表

象.通常惯用的表象称为Pauli灢Dirac表象,即毬是对角化的表象.考虑到毬
2=1,所

以毬本征值只能取暲1.在Pauli灢Dirac表象中,

毬=
I 0
0 -

æ

è
ç

ö

ø
÷

I
(11灡2灡31)

式中I=
1 0æ

è
ç

ö

ø
÷

0 1
是2暳2单位矩阵,0=

0 0æ

è
ç

ö

ø
÷

0 0
是2暳2零矩阵.

(4)毩的矩阵表示可根据其代数性质求出.设

毩i =
Ai Bi

Ci D
æ

è
ç

ö

ø
÷

i

Ai、Bi、Ci、Di 均为2暳2矩阵.利用毩i 与毬的反对易关系毩i毬=-毬毩i 及毬矩阵表示

式(11灡2灡31),有

Ai -Bi

Ci -D
æ

è
çç

ö

ø
÷÷

i
=

-Ai -Bi

Ci D
æ

è
çç

ö

ø
÷÷

i

所以Ai=Di=0,因此

毩i =
0 Bi

Ci

æ

è
çç

ö

ø
÷÷

0
其次,根据毩+

i =毩i,要求Ci=B+
i ,因此

毩i =
0 Bi

B+
i

æ

è
çç

ö

ø
÷÷

0
再根据毩2

i=1,得BiB+
i =B+

iBi=1.不妨取Bi 为厄米矩阵,B+
i =Bi,则B2

i=1.又
根据毩i毩k=-毩k毩i,得

BiBk 0
0 BiB

æ

è
çç

ö

ø
÷÷

k
=-

BkBi 0
0 BkB

æ

è
çç

ö

ø
÷÷

i

即

BiBk =-BkBi

可见Bi(i=x,y,z)满足与Pauli矩阵氁i(i=x,y,z)同样的代数关系,因此不妨取

Bi=氁i.此时
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毩i =
0 氁i

氁i

æ

è
çç

ö

ø
÷÷

0
,暋暋i=x,y,z

或表示为

毩=
0 氁
氁
æ

è
ç

ö

ø
÷

0
(11灡2灡32)

式(11灡2灡31)与式(11灡2灡32)即Pauli灢Dirac表象中毬与毩 的矩阵表示.读者可用矩

阵乘法规则去验证它们的确满足代数关系式(11灡2灡14).令

毑=
氁 0
0

æ

è
ç

ö

ø
÷

氁
(11灡2灡33)

可以验证毩、毬、毑的矩阵表示式满足代数关系式(11灡2灡23)和式(11灡2灡29).

练习1暋设A和B 是与氁 对易的任意矢量算符,利用(氁·A)(氁·B)=A·B+i氁·(A暳B),

证明

(毑·A)(毑·B)=A·B+i毑·(A暳B) (11灡2灡34)
(毩·A)(毩·B)=A·B+i毑·(A暳B) (11灡2灡35)

(毩·A)(毑·B)= (毑·A)(毩·B)=-r5(A·B)+i毩·(A暳B) (11灡2灡36)

式中

r5 =
0 -I

-I
æ

è
ç

ö

ø
÷

0
=-

0 I
I

æ

è
ç

ö

ø
÷

0
(11灡2灡37)

练习2暋对于自由电子,证明氁·p/ p 是守恒量,并求出其本征值.
练习3暋验证,对于自由电子

H,- i
2毩x毩[ ]y =ic(毩暳p)z

进而论证

- i
4毩暳毩

具有角动量的性质.
练习4暋令

毭k =-i毬毩k,暋暋(k=1,2,3),暋暋毭4 =毬 (11灡2灡38)

证明

毭毺毭毻+毭毻毭毺 =2毮毺毻暋暋(毺,毻=1,2,3,4)

毭+
毺 =毭毺

(11灡2灡39)

并写出它们在Pauli灢Dirac表象中的矩阵表示

毭k =
0 -i氁k

i氁k

æ

è
ç

ö

ø
÷

0
,暋暋毭4 =

I 0
0 -

æ

è
ç

ö

ø
÷

I
(11灡2灡40)

练习5暋利用式(11灡2灡38)定义的毭毺 矩阵,把 Dirac方程(11灡2灡6)改写成(淈=c=1)

毭毺
灥

灥x毺
+( )m 氉=0 (11灡2灡41)

其中x毺=(x,y,z,it).
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*11灡2灡4暋中微子的二分量理论

中微子自旋为淈/2,通常认为,其静质量为0.仿照前面建立 Dirac方程的作

法,并考虑到m=0的特点,中微子的波动方程可表示为[参考式(11灡2灡5)]

1
c

灥
灥t氄毸+暺

毺
氁毸毺·

殼

氄毺 =0 (11灡2灡42)

氄毸 为中微子的多分量波函数,上式中氁的性质待定.若把氄毸 写成列矢形式,方程

(11灡2灡42)可表示成

1
c

灥
灥t氄+暺

3

i=1
氁i

灥
灥xi

氄 =0 (11灡2灡43)

为保证概率守恒,要求

氁+
i =氁i暋暋(i=1,2,3或x,y,z) (11灡2灡44)

从方程(11灡2灡42)或方程(11灡2灡43)出发,可求出下列概率守恒方程

灥
灥t氀+

殼

·j=0 (11灡2灡45)

其中

氀=氄+氄= 暺
毸
氄

*
毸氄毸 (11灡2灡46)

j=c氄+氁氄 =c暺
毸毺
氄

*
毸氁毸毺氄毺

(11灡2灡47)

按照特殊相对论,对静质量m=0的粒子,能量 动量关系式为

E2 =p2c2 (11灡2灡48)
要求氄的每一个分量满足下列含对时间和空间坐标的二阶导数的方程

-淈2 灥2

灥t2 +c2淈2 殼æ

è
ç

ö

ø
÷

2
氄=0

即

-1
c2

灥2

灥t2 +

殼æ

è
ç

ö

ø
÷

2
氄=0 (11灡2灡49)

这是对方程(11灡2灡43)中的矩阵氁i(i=x,y,z)一个很强的限制.试以

-1
c

灥
灥t+暺

k
氁k

灥
灥x

æ

è
ç

ö

ø
÷

k

对方程(11灡2灡43)运算,可得

-1
c2

灥2

灥t2 +暺
ik
氁k氁i

灥
灥xi

灥
灥x

æ

è
ç

ö

ø
÷

k
氄 =0

经过对称化后,得

-1
c2

灥2

灥t2 +1
2暺

ik

(氁i氁k+氁k氁i)灥
灥xi

灥
灥x[ ]

k
氄 =0 (11灡2灡50)

与方程(11灡2灡49)比较,要求
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1
2

(氁i氁k+氁k氁i)=毮ik暋暋(i,k=x,y,z) (11灡2灡51)

即

氁2
x =氁2

y =氁2
z =1

氁x氁y =-氁y氁x,…

在建立方程(11灡2灡43)过程中,由于粒子m=0,方程中只出现3个算符氁x、氁y、氁z,
而它们彼此反对易,代数关系与Pauli矩阵相同.所以不妨就把它们取为大家熟悉

的Pauli矩阵.
方程(11灡2灡42)还可写成

i淈灥
灥t氄 =H氄

H =-i淈c氁·

殼

=c氁·p (11灡2灡52)

此即静质量m=0,自旋s=1
2

(淈)的粒子满足的相对论性二分量波动方程.

守恒量的讨论:
(1)显然,[p,H]=0,所以动量p为守恒量.
(2)与电子相似,可以证明

[l,H]=i淈c氁暳p曎0 (11灡2灡53)
即轨道角动量不是守恒量.还可以证明

淈
2

[氁,H]=-i淈c氁暳p (11灡2灡54)

因此,如令

j=l+s (11灡2灡55)

s= 淈
2氁 (11灡2灡56)

则

[j,H]=0 (11灡2灡57)
即s为中微子(neutrino)的自旋,而j为其总角动量

踿踿踿踿
,是守恒量
踿踿踿踿.

(3)
[氁·p,H]=0 (11灡2灡58)

即氁·p为守恒量,自旋沿动量方向的投影
踿踿踿踿踿踿踿踿踿踿

淈
2氁·

踿p
/
踿p ,也是守恒量

踿踿踿踿踿.考虑到

(氁·p)
p

(氁·p)
p =1

所以

氁·p
p =暲1 (11灡2灡59)
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即中微子的自旋沿运动方向的投影,总是暲淈
2

,其中

氁·p
p =+1暋暋 称为右旋粒子态

氁·p
p =-1暋暋 称为左旋粒子态

(4)可以证明,中微子宇称
踿踿P 不守恒

踿踿踿.因为

PHP-1 =cP氁·pP-1 =c氁·p=-H (11灡2灡60)
即

[P,H]曎0 (11灡2灡61)

11灡3暋自由电子的平面波解

自由电子满足的Dirac方程为

i淈灥
灥t氉=H氉

H =c毩·p+mc2毬 (11灡3灡1)

H 不显含t,能量为守恒量,这是自由电子体系的时间均匀性的表现.此外,考虑到

[p,H]=0,p也为守恒量,这是空间均匀性的表现.所以可以求能量和动量的共同
踿踿踿踿踿踿踿踿

本征态
踿踿踿.这共同本征态可表示为

氉p,E(r,t)=u(p)exp[i(p·r-Et)/淈] (11灡3灡2)
代入式(11灡3灡1),可得到u(p)满足的方程

(c毩·p+mc2
毬)u=Eu (11灡3灡3)

注意,u为多分量波函数(反映电子有自旋).为了方便,不妨令

u
æ

è
çç=

ö

ø
÷÷

氄
氈

(11灡3灡4)

其中

氄=
u1

u
æ

è
ç

ö

ø
÷

2

,暋暋氈=
u3

u
æ

è
ç

ö

ø
÷

4

分别都为二分量波函数.采用Pauli灢Dirac表象,则式(11灡3灡3)化为(令p=淈k)

(E-mc2)氄-c淈氁·k氈 =0 (11灡3灡5a)

-c淈氁·k氄+(E+mc2)氈=0 (11灡3灡5b)
上列方程有非平庸解的充要条件为

E-mc2 -c淈氁·k
-c淈氁·k E+mc2 =0
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即

E2-m2c4-c2淈2k2 =0
解之,得

E=E暲=暲 m2c4+c2淈2k2 (11灡3灡6)

E=E+ = m2c4+c2淈2k2为正能量解,E=E- =-E+ 为“负能量暠解.
由式(11灡3灡5a)和式(11灡3灡5b)可得出

氈= c淈
E+mc2(氁·k)氄 (11灡3灡7)

氄= c淈
E-mc2(氁·k)氈

到此,我们只找到了氄与氈 的关系,尚未分别把它们确定下来.在物理上,这反映电

子还有新的自由度(自旋),因而(H,p)未构成守恒量完全集.11灡2节中已提及,对

于自由电子,轨道角动量l和自旋s=淈
2毑分别都不是守恒量,但总角动量j=l+s

是守恒量,
[j,H]=0 (11灡3灡8)

但由于[ji,pj]=[li,pj]曎0(i曎j),一般说来,j与p 不能有共同本征态,所以p的

本征态不能是j的本征态,所以不能把j的任何分量选进(H,p)以构成一组对易

守恒量完全集.但不难证明[利用11灡2节,式(11灡2灡23)],毑·p 为守恒量,并与p
对易,

[毑·p,H]=0,暋[毑·p,p]=0 (11灡3灡9)
所以可以选 (H,p,毑·p)为一组对易守恒量完 全集,即让 (H,p)的本征态

(11灡3灡2),同时也是毑·p(即电子自旋沿动量方向p的分量)的本征态,这样就可

以把定态解确定下来,即

毑·pu=毸u (11灡3灡10)
注意到[利用11灡2节,式(11灡2灡34)]

(毑·p)2 =p2 =淈2k2 (11灡3灡11)
可见(毑·p)的本征值毸=暲淈k.

为确切起见,可以采用Pauli灢Dirac表象

毑·p
æ

è
çç=
氁·p 0
0 氁·

ö

ø
÷÷

p

利用u
æ

è
çç=

ö

ø
÷÷

氄
氈

,式(11灡3灡10)可改写成

淈氁·k氄 =毸氄
淈氁·k氈 =毸氈 (11灡3灡12)
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可见氄与氈 满足的方程在形式上相同,它们都是(氁·k)的本征态,所以它们的解最

多可以差一个常系数.注意,利用(氁·k)2=1,氁·k的本征值为暲k.以氄为例,求解

如下:

利用Pauli矩阵,把氄=
u1

u
æ

è
ç

ö

ø
÷

2

满足的方程(11灡3灡12)写出

kz-毸
淈 kx -iky

kx +iky -kz-毸

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

淈

u1

u
æ

è
ç

ö

ø
÷

2
=0 (11灡3灡13)

对于

毸=淈k,暋u1

u2
= k+kz

kx +iky
=

kx -iky

k-kz
(11灡3灡14)

毸=-淈k,u1

u2
=- k-kz

kx +iky
=-

kx -iky

k+kz
(11灡3灡15)

这样,对于给定动量本征值p=淈k,有下列4个本征态(未归一化),分别相应

于E=E+ 、E- 和毑·p=暲淈k:
(a)E=E+ ,毑·p=淈k,

氉=

k+kz

kx +iky

c淈k(k+kz)/(E++mc2)

c淈k(kx +iky)/(E++mc2

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

)

exp[i(k·r-E+t/淈)]

或

氉=

kx -iky

k-kz

c淈k(kx -iky)/(E++mc2)

c淈k(k-kz)/(E++mc2

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

)

exp[i(k·r-E+t/淈)]

(b)E=E+ ,毑·p=-淈k,

氉=

-(k-kz)

kx +iky

c淈k(k-kz)/(E++mc2)

-c淈k(kx +iky)/(E++mc2

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

)

exp[i(k·r-E+t/淈)]

或

氉=

kx -iky

-(k+kz)

-c淈k(kx -iky)/(E++mc2)

c淈k(k+kz)/(E++mc2

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

)

exp[i(k·r-E+t/淈)]
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(c)E=E- =- E ,毑·p=淈k,

氉=

-c淈k(k+kz)/(E +mc2)

-c淈k(kx +iky)/(E +mc2)

k+kz

kx +ik

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

y

exp[i(k·r+ Et/淈)]

或

氉=

-c淈k(kx -iky)/(E +mc2)

-c淈k(k-kz)/(E +mc2)

kx -iky

k-k

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

z

exp[i(k·r+ Et/淈)]

(d)E=E- =- E ,毑·p=-淈k,

氉=

-c淈k(k-kz)/(E +mc2)

c淈k(kx +iky)/(E +mc2)

-(k-kz)

kx +ik

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

y

exp[i(k·r+ Et/淈)]

或

氉=

c淈k(kx -iky)/(E +mc2)

-c淈k(k-kz)/(E +mc2)

kx -iky

-(k-kz

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

)

exp[i(k·r+ Et/淈)](11灡3灡16)

如取电子动量方向为z轴方向,即kz=ky=0,kz=k,则上列本征函数(未归一

化)化为

(a)E=E+ = E ,毑·p=淈k,

氉=

1
0

c淈k/(E +mc2)

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

0

exp[i(k·r- Et/淈)]

(b)E=E+ = E ,毑·p=-淈k,

氉=

0
1
0

-c淈k/(E +mc2

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

)

exp[i(k·r- Et/淈)]

(c)E=E- =- E ,毑·p=淈k,
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氉=

-c淈k/(E +mc2)æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

0
1
0

exp[i(k·r+ Et/淈)]

(d)E=E- =- E ,毑·p=-淈k,

氉=

0
c淈k/(E +mc2)
æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

0
1

exp[i(k·r+ Et/淈)] (11灡3灡17)

从式(11灡3灡16)和式(11灡3灡17)可以看出,对于正能量解(E=E+ = E ),氄为

大分量,氈为小分量.而对于“负能量
踿踿踿

暠解,情况正相反.
在非相对论极限下(p=淈k烆mc,或v/c烆1),式(11灡3灡17)化为(时间因子略

去)

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

1
0
0
0

eik·r暋暋

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

0
1
0
0

eik·r

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

0
0
1
0

eik·r暋暋

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

0
0
0
1

eik·r

(11灡3灡18)

如限于讨论正能解,波函数大分量部分表示为

æ

è
ç

ö

ø
÷

1
0

eik·r暋暋
æ

è
ç

ö

ø
÷

0
1

eik·r (11灡3灡19)

它们是p和氁·p/p =氁z 的共同本征态.

11灡4暋电磁场中电子的Dirac方程与非相对论极限

11灡4灡1暋电磁场中电子的Dirac方程

自由电子的Dirac方程为

i淈灥
灥t氉=H氉暋暋暋暋暋暋

H =c毩·p+mc2
毬=-i淈c毩·

殼

+mc2
毬 (11灡4灡1)

电子(荷电-e)在电磁势(A,毤)中的Dirac方程,与 Klein灢Cordon方程相仿,可在方

程(11灡4灡1)中做如下替换而得出:
·224·



-i淈

殼

曻 -i淈

殼

+e
c

æ

è
ç

ö

ø
÷A = P+e

c
æ

è
ç

ö

ø
÷A 暋(P=-i淈

殼

)

i淈灥
灥t曻 i淈灥

灥t+eæ

è
ç

ö

ø
÷毤 (11灡4灡2)

即电磁场(A,毤)中电子的Dirac方程表示为

i淈灥
灥t+e毤-c毩·vP+e

c
æ

è
ç

ö

ø
÷A -mc2[ ]毬氉=0 (11灡4灡3)

或写成

i淈灥
灥t氉=H氉暋暋暋暋暋

H =c毩·P+e
c

æ

è
ç

ö

ø
÷A -e毤+mc2

毬 (11灡4灡4)

若(A,毤)与时间t无关,则氉存在定态解,形式为

氉(r,t)=氉(r)exp(-iEt/淈) (11灡4灡5)
而多分量能量本征函数氉(r)满足能量本征方程

H氉(r)= c毩·P+e
c

æ

è
ç

ö

ø
÷A -e毤+mc2[ ]毬氉(r)=E氉(r) (11灡4灡6)

E 为电子的能量本征值.

11灡4灡2暋非相对论极限与电子磁矩

令

氉
æ

è
çç= 氄ö

ø
÷÷

氈
exp(-imc2t/淈) (11灡4灡7)

其目的是把电子静质量相应的能量的影响先“剔除暠出去,以便于讨论非相对论极

限栙.把式(11灡4灡7)代入方程(11灡4灡4),得

i淈灥
灥t氄 =c氁· P+e

c
æ

è
ç

ö

ø
÷A 氈-e毤氄暋暋暋暋 (11灡4灡8a)

i淈灥
灥t氈 =c氁· P+e

c
æ

è
ç

ö

ø
÷A 氄-e毤氈-2mc2氈 (11灡4灡8b)

在非相对论极限下,由式(11灡4灡8b)(略去不含c的项),可得

氈曋 1
2mc氁

·P+e
c

æ

è
ç

ö

ø
÷A 氄 (11灡4灡9)

氈为小分量(氈/氄曋v/c).把式(11灡4灡9)代入式(11灡4灡8a),得
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栙 在(A,毤)与t无关情形下,在能量本征方程(11灡4灡6)中,令E=E曚+mc2.在E曚=E-mc2 中已把静质

量相应能量去掉.在非相对论情况下,E曚烆mc2.然后在所有公式中把E曚曻i淈 灥
灥t

,也可得出下面式(11灡4灡8)

~式(11灡4灡12)的一切结果.



i淈灥
灥t氄 = 1

2m 氁· P+e
c

æ

è
ç

ö

ø
÷[ ]A

2

氄-e毤氄 (11灡4灡10)

利用

氁· P+e
c

æ

è
ç

ö

ø
÷[ ]A

2

= P+e
c

æ

è
ç

ö

ø
÷A
2

+i氁· P+e
c

æ

è
ç

ö

ø
÷A 暳 P+e

c
æ

è
ç

ö

ø
÷[ ]A

= P+e
c

æ

è
ç

ö

ø
÷A
2

+ie
c氁·[P暳A+A暳P]

= P+e
c

æ

è
ç

ö

ø
÷A
2

+e淈
c氁·(

殼

暳A)

= P+e
c

æ

è
ç

ö

ø
÷A
2

+e淈
c氁·B (11灡4灡11)

方程(11灡4灡10)可化为

i淈灥
灥t氄 = 1

2m P+e
c

æ

è
ç

ö

ø
÷A
2

+ e淈
2mc氁

·B-e[ ]毤氄 (11灡4灡12)

右边第二项为-毺·B,

毺=- e淈
2mc氁 =- e

mcs
(11灡4灡13)

表示电子内禀磁矩,-毺·B 表示电子内禀磁矩与外磁场B 的相互作用能.电子内
踿

禀磁矩
踿踿踿

的值为

毺B = e淈
2mc

(11灡4灡14)

称为Bohr磁子.这是Dirac方程得出的一个重要结论.电子磁矩的观测值为

毺=1灡00116毺B (11灡4灡15)
所以,Dirac的相对论波动方程一方面能够对观测到的电子磁矩给予较满意的说

明,但另一方面观测值与Bohr磁子还有微小差异(曋10-3),称为电子的反常磁矩
踿踿踿踿.

作为单电子理论的Dirac方程还不能解决这问题.

11灡4灡3暋中心力场下的非相对论极限,自旋轨道耦合

考虑电子在中心力场V(r)中的运动.如电子在原子核的Coulomb引力势毤(r)
中运动.此时,中心力场为

V(r)=-e毤(r)
定态Dirac方程(11灡4灡6)表示为

[c毩·p+mc2毬+V(r)]氉=E氉暋(p=-i淈

殼

) (11灡4灡16)
为便于过渡到非相对论情况,令

E=mc2+E曚 (11灡4灡17)
(在非相对论近似下,E曚=E-mc2烆mc2),并令

氉=
æ

è

çç

ö

ø

÷÷
氄
氈

(11灡4灡18)
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采用Pauli灢Dirac表象,式(11灡4灡16)化为

c(氁·p)氈= [E曚-V(r)]氄 (11灡4灡19a)

c(氁·p)氄= [2mc2+E曚-V(r)]氈 (11灡4灡19b)
由式(11灡4灡19b)可得

氈= c(氁·p)
2mc2+(E曚-V)氄= 1

2mc
1+E曚-V

2mc
æ

è
ç

ö

ø
÷

2

-1
(氁·p)氄

氈为小分量.在非相对论极限下

氈曋 1
2mc

1-E曚-V
2mc

æ

è
ç

ö

ø
÷

2 (氁·p)氄 (11灡4灡20)

代入式(11灡4灡19a),得出大分量波函数氄满足的方程

1
2m

(氁·p)1-E曚-V
2mc

æ

è
ç

ö

ø
÷2 (氁·p)氄= (E曚-V)氄 (11灡4灡21)

化简后,得

1
2mp

2- p2

4m2c2E曚+ 1
4m2c2(氁·p)V(r)(氁·p

é

ë
êê

ù

û
úú)氄= (E曚-V)氄

(11灡4灡22)
再利用

V(氁·p)= (氁·p)V+i淈氁·

殼

V
(氁·p)V(r)(氁·p)= (氁·p)2V+i淈(氁·p)(氁·

殼
V)

=p2V+i淈{p·(

殼

V)+i氁·[p暳

殼

V(r)]}

=p2V+i淈 (

殼

V)·p-i淈

殼

2V+i氁· p暳r
r

dV
d[ ]{ }r

=p2V+淈2 dV
dr

灥
灥r+

殼2æ

è
ç

ö

ø
÷V +淈(氁·l)1

r
dV
dr

(11灡4灡23)
代入式(11灡4灡22),得

p2

2m
+V-

æ

è
ç

ö

ø
÷E曚氄+ 1

4m2c2p
2(V-E曚)氄

+ 1
4m2c2

1
r

dV
dr淈

(氁·l)+淈2 殼

2V+淈2dV
dr

灥
灥[ ]r氄 =0 (11灡4灡24)

上式左边第二项与第三项均系相对论修正项.利用式(11灡4灡21),略去高级修正项,

可得 (E曚 -V )氄 曋 1
2mp2

氄,于 是 式 (11灡4灡24)左 边 第 二 项 化 为 1
8m3c2

p4
氄.式(11灡4灡24)可改写成

p2

2m
+V- p4

8m3c2 + 1
2m2c2

1
r

dV
dr

(s·l)+ 淈2

4m2c2

殼2V+dV
dr

灥
灥

æ

è
ç

ö

ø
÷{ }r 氄 =E曚氄

(11灡4灡25)
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左边第三项- p4

8m3c2
为动能的相对论修正栙,第四项为自旋轨道耦合项(Thomas

项),可记为毼(r),而

毼(r)= 1
2m2c2

1
r

dV
dr

(11灡4灡26)

式(11灡4灡25)左边最后两项无经典含义.还应提到,最后一项不是厄米算符.问题出

在:Dirac波函数的“大分量暠氄是否真正就是非相对论近似下的二分量波函数毞?
否.理由如下:作为波函数,应保证在非相对论极限下总概率守恒(波函数归一化保

持不变),即要求

(毞,毞)= (氉,氉)= (氄,氄)+(氈,氈) (11灡4灡27)
在准确到O(v2/c2)下,利用式(11灡4灡20),

(氈,氈)曋 氄,氁·p
2

æ

è
ç

ö

ø
÷

mc

2
æ

è
ç

ö

ø
÷氄 = 氄,p2

4m2c2

æ

è
ç

ö

ø
÷氄

所以

(氉,氉)= 氄,1+ p2

4m2c
æ

è
ç

ö

ø
÷

2

æ

è
ç

ö

ø
÷氄 = (毞,毞) (11灡4灡28)

因而

氄曋 1- p2

8m2c
æ

è
ç

ö

ø
÷2 毞暋 或 暋毞 曋 1+ p2

8m2c
æ

è
ç

ö

ø
÷2 氄 (11灡4灡29)

用氄代入式(11灡4灡25),略去O(v4/c4)项,得出毞 满足的方程

p2

2m
+V- 1

8+ 1æ

è
ç

ö

ø
÷

16
p4

m3c2 +
(E曚-V)
8m2c2 p{ 2

+ 淈
4m2c2

1
r

dV
dr

(氁·l)+ 淈2

4m2c2

殼2V+dV
dr

灥
灥

æ

è
ç

ö

ø
÷ }r 毞 =E曚毞

(11灡4灡30)
利用(p2=p·p)

[V,p2]= [V,p]·p+p·[V,p]

=i淈

殼

V·p+i淈p·

殼

V

=淈2

殼

2V+2淈2dV
dr

灥
灥r

即

Vp2 =p2V+淈2

殼

2V+2淈dV
dr

灥
灥r

(11灡4灡31)
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栙 按特殊相对论,E= c2p2+m2c4(非相对论近似下取正能值).当p/mc烆1时,

E=mc2 1+ p2

m2c[ ]2

1/2

=mc2+p2

2m
- p2

8m3c2+…



代入式(11灡4灡30),并利用

p2

8m2c2(E曚-V)毞 曋 p4

16m3c2毞

则式(11灡4灡30)化为

p2

2m
+V- p4

8m3c2 + 1
2m2c2

1
r

dV
dr

(s·l)+ 淈2

8m2c2

殼

2é

ë
êê

ù

û
úúV 毞 =E曚毞

(11灡4灡32)
这就是在中心力场

踿踿踿踿V(r)中运动的粒子的
踿踿踿踿踿踿踿 Dirac方程的非相对论极限

踿踿踿踿踿踿踿踿踿.左边[…]内
后三项为最低级的相对论修正[O(v2/c2)].它们将导致能级的精细结构.

对于类氢原子,V(r)=-Ze2/r,所以

毼(r)= 1
2m2c2

1
r

dV
dr = Ze2

2m2c2r3暋暋暋暋 (11灡4灡33)

淈2

8m2c2

殼2V = -Z淈2e2

8m2c2

殼

2 1
r =毿Z淈2e2

2m2c2毮(r) (11灡4灡34)

后一项(Darwin项)亦称为接触势(contactpotential).它只对s态(l=0)有影响栙.
与此相反,自旋轨道耦合作用毼(r)s·l只对l曎0态有影响.

11灡5暋氢原子光谱的精细结构

11灡5灡1暋中心力场中电子的守恒量

1灡 非相对论情况

在非相对论情况下,在中心力场V(r)中运动的粒子,Hamilton量为

H =-淈2

2m

殼

2+V(r)=-淈2

2m
1
r2

灥
灥rr2 灥

灥
æ

è
ç

ö

ø
÷

r + l2

2mr2 +V(r) (11灡5灡1)

容易证明

[l,H]=0 (11灡5灡2)
即轨道角动量l为守恒量,因而l2 也是守恒量.所以常常选(H,l2,lz)为对易守恒

量完全集,它们的共同本征态记为氉nlm.

对于电子,需要考虑自旋轨道耦合作用毼(r)s·l,毼(r)= 1
2m2c2

1
r

dV
dr.此时,l

与自旋s分别不再是守恒量,但总角动量j=l+s是守恒量,因为

[j,s·l]=0,暋暋[j,H]=0 (11灡5灡3)
还可以证明

[l2,s·l]=0,暋暋[l2,H]=0 (11灡5灡4)

·724·

栙 T.A.Welton,Phys.Rev.74(1948)1157,曾经利用这一点,对于 Lamb位移给出了一个粗略的

说明.



暋暋栙暋s·l或氁·l也是守恒量.但s·l= 1
2 j2-l2- 3

4淈( )2 ,而我们已选取j2 与l2,s·l就不是独立的守

恒量了.

暋暋栚暋因[毑,毬]=0,得[K
暷

,毬]=0.因此

[淈K
暷

,H]= [淈K
暷

,c毩·p]=c[毬毑·l,毩·p]+淈c[毬,毩·p]

利用毬毩=-毩毬,

[淈K
暷

,H]=c毬[毑·l,毩·p]+ +2淈c毬毩·p
再利用[11灡2节,式(11灡2灡36)],

(毑·l)(毩·p)=i毩·(l暳p)

(毩·p)(毑·l)=i毩·(p暳l)

所以[毑·l,毩·p]=i毩·{(l暳p)+(p暳l)}=-2淈毩·p,因而

[淈K
暷

,H]=0

即l2 仍是守恒量栙 .所以习惯选(H,l2,j2,jz)为对易守恒量完全集,相应的本征函

数记为氉nljmj
.对于给定j,l可以取l=j暲1/2,而 mj=j,j-1,…,-j,能级为

(2j+1)重简并.我们还注意到,在非相对论情况下,体系的宇称
踿踿毿=(-1)l,由角量

踿踿踿
子数
踿踿l的奇偶性完全确定

踿踿踿踿踿踿踿踿.对于给定j的能级,l=j暲1/2两个本征态的宇称相反,
因此也可以选(H,j2,jz,P)为对易守恒量完全集,P 为空间反射算符.

2灡 相对论情况

考虑电子在Coulomb势毤(r)中运动,令V(r)=-e毤(r),则 Hamilton量表示为

H =c毩·p+mc2毬+V(r) (11灡5灡5)
与自由电子情况相似,可证明

[l,H]=i淈c毩暳p曎0
即l不是守恒量.但

j=l+淈
2毑 (11灡5灡6)

是守恒量.与非相对论情况不同之处是:l2 不再守恒
踿踿踿踿

,因
[l2,H]=c[l2,毩·p]

=cl·[l,(毩·p)]+c[l,(毩·p)]·l
=i淈c{l·(毩暳p)+(毩暳p)·l}曎0 (11灡5灡7)

另外,由于[式(11灡5灡6)平方可得]

淈毑·l=j2-l2-3
4淈2 (11灡5灡8)

毑·l也不再是守恒量
踿踿踿踿踿踿踿.但如令

淈K
暷

=毬(毑·l+淈) (11灡5灡9)
可以证明它是守恒量栚 ,即
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[K
暷

,H]=0 (11灡5灡10)
还可以证明栙

[K
暷

,j]=0 (11灡5灡11)
因此,代替非相对论情况下的对易守恒量完全集(H,l2,j2,jz),相对论情况下的对

易守恒量完全集可以取为(H,K
暷

,j2,jz).

淈K
暷

的本征值可如下求出:
利用[毬,毑]=0,毬

2=1,可得

淈2K
暷

2 = (毑·l)2+2淈毑·l+淈2

但

(毑·l)2 =l2+i毑·(l暳l)=l2-淈毑·l
所以

淈2K
暷

2 =l2+淈毑·l+淈2 =j2+1
4淈2 (11灡5灡12)

可以看出,尽管l2 与毑·l分别不再为守恒量,它们的线性组合淈2K
暷

2 却是守恒量

(因为j2 守恒).用j2 的本征值代入式(11灡5灡12),可求出淈2K
暷

2 的本征值为

j(j+1)+[ ]1
4 淈2 = j+æ

è
ç

ö

ø
÷

1
2

2

淈2 (11灡5灡13)

所以K
暷

的本征值为

K =暲 j+æ

è
ç

ö

ø
÷

1
2 =暲1,暲2,暲3,… (11灡5灡14)

对给定j值,K
暷

可以取两个值K=暲 j+1
2 .淈2K

暷

2 的角色与非相对论情形下的l2

相当.但考虑到[K
暷

,l]曎0,[K
暷

,l2]曎0,K
暷

的本征态一般不是
踿踿踿踿踿踿踿踿l2 的本征态

踿踿踿踿.

11灡5灡2暋(K
暷

,j2,jz)的共同本征态

先构造(j2,jz)的共同本征态(参见卷栺,11灡2节)

毤A
jmj

= 1
2l+1

暋l+m+1 Ym
l

l-m Ym+1

æ

è

ç
ç

ö

ø

÷
÷

l

暋l=j-1/2

毤B
jmj = 1

2l+3

暋- l+1-m Ym
l+1

暋l+1+m+1 Ym+1
l+

æ

è

ç
ç

ö

ø

÷
÷

1

暋l+1=j+1/2

(11灡5灡15)

(j2,jz)的本征值为j(j+1)淈2 和mj淈= m+æ

è
ç

ö

ø
÷

1
2 淈.我们注意到,毤A 和毤B 都是l2

的本征态,本征值分别为l(l+1)和(l+1)(l+2).或者说,毤A 与毤B 分别都具有确
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栙 考虑淈K
暷

定义及[毑,毬]=0,只需证明[毑·l,j]=0.利用[毑·l,l]=-i淈毑暳l,[毑·l,毑]=2i毑暳l,即可

证明[毑·j,j]=0.



定宇称,但前者的宇称为毿=(-1)l=(-1)j-1/2,与后者的宇称毿=(-1)l+1=
(-1)j+1/2相反.按照前面的分析,可以猜想,K

暷

的本征态应是用毤A 和毤B 构成4分

量波函数.利用

淈氁·l=j2-l2-3
4淈2 (11灡5灡16)

容易得出

(氁·l)毤A
jmj

= j-æ

è
ç

ö

ø
÷

1
2 淈毤A

jmj

(氁·l)毤B
jmj

=- j+æ

è
ç

ö

ø
÷

3
2 淈毤B

jmj

(11灡5灡17)

即毤A 和毤B 均为氁·l的本征态,但本征值并不相同.考虑到

淈K
暷

=
氁·l+淈 0

0 -(氁·l+淈
æ

è
ç

ö

ø
÷

)
(11灡5灡18)

容易证明

毤1 =
c1毤A

jmj

c2毤B
jm

æ

è

çç

ö

ø

÷÷

j

暋暋毤2 =
c1毤B

jmj

c2毤A
jm

æ

è

çç

ö

ø

÷÷

j

(11灡5灡19)

是K
暷

本征态[c1,c2 是任意常系数,更严格讲,只要c1 和c2 与粒子的角度变量和自

旋无关即可,见式(11灡5灡26)],

K
暷

毤1 = j+æ

è
ç

ö

ø
÷

1
2 毤1,暋暋K

暷

毤2 =- j+æ

è
ç

ö

ø
÷

1
2 毤2 (11灡5灡20)

所以毤1 与毤2 都是(K
暷

,j2,jz)的共同本征函数.(j2,jz)的本征值分别为j(j+1)淈2 与

mj淈,而K
暷

的本征值对于毤1 和毤2 分别为暲(j+1/2).

11灡5灡3暋径向方程

氢原子的Dirac方程的定态解,可选为守恒量完全集(H,K
暷

,j2,jz)的共同本征态,

即角度与自旋的波函数取为(K
暷

,j2,jz)的本征函数,剩下的任务就是在一定边条件下

求解一个径向方程.为找出此径向方程,先对H 做一些变化,使之用K
暷

表示出来.
H =c毩·p+mc2毬+V(r) (11灡5灡21)

其中只有毩·p与K
暷

有关.为找出它们的关系,定义算符

毩r =毩·r/r (11灡5灡22)

显然,毩2
r=1,所以毩r 的本征值为暲1.利用式(11灡2灡35),可得

毩r(毩·p)= 1
r

(毩·r)(毩·p)= 1
r

{r·p+i毑·(r暳p)}

=-i淈灥
灥r+i

r毑·l=pr+i淈
r毬K

暷

(11灡5灡23)

式中

pr =-i淈 灥
灥r+1æ

è
ç

ö

ø
÷

r =p+
r (11灡5灡24)
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为径向动量算符,这样,

毩·p=毩2
r(毩·p)=毩r pr+i淈

r毬K
æ

è
ç

ö

ø
÷

暷

因而

H =c毩rpr+i淈c
r毩r毬K

暷

+mc2毬+V(r) (11灡5灡25)

由此可见,(H,K
暷

,j2,jz)的共同本征函数可表示成下列两种类型:

K =j+1/2,暋暋氉=
毤A

jmjf(r)

毤B
jmjg(r

æ

è

çç

ö

ø

÷÷
)

K =-(j+1/2),暋暋氉=
毤B

jmjf(r)

毤A
jmjg(r

æ

è

çç

ö

ø

÷÷
)

(11灡5灡26)

式中f(r)与g(r)待定.把式(11灡5灡26)代入 Dirac方程 H氉=E氉,可得出f(r)和

g(r)满足的方程

c毩rpr+i淈cK
r 毩r毬+mc2毬+V(r)-[ ]

æ

è
ççE f(r)

g(r

ö

ø
÷÷) =0 (11灡5灡27)

式中K=暲(j+1/2).
在Pauli灢Dirac表象中,

毩r=
0 氁r

氁r

æ

è
çç

ö

ø
÷÷

0
,暋暋氁r = 1

rr
·氁,暋r暷 =r/r (11灡5灡28)

毩r毬=
0 氁r

氁r

æ

è
çç

ö

ø
÷÷

0
I 0
0 -

æ

è
ç

ö

ø
÷

I
=

0 -氁r

氁r

æ

è
çç

ö

ø
÷÷

0
(11灡5灡29)

利用栙

氁r毤A
jmj

=-毤B
jmj

,暋暋氁r毤B
jmj

=-毤A
jmj

(11灡5灡30)
可得

毩r

毤Af(r)

毤Bg(r
æ

è
ç

ö

ø
÷

)=-
毤Ag(r)

毤Bf(r
æ

è
ç

ö

ø
÷

)
, (11灡5灡31)

毩r

毤Bf(r)

毤Ag(r
æ

è
ç

ö

ø
÷

)=-
毤Bg(r)

毤Af(r
æ

è
ç

ö

ø
÷

)

所以毩r 对
æ

è
ç

ö

ø
÷

f
g

的作用是使它变成
-g
-

æ

è
ç

ö

ø
÷

f
.所以在径向方程(11灡5灡27)中毩r 相当于
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栙 钱伯初,曾谨言,量子力学习题精选与剖析,第三版灡北京:科学出版社,2008.6灡33题灡氁r 为赝标量

算符,称为螺旋度算符(helicityoperator),容易证明,氁2r=1,氁r 本征值为暲1.定义幺正算符U=ei
毿
2氁r,秒为赝

自旋变换(pseudospintransformation).可证明,在此变换下,算符F曻煄F=F+氁r[F,氁r].例如,自旋s=氁/2曻

s暋~=-s+r暷氁r,轨道角动量l曻l
暋~
+2s-r暷氁r,因而总角动量j=l+s曻j

暋~
+s暋~=j,这与[j,氁r]=0一致.参阅:

A.Bohr,I.Hamamoto,B.R.Mottelson.PhysicaScripta26(1982)267.



毩r =
0 -I
-I

æ

è
ç

ö

ø
÷

0
(11灡5灡32)

而毩r毬相当于

毩r毬=
0 -I
-I

æ

è
ç

ö

ø
÷

0
I 0
0 -

æ

è
ç

ö

ø
÷

I
=

0 I
-I

æ

è
ç

ö

ø
÷

0
(11灡5灡33)

令

f(r)=F(r)
r

,暋暋g(r)=iG(r)
r

(11灡5灡34)

(上式的第2式中加一个i,只是为了方便.)利用

pr
F(r)
r =-i淈1

r
dF
dr

,暋暋pr
G(r)
r =-i淈1

r
dG
dr

(11灡5灡35)

则可得出F(r)和G(r)满足的方程组为

dF
dr-K

rF = mc2+E
淈c -V(r)

淈[ ]c G(r)

dG
dr+K

rG = mc2-E
淈c +V(r)

淈[ ]c F(r)
(11灡5灡36)

对于氢原子,V(r)=-e2/r,则方程(11灡5灡36)化为

dF
dr-K

rF = mc2+E
淈c +毩æ

è
ç

ö

ø
÷

r G

dG
dr+K

rG = mc2-E
淈c -毩æ

è
ç

ö

ø
÷

r F
(11灡5灡37)

式中毩=e2/淈c曋1/137是精细结构常数.

11灡5灡4暋氢原子光谱的精细结构

在束缚态边条件下求解氢原子的 Dirac方程的径向方程(11灡5灡37),可发现只

当能量本征值取下列分立值时,才能得到物理上允许的解(见本节附录1,并把径

向量子数n曚改记为nr)

E=EnrK =mc
é

ë

ê
ê

2 1+ 毩2

( K2-毩2 +nr)

ù

û

ú
ú2

-1/2

(11灡5灡38)

nr =0,1,2,…;暋 K = (j+1/2)=1,2,3,…
如按精细结构常数毩曋1/137烆1的幂级数展开,

( K2-毩2 +nr)-2曋 nr+ K - 毩2

2
æ

è
ç

ö

ø
÷

K
-2

曋 1
n2 1+ 毩2

[ ]n K
n=nr+ K =1,2,3,… (11灡5灡39)

则式(11灡5灡38)可表示成栙
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栙 对于类氢离子,式(11灡5灡38)~式(11灡5灡42)中,毩曻Z毩,Z为类氢离子的原子核电荷.



E=EnK =mc2 1+毩2

n2 1+ 毩2
æ

è
ç

ö

ø
÷[ ]n K

-1/2

=mc2 1-1
2

毩2

n2 -毩4

2n4
n
K -æ

è
ç

ö

ø
÷

3
4 +O(毩6[ ]) (11灡5灡40)

式(11灡5灡40)还可改写成

EnK -mc2 =-mc2毩2

2n2 1+毩2

n2
n
K -æ

è
ç

ö

ø
÷

3
4 +O(毩4[ ])

=-e2

2a
1
n2 1+毩2

n2
n
K -æ

è
ç

ö

ø
÷

3
4 +O(毩4[ ]) (11灡5灡41)

(a=淈2/me2,Bohr半径).如用量子数j代替 K ,则得

Enj -mc2 =-e2

2a
1
n2 1+毩2

n2
n

j+1/2-æ

è
ç

ö

ø
÷

3
4 +O(毩4[ ]) (11灡5灡42)

可以看出,能 级 不 仅 与 主 量 子 数
踿 踿 踿 踿 踿 踿 踿 踿 踿n 有 关

踿 踿
,而 且 依 赖 于
踿 踿 踿 踿 踿j(或 K ,或nr).式

(11灡5灡41)与(11灡5灡42)中右边第二项远小于第一项,这是相对论最低级修正项
踿踿踿踿踿踿踿踿踿.当

忽略此项时,就回到 Bohr氢原子能级公式(除去一个常数项外)

En =-e2

2a
1
n2,暋暋n=1,2,3,… (11灡5灡43)

由于相对论修正,Bohr能谱级将发生分裂.但此相对论修正很小[O(毩2)],能级分

裂是很微小的,这就是 氢 原 子 能 级 精 细 结 构 的 来 源
踿 踿 踿 踿 踿 踿 踿 踿 踿 踿 踿 踿

栙 .在 式 (11灡5灡40)~ 式

(11灡5灡42)中,对于给定n,

暋暋栙 按位力定理,类氢离子中电子的动能平均值 煆T=-E.对于能级En=-e2

2a
Z2

n2 =-E1Z2/n2,E1=

-13灡6eV,所以 煆T=13灡6Z2/n2(eV).通常认为,如T曒0灡05mc2,相对论效应就应认真考虑.按此准则,对于
踿踿

Z曒43的重原子
踿踿踿

,相对论效应还是应该认真对待的.

K =1,2,3,…,n
j= K -1/2=1/2,3/2,5/2,…,n-1/2
K = (j+1/2)(>0)情况下 暋l=j-1/2 (11灡5灡44)

K =-(j+1/2)(<0)情况下 暋l=j+1/2
这里l是波函数[见式(11灡5灡26),式(11灡5灡15)]的大分量中的球谐函数的阶,在非

相对论极限下是好量子数.以n=4为例

K +1 -1 +2 -2 +3 -3 +4*)

(nr 3 2 1 0)
j 1/2 3/2 5/2 7/2
l 0暋 1暋 1暋 2暋 2暋 3暋 3暋

光谱符号 4s1/2 4p1/2 4p3/2 4d3/2 4d5/2 4f5/2 4f7/2

*)当nr=0,按式(11灡5灡39),n= K =j+1/2,所以j只取一个值

j=n-1/2,相当于K 只取正值.
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在非相对论量子力学的计算结果(Bohr公式)中,氢原子能级只与主量子数n
有关(l=0,1,…,n-1诸能级的位置相同).而按照相对论量子力学(Dirac方程)
的计算结果[见式(11灡5灡40)~式(11灡5灡42)],氢原子能级与主量子数n和总角动

量量子数j都有关(j=1/2,3/2,…,n-1/2,共有n条).但由于毩=e2/淈c曋1/137
烆1,相对论效应引起的分裂是很小的.这就导致氢原子光谱的精细结构.图11灡2
给出氢原子能级精细结构的示意图.属于同一个主量子数n的诸能级的最大裂距

(K =1与 K =n能级的间距)为殼E=mc2毩4暳(n-1)/2n4,与实验观测结果符

合得很好栙.这是Dirac的相对论量子力学取得的重要成果之一.

图11灡2暋氢原子能级的精细结构示意图

(能级位置未按比例画出)

氢原子光谱理论的发展,是量子力学理论发展的一个缩影和侧面.氢原子是一

个最简单的原子,数学处理比较容易,可以找出其解析解.但氢原子光谱的精密观

测却并不是一件容易的事.实验观测肯定了Dirac理论给出的相对论修正.然而早

在20世纪30年代,就有人发现 Dirac理论与氢原子光谱的精细结构的观测还有

一定的微小差异.但由于当时实验的精确度不够,没有引起人们的重视栚.直到

1945年Lamb与Retherford栛 利用微波技术精确地测定了氢原子光谱的精细结

构,肯定同一个(nj)的能级按照宇称不同还有微小的分裂(图11灡3).例如,按 Di灢
rac的单电子能级公式(11灡5灡42),2s1/2与2p1/2两条能级位置相同,但实验观测表

明,2s1/2-2p1/2能级发生分裂,2s1/2能级略高(殼E=淈殼氊,殼氊=1057灡8暲0灡1MHz).
此即有名的 Lamb移动(shift).它与精细结构分裂(自旋轨道耦合分裂)殼氊(2p3/2

·434·

栙

栚

栛

这个裂距比 Klein灢Gordon方程的计算结果[见11灡1节,式(11灡1灡30)]要小得多.如n=2能级,

殼E(Dirac)/殼E(KG)=3/8.
G.W.Series,SpectrumofAtomicHydrogen,OxfordUniversityPress,1957.
W.E.Jr.LambandR.C.Retherford,Phys.Rev.72(1947)241.



-2p1/2)=10950MHz相比,小一个数量级.类似还有3s1/2能级略高于3p1/2,3p3/2

略高于3d3/2等.

图11灡3暋氢原子能级的Lamb移动和超精细分裂示意图

(能级位置未按比例画出.)
氢原子光谱的超精细结构源于电子磁矩与质子的相互作用,此作用使

精细结构分裂(自旋轨道耦合分裂)后的电子每条能级再分裂成两条,

相应于电子的角动量j与质子的自旋(1/2)耦合后形成的总角动量F=

j暲1/2的能级.参阅,E.Fermi,Z.Physik60(1930)320;或下页所引

文献栚,p.57.

与电子的反常磁矩一样,Lamb移动(Lambshift)是作为单电子理论的 Dirac
相对论量子力学所不能解释的.为了说明它们,需要把 Dirac方程看成一个场方

程,并对场进行量子化.在量子场论中,计及辐射修正
踿踿踿踿

之后,可以满意地解释Lamb
移动和电子的反常磁矩.这是20世纪40年代末量子电动力学取得的重要成果.这
些内容已超出本书范围.有兴趣的读者可在学习本书的基础上,阅读有关的量子电
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动力学或量子场论的书籍栙~栟 .

暋暋栙J.D.Bj毤rkenandS.D.Drell,RelativisticQuantum Mechanics McGraw灢Hill,1964;Relativistic

QuantumFields,McGraw灢Hill,1965.

暋暋栚 M.O.ScullyandM.S.Zubairy,QuantumOptics,1灡3节,CambridgeUniv.Press,1997.

暋暋栛A.Zee,QuantumFieldTheoryinaNutshell,PrincetonUniv.Press,PrincetonandOxford,2003.

暋暋栜C.Cohen灢Tannoudji,J.Dupont灢RocandG.Grynberg,Atom灢PhotonInteraction,Wiley,NewYork,

1992.

暋暋栞S.Weinberg,TheoryofQuantumFields,Cambridge,London,1995.

暋暋栟E.R.PikeandS.Sarkar,QuantumTheoryofRadiation,Cambridge,London,1995.

暋暋栠方程(F1灡1)经过适当变换后,可化为合流超几何方程.详见:钱伯初,曾谨言,量子力学习题精选与剖

析,第三版,18灡6题灡 北京:科学出版社,2008.

附录1暋氢原子径向方程的求解栠

氢原子径向方程为

dF
dr- K

rF = mc2 +E
淈c + 毩( )r G (F1灡1)

dG
dr+ K

rG = mc2 -E
淈c - 毩( )r F

下面求束缚态(E<mc2)解.为方便,令

c1 = (mc2 +E)/淈c,暋暋c2 = (mc2 -E)/淈c (F1灡2)

a= c1c2 = m2c4 -E/淈c (F1灡3)
并引进无量纲变量

氀=ar (F1灡4)
则式(F1灡1)化为

dF
d氀

- K
氀

F =
c1

a + 毩( )氀
G (F1灡5)

dG
d氀

+ K
氀

G =
c2

a - 毩( )氀
F

在方程的两个奇点氀=0,曓的领域,解的渐近行为如下:

氀曻曓时,方程(F1灡5)化为

dF
d氀

曋c1

aG,暋暋dG
d氀

曋c2

aF

因此

d2F
d氀2 曋c1

a
dG
d氀

曋
c1c2

a2 F=F

所以,当氀曻曓时,F曍e暲氀.但F曍e氀 不满足束缚态条件,弃之.所以

氀曻 曓 处,暋暋F(氀)曍e-氀 (F1灡6)

G(氀)的渐近行为也一样.因此,不妨令

F(氀)=e-氀f(氀),暋暋G(氀)=e-氀g(氀) (F1灡7)
代入式(F1灡5),得
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d
d氀

- K
氀

-( )1 f=
c1

a + 毩( )氀
g

d
d氀

+ K
氀

-( )1 g=
c2

a - 毩( )氀
f

(F1灡8)

当氀曻0时,上式化为

df
d氀

- K
氀
f- 毩

氀
g =0

dg
d氀

+ K
氀
g+ 毩

氀
f =0

(F1灡9)

令

f曍b0氀
s,暋暋g曍d0氀

s (F1灡10)

代入式(F1灡9),得
(s-K)b0 -毩d0 =0
毩b0 +(s+K)d0 =0 (F1灡11)

此齐次方程有非平庸解的充要条件为

s-K -毩
毩 s+K

=0

解之,得

s=暲 K2 -毩2

但s<0的解在氀曋0邻域不满足波函数统计诠释的要求,弃之.取

s= K2 -毩2 (F1灡12)

这样,方程(F1灡8)的一般解可表示为

f(氀)= 暺
曓

毻=0
b毻氀

s+毻

g(氀)= 暺
曓

毻=0
d毻氀

s+毻 (F1灡13)

代入方程(F1灡8),得

-c2

a + 毩( )氀 暺
毻
b毻氀

s+毻+ K
氀

-( )1 暺
毻
d毻氀

s+毻+暺
毻

(s+毻)d毻氀
s+毻-1 =0

K
氀

+( )1 暺
毻
b毻氀

s+毻-暺
毻

(s+毻)b毻氀
s+毻-1 + c1

a + 毩( )氀 暺
毻
d毻氀

s+毻 =0

比较等式两边氀
s+毻-1项的系数,得

-c2

ab毻-1 +毩b毻+Kd毻-d毻-1 +(s+毻)d毻 =0 (F1灡14a)

Kb毻+b毻-1 -(s+毻)b毻+
c1

ad毻-1 +毩d毻 =0 (F1灡14b)

(F1灡14a)+c2

a暳(F1灡14b),注意c1c2=a2,可把d毻-1、b毻-1消去,得

c2

a
(K-s-毻)+[ ]毩b毻+ (K+s+毻)+c2毩[ ]a d毻 =0 (F1灡15)

当毻烅1时,

b毻/d毻 曋a/c2
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代入式(F1灡14a),得

-d毻-1 +毩c2

ad毻+(K+s+毻)d毻-d毻-1 =0

当毻烅1时,得毻d毻-2d毻-1=0,得

d毻/d毻-1 曋2/毻
类似也可得出

b毻/b毻-1 曋2/毻
由此可以判断栙

当氀曻 曓,暋暋f(氀)、g(氀)曍e2氀 (F1灡16)
这样得到的无穷级数解F(氀)与G(氀)[见式(F1灡7)]不满足束缚态边条件[见式(F1灡6)].为满足

束缚态条件,级数解(F1灡13)必须从某项开始就截断,成为一个多项式.假设在毻=n曚(=0,1,

2,…)处截断,即当毻曒n曚时,

b毻 =d毻 =0 (F1灡17)
在式(F1灡14a)中,取毻=n曚+1时,有

-
c2

abn曚 =dn曚 (F1灡18)

在式(F1灡15)中,取毻=n曚,有

c2

a
(K-s-n曚)+[ ]毩bn曚 +[K+s+n曚+c2毩/a]dn曚 =0 (F1灡19)

比较式(F1灡18)与式(F1灡19),得

c2

a
(K-s-n曚)+毩-c2

a
(K+s+n曚+c2毩/a)=0

即

2c2

a
(s+n曚)=毩(1-c2

2/a)=毩(1-c2/c1)

上式乘c1,利用c1c2=a2,c1-c2=2E/淈c,得

2a(s+n曚)=2毩E/淈c (F1灡20)
即

毩E =淈ca(s+n曚)= m2c4 -E2(s+n曚)

毩2E2 = (m2c4 -E2)(s+n曚)2

解出得

E2 =m2c4 1+ 毩2

(s+n曚)[ ]2 (F1灡21)

其正能解为

E=mc2 1+ 毩2

(s+n曚)2 (F1灡22)

将式(F1灡12)代入,即得出氢原子的束缚态能量本征值

E=En曚K =mc
é

ë

ê
ê

2 1+ 毩2

( K2 -毩2 +n曚)

ù

û

ú
ú2

-1/2

(F1灡23)
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n曚=0,1,2,…暋暋
K = (j+1/2)=1,2,3,…

附录2暋毭代数

为便于记忆和运算,有关毭矩阵的性质,可按如下线索来整理.
(1)定义4暳4厄米矩阵氀j(j=1,2,3)

氀1 =
0 I
I

æ

è
ç

ö

ø
÷

0
,暋氀2 =

0 -iI
iI
æ

è
ç

ö

ø
÷

0
,暋氀3 =

I 0
0 -

æ

è
ç

ö

ø
÷

I
(F2灡1)

在形式上与Pauli矩阵氁j 相似,但这里I是2暳2单位矩阵,0是2暳2零矩阵.氀j 之间的代数关

系与氁j 相同.

暋暋暋暋暋暋暋氁+
j =氁j 氀

+
j =氀j (F2灡2a)

暋暋暋暋暋暋暋氁2
j=1 氀

2
j=1 (F2灡2b)

暋暋暋暋暋暋暋tr氁j=0 tr氀j=0 (F2灡2c)

暋暋暋暋暋暋暋[氁i,氁j]+ =2毮ij [氀i,氀j]+ =2毮ij (F2灡2d)

暋暋暋暋暋暋暋[氁i,氁j]=2i毰ijk氁k [氀i,氀j]=2i毰ijk氀k (F2灡2e)

暋暋暋暋暋暋暋氁1氁2=i氁3 氀1氀2=i氀3

暋暋暋暋暋暋暋氁2氁3=i氁1 氀2氀3=i氀1 (F2灡2f)

暋暋暋暋暋暋暋氁3氁1=i氁2 氀3氀1=i氀2

(2)毑j 矩阵(j=1,2,3)

毑j =
氁j 0

0 氁
æ

è
ç

ö

ø
÷

j

(F2灡3)

显然,毑j 也满足与式(F2灡2)相同的代数关系,

毑+
j =毑j暋暋暋 (F2灡4a)

毑2
j =1 (F2灡4b)

tr毑j =0 (F2灡4c)
[毑i,毑j]+=2毮ij (F2灡4d)
[毑i,毑j]=2i毰ijk毑k (F2灡4e)

毑1毑2 =i毑3,暋毑2毑3 =i毑1,暋毑3毑1 =i毑2 (F2灡4f)
(3)容易证明

[毑i,氀j]=0,暋暋i,j=1,2,3 (F2灡5)

由于毭毺
、毩和毬矩阵均可用氀j 和毑j 表示出来,它们的各种代数关系很容易从式(F2灡2)、式(F2灡4)、

式(F2灡5)得出.
毩,毬矩阵可表示为

毩j =氀1毑j =
0 氁j

氁j

æ

è
ç

ö

ø
÷

0
暋 或 暋毑j =氀1毩j (F2灡6)

毬=氀3 (F2灡7)

毭毺 矩阵可表示为

毭j =氀2毑j =
0 -i氁j

i氁j

æ

è
ç

ö

ø
÷

0
暋 或 暋毑j =氀2毭j (F2灡8)
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毭4 =氀3 =毬 (F2灡9)

毭矩阵与毩 矩阵的关系如下:

如

毭j =氀2毑j =氀2氀1毩j =-i氀3毩j =-i毬毩j

即

毭=-i毬毩暋 或 暋毩=i毬毭 (F2灡10)
(4)由式(F2灡8)、式(F2灡4)、式(F2灡5)容易证明

[毭i,毭j]+=2毮ij,暋暋i,j=1,2,3 (F2灡11)

与式(F2灡2c)、式(F2灡4c)相似.类似可证明

[毭4,毭j]+=0,暋暋j=1,2,3 (F2灡12)

考虑到毭2
j=1,上两式可概括为

[毭毺
,毭毻]+=2毮毺毻

,暋暋毺,毻=1,2,3,4 (F2灡13)

定义

毭5 =毭1毭2毭3毭4 (F2灡14)

用式(F2灡8)、式(F2灡9)代入

毭5 =氀2毑1氀2毑2氀2毑3氀3 =氀2氀3毑1毑2毑3 =i氀1i毑3毑3 =-氀1

所以

毭5 =-氀1 =
0 -I

-I
æ

è
ç

ö

ø
÷

0
(F2灡15)

容易证明

毭2
5 =1,暋暋[毭5,毭毺

]+=0,暋暋毺=1,2,3,4 (F2灡16)

式(F2灡13)与式(F2灡16)可概括为

[毭毺
,毭毻]+=2毮毺毻

,暋暋毺,毻=1,2,3,4,5 (F2灡17)
(5)4暳4厄米矩阵,线性独立的有16个.按 Lorentz变换下的性质,可以方便地分为如下

5组:
(a)I(4暳4单位矩阵)(标量,S)
(b)毭毺

(毺=1,2,3,4)(矢量,V)
(c)

氁毺毻 =- i
2

(毭毺毭毻-毭毻毭毺
)=-氁毻毺

(毺,毻=1,2,3,4) (F2灡18)

(反对称张量,T,共6个矩阵)

氁23 氁31 氁12

氁14 氁24 氁
æ

è
ç

ö

ø
÷

34
=

毑1 毑2 毑3

毩1 毩2 毩
æ

è
ç

ö

ø
÷

3

(F2灡19)

(d)毭5(赝标量,P)
(e)i毭毺毭5(毺=1,2,3,4)(赝矢量)

或i毭2毭3毭4,暋i毭3毭1毭4,暋i毭1毭2毭4,暋-i毭1毭2毭3 (F2灡20)

=-氀3毑1, -氀3毑2, -氀3毑3, 氀2

在Pauli灢Dirac表象中,这16个矩阵有10个为实,6个为纯虚.
10个实矩阵为I,毭2,毭4(=氀3=毬),毭5(=-氀1),毑1,毑3,毩1,毩3,氀3毑1,氀3毑3.
6个纯虚矩阵为毭1,毭3,毑2,毩2,氀2,氀3毑2.
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这16个矩阵分别记为毭A(A=1,2,…,16),它们具有如下代数性质:

栙

毭2
A=1暋暋暋(毭-1

A =毭A) (F2灡21)

栚除单位矩阵外,对于每一个毭A,都可找到一个毭B(B曎A)与之反对易

毭A毭B =-毭B毭A (F2灡22)

栛除单位矩阵外,均为零迹矩阵
踿踿踿踿

,

tr毭A =0 (F2灡23)

证明暋按式(F2灡22),对于毭A(曎I),总可找到毭B(B曎A),使毭A毭B=-毭B毭A.考虑到

tr毭A =tr(毭A毭2
B)=tr(毭A毭B毭B)=tr(毭B毭A毭B)

但另一方面

tr(毭A毭B毭B)=-tr(毭B毭A毭B)

所以

tr毭A =0

栜所以毭A 均为幺模矩阵
踿踿踿踿

,即

det毭A =1 (F2灡24)

证明暋按式(F2灡21),

det(毭2
A)=det毭A·det毭A =1

所以det毭A=暲1.但毭A 为4暳4矩阵,在毭A 对角化表象中,毭A 矩阵元必为暲1.而按tr毭A=0,对

角元中取+1与-1的数目必须相同,因而为偶数,所以det毭A=1.注意,det不因表象而异.

栞16个矩阵彼此线性独立
踿踿踿踿.

反证法:

设存在不全为0的数CA,使

暺
16

A=1
CA毭A =0

用毭B(任意)左乘,上式化为

CB +暺
A曎B

CA毭B毭A =0 (F2灡25)

注意:当B曎A 时,毭B毭A 不可能为单位矩阵,因而

tr(毭B毭A)=0暋暋(B曎A)

试对式(F2灡25)求迹,立即得CB=0.但B是任意的,这与假设矛盾.证毕.
按此性质,任何4暳4矩阵 M 均可表示成

M = 暺
16

A=1
mA毭A

mA = 1
4tr(毭AM) (F2灡26)

栟Schur引理暋设矩阵 M 与毭毺
(毺=1,2,3,4)都对易,则 M 必为单位矩阵的倍数.即 M=

kI,k为常数,I为单位矩阵.
证明暋任何矩阵都与单位矩阵对易.
按假定,M 与毭毺

(毺=1,2,3,4)对易.除单位矩阵外,其他15个矩阵均可用毭毺 矩阵的某种乘
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积表示出来,所以 M 与它们也都对易.因而 M 与16个矩阵都对易.又按式(F2灡26),M 总可表

示成

M =mB毭B +暺
A曎B

mA毭A (F2灡27)

设上式中毭B曎I,按栚,总可找到一个矩阵毭C 与毭B 反对易,即毭B毭C=-毭C毭B.再利用 M毭C

=毭CM,毭2
C=1,M 可表示成

M =毭2
CM =毭CM毭C

用式(F2灡27)

M=mB毭C毭B毭C +暺
A曎B

mA毭C毭A毭C

=-mB毭B +暺
A曎B

mA毰A毭A (F2灡28)

式中毰A=+1或-1,视毭A 与毭C 对易或反对易而定.毭B·式(F2灡28),求迹,得

tr(毭BM)=-4mB

而毭B·式(F2灡27),求迹,得

tr(毭BM)=4mB

所以mB=0.因此,式(F2灡27)的各项中,除单位矩阵外,其他矩阵前面的系数必为0.因此 M 只

能是单位矩阵的倍数M=kI,k为任意数.
栠定理暋设毭毺 与毭曚

毺 为两组任意的4暳4矩阵,满足

[毭毺
,毭毻]+=2毮毺毻

[毭曚毺
,毭曚毻]+=2毮毺毻

(毺,毻=1,2,3,4)

则必定存在一个非奇异矩阵S,使

毭曚毺 =S毭毺S-1 (F2灡29)

除一个常数因子外,S可以唯一确定.(证明从略)

练习1暋证明:奇数个毭毺 矩阵的乘积之迹为0,即

tr毭毺 =0,暋暋tr(毭毺毭毻毭毸)=0,暋… (F2灡30)

练习2暋证明:

tr(毭毺毭毻)=4毮毺毻暋暋暋暋暋暋
tr(毭毺毭毻毭氀毭氁)=4(毮毺毻毮氀氁 +毮毺氁毮毻氀 -毮毺氀毮毻氁) (F2灡31)

附录3暋Dirac方程的协变形式

取淈=c=1.令

x毺 = (x1,x2,x3,it) (F3灡1)

Lorentz变换表示为

x毺 曻x曚毺 =a毺毻x毻 (F3灡2)

为保证x曚毺x曚毺=x毺x毺
,要求

a毺毻a毺毸 =毮毻毸 (F3灡3)

这里采用了Einstein约定,即同一项中出现重复下标时,要对该下标求和.
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特例

1灡 空间反射

a毺毻 =

-1
暋-1
暋暋-1
暋暋暋暋

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

1

(F3灡4)

显然

deta=-1

2灡 时间反演

a毺毻 =

1
暋1
暋暋1
暋暋-

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

1

(F3灡5)

同样

deta=-1

3灡 真(proper)Lorentz变换

指deta=+1,a44>0的Lorentz变换.如参考系毑曚沿z 轴(即x3 轴)以匀速V 相对于参考

系毑 运动

x曚1

x曚2

x曚3

x曚

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

4

=

1 0 0 0
0 1 0 0

0 0 1
1-V2

iV
1-V2

0 0 -iV
1-V2

1
1-V

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

2

x1

x2

x3

x

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

4

(F3灡6)

这种变换可以从恒等变换(a毺毻=毮毺毻
)出发,经过相继的一系列无穷小变换达到.因此,只需研究

其无穷小变换,即

a毺毻 =毮毺毻 +毰毺毻
(F3灡7)

毰毺毻为无穷小量.按式(F3灡3)要求

毮毻毸 = (毮毺毻 +毰毺毻
)(毮毺毸 +毰毺毸

)=毮毻毸 +(毰毸毻 +毰毻毸)+O(毰2)

所以要求

毰毸毻 =-毰毻毸 (F3灡8)

设在Lorentz变换下,波函数

氉(x)曻氉曚(x曚)=毇氉(x) (F3灡9)

毇是4暳4矩阵,待定.此时 Dirac方程

毭毺
灥

灥x毺
+( )m 氉(x)=0 (F3灡10)
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化为

毭毺a毻毺
灥

灥x曚毻
+( )m 毇-1

氉曚(x曚)=0 (F3灡11)

左乘毇,得

毇毭毺毇
-1a毻毺

灥
灥x曚毻

+( )m 氉曚(x曚)=0 (F3灡12)

如毇满足

毇毭毺毇
-1 =a毸毺毭毸 (F3灡13)

则式(F3灡12)化为

毭毻
灥

灥x曚毻
+( )m 氉曚(x曚)=0 (F3灡14)

其形式与原来惯性参考系中的 Dirac方程(F3灡10)相同.此即 Dirac方程的 Lorentz不变性,,是
相对性原理的要求.这样的毇能否找到? 可以的.满足式(F3灡13)的毇矩阵分别如下:

1)空间反射

毇=i毭4暋暋毇-1 =-i毭4暋暋暋 (F3灡15)

显然

毇毭j毇-1 =-毭j,暋暋j=1,2,3

毇毭4毸-1 =毭4

与式(F3灡4)比较,可见式(F3灡13)是满足的.
2)时间反演

毇=毭1毭2毭3 =i氀2,暋暋毇-1 =毭3毭2毭1 =-i氀2 (F3灡16)

显然

毇毭j毇-1 =毭j,暋暋j=1,2,3

毇毭4毇-1 =-毭4

与式(F3灡5)比较,可见式(F3灡13)是满足的.
3)真(proper)Lorentz变换

考虑无穷小Lorentz变换式(F3灡7),此时,不妨取

毇=1+ i
4毰毺毻氁毺毻暋暋暋暋暋暋

毇-1 =1- i
4毰毺毻氁毺毻

(F3灡17)

其中

氁毺毻 =- i
2

(毭毺毭毻-毭毻毭毺
)=-氁毻毺暋暋毺曎毻 (F3灡18)

可以得出

毇毭毸毇-1= 1+ i
4毰毺毻氁毺( )毻 毭毸 1- i

4毰毺毻氁毺( )毻

=毭毸+ i
4毰毺毻

[氁毺毻
,毭毸]+O(毰2)

利用代数恒等式

[AB,C]=A[B,C]+-[A,C]+B
可知
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i[氁毺毻
,毭毸]= 1

2
[毭毺毭毻-毭毻毭毺

,毭毸]= [毭毺毭毻,毭毸]暋(毺曎毻)

=毭毺
[毭毻,毭毸]+-[毭毺

,毭毸]+毭毻 =2毭毺毮毻毸 -2毭毻毮毺毸

所以

毇毭毸毇-1=毭毸+ 1
2毰毺毻

(毭毺毮毻毸 -毭毻毮毺毸
)=毭毸+ 1

2
(毭毺毰毺毸 -毭毻毰毸毻)

=毭毸+毰毺毸毭毺 =a毺毸毭毺

与式(F3灡13)相同.

习暋暋题

11灡1暋试证明自由粒子的 Klein灢Gordon方程

-淈2 灥2

灥t2氉= (-淈2c2

殼

2 +m2c4)氉

可表示成类似于Schr昳dinger方程的形式

i淈灥
灥t毞 = H毞

式中

H =-淈2

2m
(氂3 +i氂2)

殼

2 +mc2氂3

毞 是重新构造的二分量波函数,毞= æ

è
ç

ö

ø
÷

氄
氈

.氄描述正电荷态,氈描述负电荷态,氂i(i=1,2,3)是

Pauli矩阵,

氂1 =
0 1æ

è
ç

ö

ø
÷

1 0
,暋氂2 =

0 -iæ

è
ç

ö

ø
÷

i 0
,暋氂3 =

1 0
0 -

æ

è
ç

ö

ø
÷

1
试找出毞 与氉的关系,并用毞 来表示连续性方程中的氀与j.

答: 氉=氄+氈

i淈灥
灥t氉=mc2(氄-氈)

氀=毞+氂3毞

j=-i淈
2m

[毞+ (1+氂1)

殼

毞-(

殼

毞+)(1+氂1)毞]

11灡2暋按照特殊相对论,自由粒子的能量

E= c2p2 +m2c4

当v/c烆1时,

E=mc2 1+ p2

m2c[ ]2

1/2

曋mc2 +p2

2m
- p4

8m3c2

-p4/(8m3c2)是最低幂次的相对论修正.把常数项mc2 去掉,氢原子的 Hamilton量可表示成 H
=H0+H曚,

H0 = p2

2m-e2

r

H曚=- p4

8m3c2
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把 H曚看成微扰,求能级的微扰论一级修正.
答:能级的一级修正为

毩2

2n4
3
4 - n

l+1/[ ]2
me4

淈2 暋暋(毩=e2/淈c)

加上零级能量En=- 1
2n2

me4

淈2 ,得

Enl =- 1
2n2 1+毩2

n2
n

l+1/2-( )[ ]3
4

me4

淈2

n=1,2,3,…,暋暋l=0,1,…,n-1

11灡3暋同上题,考虑相对论最低级修正后,中心力场V(r)中粒子的 Schr昳dinger方程表

示为

p2

2m
+V(r)- p4

8m3c
æ
è
ç

ö
ø
÷

2 氉=E氉

试把 H曚=-p4/(8m3c2)当作微扰,并让

H曚氉曋 H曚氉
(0) =- T2

2mc2氉
(0) =-

(E-V)2
2mc2 氉

(0) 曋-
(E-V)2
2mc2 氉

于是Schr昳dinger方程化为

p2

2m
+(V(r)-E)- 1

2mc2(E-V(r))[ ]2 氉=0

对于氢原子,V(r)=-e2/r.试求出其能级公式.
答:能量本征值E由下式确定:

E
mc2

é

ë

ê
ê

= 1+ 毩

(

2

(l+1/2)2 -毩2 +nr+ )1
2

ù

û

ú
ú2

-1/2

-1

nr,l=0,1,2,…

按毩2 幂级数展开,得

E=Enl =- 1
2n2 1+毩2

n2
n

l+1/2-( )3
4 +[ ]… me4

淈2

n=nr+l+1=1,2,3,…

l=0,1,2,…,n-1
参阅E.U.CondonandG.H.Shortley,TheTheoryofAtomicSpectra.CambridgeUniversity
Press,1935.

11灡4暋在非相对论近似下,氢原子的 Dirac方程可化为[参阅11灡4灡3节,式(11灡4灡32)、式
(11灡4灡33)和式(11灡4灡34)]

p2

2m
+V- p4

8m3c2 + Ze2

2m2c2
1
r3s·l+毿Ze2淈2

2m2c2毮(r{ })毞 =E曚毞

(E曚=E-mc2).试把{暋}中后三项看成微扰,用微扰论一级近似计算能级修正,并与 Dirac方程

的严格解比较.
答:E曚=Enj=E(0)

n +暣H曚暤nljmj

=-mc2Z2毩2

2n2 1+Z2毩2

n2
n

j+1/2-( )[ ]3
4
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由 Dirac方程精确解[见11灡5灡4节,式(11灡5灡38)]

Enj =mc

ì

î

í

ï
ï

ï
ï

2 1+ Z2毩

[

2

nr (+ j+ )1
2

2

-Z2毩 ]2

ü

þ

ý

ï
ï

ï
ï

2

-1/2

n=nr+j+1/2=1,2,3,…,暋暋nr =0,1,2,…

作毩2 幂级数展开,到毩4 项,减去mc2,所得结果与微扰论一级修正的结果相同.
11灡5暋对于自旋为1/2的三维各向同性谐振子,计算能级的相对论修正.

提示:用V(r)=1
2m氊2r2 代入11灡4灡3节式(11灡4灡32).

答案见钱伯初,曾谨言灡《量子力学习题精选与剖析》,第三版,18灡11题灡 北京:科学出版

社,2008.
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第12章暋辐射场的量子化及其与物质的相互作用

在经典物理学和量子物理学中,光的本性的探讨都占有特殊重要的地位.早在

17世纪,就存在 Newton的光的微粒说与 Huygens的光的波动说的争论.在相当

长一段时期内,由于 Newton在学术界的崇高威望,微粒说占主流地位.直到19世

纪,经过 T.Young和 A.J.Fresnel等关于光的干涉和衍射的实验工作和理论分

析,光的波动论才得到人们普遍承认.J.C.Maxwell(1865)建立了把电和磁现象

统一起来的理论,即电动力学(现今称为经典电动力学),并预言了电磁波的存在,

电磁波的传播速度为c(真空中光速,c=1/ 毰0毺0,毰0 为真空比容率,毺0 为真空磁导

率).不久,H.R.Hertz(1888)用实验证实了电磁波的存在,指出光是一个特定波

段中的电磁波,波长毸~(380~760nm),频率毻为8暳1014~4暳1014Hz).
量子物理学的提出,发靭于 M.Planck(1900)对黑体辐射的研究.为了说明实

验观测到的黑体辐射场的能量密度分布的规律,Planck提出了作用量子的概念.
随后,A.Einstein(1905)提出了光量子概念,把光的粒子性和波动性统一起来,成
功阐明了光电效应.继Planck灢Einstein的光量子论之后,N.Bohr(1913)提出了

原子的 量 子 论.在 20 世 纪 20 年 代 中 期,W.Heisenberg 的 矩 阵 力 学 与 E.
Schr昳dinger的波动力学相继提出,非相对论量子力学体系得以建立.

暋暋栙暋M.O.ScullyandM.S.Zubairy,QuantumOptics,CambridgeUniv.Press,1997.

暋暋栚暋P.A.M.Dirac,Proc.Roy.Soc.A114(1927)243.

暋暋栛暋E.Fermi,Rev.Mod.Phys.4(1932)87.

暋暋栜暋例如,R.Loudon,TheQuantumTheoryofLight,OxfordUniv.Press,1973.

C.Cohen灢Tannoudji,J.Dupont灢Roc.andG.Grynberg,PhotonsandAtoms,Introductionto

QuantumElectrodynamics,Wiley,NewYork,1989.

暋暋暋 E.R.PikeandS.Sarker,QuantumTheoryofRadiation,Cambridge,London,1995.

在非相对论量子力学理论框架中,曾经提出原子和分子辐射的半经典理论.在
此理论中,原子和分子的运动用量子力学来处理,而作用于原子和分子的电磁场仍

踿踿踿踿
然看成
踿踿踿

经典的电磁场.这个半经典理论,成功说明了原子和分子的一些辐射现象,但
对某些现象还不能给予满意的说明.光的波动性和粒子性的完整的、系统的理论是

P.A.M.Dirac.(1927)的电磁场的量子化理论给出的(后来称为量子电动力学).在
此理论中,出现了一些经典辐射理论中未曾出现的现象栙 ,例如,真空涨落(vacuum
fluctuation,即与零点能相应的涨落),成功说明了自发辐射现象、Lamb位移、激光线

宽、Casimir效应等.关于这方面的系统理论,可以参阅有关专门文献栚栛 和专著栜 .本
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章只做一个初步的介绍.12灡1节对经典电动力学和经典辐射场做一个简要回顾.
12灡2节讨论辐射场的量子化.12灡3节讨论多极辐射场及其量子化.12灡4节讨论多

极自发辐射.

12灡1暋经典辐射场

12灡1灡1暋经典电动力学简要回顾栙

荷电q的粒子所受电磁场的作用力(Lorentz力)由下式给出:

F=q E+1
cv暳æ

è
ç

ö

ø
÷B (12灡1灡1)

v为粒子速度,c为一个普适常数,即真空中光(电磁波)的传播速度,E和B 分别为

电场强度和磁场强度.电磁场的运动遵守下列 Maxwell方程组:

殼

·E=4毿氀暋暋暋暋 (12灡1灡2a)

殼

暳E+1
c

灥
灥tB =0 (12灡1灡2b)

殼

·B=0 (12灡1灡2c)

殼

暳B-1
c

灥
灥tE =4毿

cj (12灡1灡2d)

氀 与j 分 别 表 示 电 荷 密 度 和 电 流 密 度.对 式 (12灡1灡2d)取 散 度,利 用 式

(12灡1灡2a),得

殼

·j+
灥氀
灥t

=0 (12灡1灡3)

此即电荷守恒的局域表示式.
通常习惯引进电磁矢势A 和标势毤 来描述电磁场.根据式(12灡1灡2c),B 可以

表示成

B=

殼

暳A (12灡1灡4)
(因为

殼

· (

殼

暳A)曉0,见本节末的矢量分析公式).把式 (12灡1灡4)代 入 式

(12灡1灡2b),得

殼

暳 E+1
c

灥
灥t

æ

è
ç

ö

ø
÷A =0

因而E+1
c

灥
灥tA

可以表示成梯度形式-

殼

毤(因为

殼

暳(

殼

毤)曉0),即

E=-1
c

灥
灥tA-

殼

毤 (12灡1灡5)
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栙 详细内容可参阅J.D.Jackson,ClassicalElectrodynamics,Wiley,N.Y.,1975;R.Shankar,

PrinciplesofQuantum Mechanics,2nd.ed.,PlenumPress,N.Y.,1994.
暋暋曹昌其灡电动力学灡北京:人民教育出版社,1978.
暋暋俞允强灡电动力学简明教程:北京:北京大学出版社,1999.



式(12灡1灡4)和式(12灡1灡5)代入式(12灡1灡2a)和式(12灡1灡2d),并利用

殼

暳(

殼

暳A)=

殼

(

殼

·A)-

殼

2A,可得出A和毤满足的方程

殼

2毤+1
c

灥
灥t

(

殼

·A)=-4毿氀暋暋暋暋 (12灡1灡6a)

殼

2A-1
c2

灥2

灥t2A-

殼 殼

·A+1
c

灥
灥t

æ

è
ç

ö

ø
÷毤 =-4毿

cj (12灡1灡6b)

由式(12灡1灡4)和式(12灡1灡5)可以看出,A和毤有一定的任意性,即A和毤分别做如

下变换:

A曻A曚=A-

殼

f (12灡1灡7)

毤曻毤曚=毤+1
c

灥f
灥t

上种f为(r,t)的任意函数,设

殼

f和
灥f
灥t

存在,则所得出的电磁场E 和B 是不变的,

因而不影响Lorentz力和 Maxwell方程组.这种不变性称为规范不变性
踿踿踿踿踿

(gaugein灢
variance).

规范不变性可用来化简方程(12灡1灡6).以下讨论自由电磁场
踿踿踿踿踿

(氀=0,j=0)情
况.此时总可以选择(A,毤),使之满足栙

殼

·A=0,暋毤=0 (12灡1灡8)
此之谓Coulomb规范.在Coulomb规范中,自由电磁场(氀=0,j=0)的矢势满足下

·054·

栙 一般说来,(A,毤)不一定满足Coulomb规范,此时,可做规范变换,取

f(r,t)=-c曇
t

-曓
dt曚毤(r,t曚)

则毤曻毤曚=0,A曻A曚=A-

殼

f.此时

殼

·A曚不一定为0.可再做规范变换,取

f曚(r,t)=- 1
4毿曇d3x曚

殼

曚·A曚(r曚,t)
r-r曚

则

毤曚曻毤曞=毤曚+ 1
c

灥
灥tf曚= 1

c
灥
灥tf曚

=- 1
4毿c曇 d3x曚

r-r曚

殼

曚 [· 灥
灥tA曚

(r曚,t ])

= 1
4毿曇 d3x曚

r-r曚

殼

曚·E曚(r曚,t)=0

而

A曚曻A曞=A曚-

殼

f曚=A-

殼

f-

殼

f曚殼

·A曞=

殼

·A-

殼

2f-

殼

2f曚

利用

殼

2 1
r-r曚 =-4毿毮(r-r曚),可证明

殼

2f曚=

殼

·A曚(r,t)=

殼

·A-

殼

2f
因而

殼

·A曞=0.在Coulomb规范中,如要再进行规范变换,则f必须不依赖于时间变量t,并满足 Laplace方

程

殼

2f=0.此时若再要求在空间无穷远处 A 曻0,则A将唯一确定,即在给定E和B 的情况下,A是唯一确

定的,没有什么规范自由度了(参阅上页所引 R.Shanker一书p.503).



列波动方程:

殼2A-1
c2

灥2

灥t2A=0 (12灡1灡9a)

以及

殼

·A=0 (12灡1灡9b)
考虑到式(12灡1灡5)和式(12灡1灡2a),还有

殼

·A
·
=0 (12灡1灡9c)

方程(12灡1灡9a)的一种特解(平面单色驻波)可取为

A=A0cos(k·r-氊t) (12灡1灡10)

氊=kc= kc
k为波矢.由式(12灡1灡9b),有

k·A0 =0 (12灡1灡11)
电磁场强度为

E=-1
c

灥
灥tA =-氊

cA0sin(k·r-氊t)

B=

殼

暳A=-(k暳A0)sin(k·r-氊t)
(12灡1灡12)

可见E和B 都与k 垂直,E和B 彼此也垂直,且大小相等(E = B ).
电磁场能量密度为

u= 1
8毿

(E 2+ B 2)= 1
4毿

氊2

c2 A0
2sin2(k·r-氊t) (12灡1灡13)

动量密度(Pointing矢量)为

P= 1
4毿c

(E暳B)= 氊
4毿c2A0暳(k暳A0)sin2(k·r-氊t)

= 氊
4毿c2k A0

2sin2(k·r-氊t) (12灡1灡14)

能流密度为

S= c
4毿

(E暳B)=c2P

= 氊
4毿k A0

2sin2(k·r-氊t) (12灡1灡15)

S = 氊
4毿

氊æ

è
ç

ö

ø
÷

c A0
2sin2(k·r-氊t)=uc

12灡1灡2暋经典辐射场的平面波展开

对于自由电磁场(纯辐射场),采用Coulomb规范(12灡1灡8)是方便的,即

殼

·A=0,

毤=0,而矢势A满足下列方程:

殼

2A-1
c2

灥2

灥t2A=0 (12灡1灡16)
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为避免计算过程中出现归一化的困难,先设辐射场局限在体积为V 的方匣子中

(在计算的最后结果中,让V曻曓),并要求A在空间的变化具有周期性.显然,方程

(12灡1灡16)可以分离变量.以下用分离变量法求方程(12灡1灡16)的一种特解,而一般

解可以表示成这些特解的线性叠加.令

A(r,t)=q(t)A(r) (12灡1灡17)
代入式(12灡1灡16),可得

殼

2A(r)+k2A(r)=0 (12灡1灡18)

q暓(t)+氊2q(t)=0 (12灡1灡19)

式中k(或氊=kc)是不依赖于r和t的常量.方程(12灡1灡18)的解可取为平面行波

解(后面将看出,它是光子的动量的本征态)

A毸(r)= 4毿c2

V 毰毸exp[ik毸·r] (12灡1灡20)

式中 4毿c2是为归一化表述方便而引进的.毰毸 描述辐射的偏振方向,k毸 为波矢.设

V=L3(L为匣子边长),则由周期性条件给出k的可取值k毸 为

k毸 =2毿
L

(l,m,n) (12灡1灡21)

l,m,n=0,暲1,暲2,…(但l=m =n=0除外)
(每一组l,m,n相应于一个波矢,以下笼统用指标毸标记之.)利用周期性边条件可

以证明(参阅卷栺,5灡4灡3节)

1
L3曇d氂exp[i(k毸-k毸曚)·r]=毮k毸k毸曚

(12灡1灡22)

式(12灡1灡20)代入式(12灡1灡8),得横波条件
踿踿踿踿
毰毸·k毸 =0 (12灡1灡23)

即毰毸 与波矢方向k毸 垂直,它有两个独立的分量
踿踿踿踿踿踿踿

,表示两种偏振态
踿踿踿踿踿.如把k毸、毰毸 笼统

用符号毸来标记,则

曇d氂A*
毸 ·A曚毸 =4毿c2毮毸毸曚 (12灡1灡24)

与k毸 相应(氊毸= k毸 c)的方程(12灡1灡19)的解记为

q毸(t)曍exp[暲i氊毸t] (12灡1灡25)

经典辐射场方程(12灡1灡16)的一般解(实)可表示为这些特解的线性叠加(以下取

q毸(t)曍e-i氊毸t)

A(r,t)= 暺
毸

[q毸(t)A毸(r)+q*
毸 (t)A*

毸 (r)] (12灡1灡26)
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曍 暺
毸
毰毸[e

-i氊毸t+ik毸r +复共轭项]

上式右边括号内第一项代表沿k毸 方向传播的平面单色波(具有一定偏振毰毸),而第

二项复共轭项代表沿-k毸 方向传播的平面单色波栙.
利用式(12灡1灡26),可将电场强度及磁场强度表示为

E=-1
c

灥
灥tA =-i

c暺
毸
氊毸(q毸A毸-q*

毸A*
毸 )

B=

殼

暳A= 暺
毸

(q毸

殼

暳A毸+q*
毸

殼

暳A*
毸 )

(12灡1灡27)

利用上式及正交性公式(12灡1灡24),可求出辐射场的能量为

1
8毿曇d氂E 2=- 1

8毿c2暺
毸毸曚

氊毸氊曚毸·曇d氂(q毸A毸-q*
毸A*

毸 )·(q毸曚A毸曚 -q*
毸曚A*

毸曚 )

= 1
8毿c2暺

毸毸曚
氊毸氊曚毸 q毸q*

毸曚曇A毸·A*
毸曚d氂+q*

毸q毸曚曇A*
毸 ·A毸曚d[ ]氂

= 1
2暺

毸
氊2

毸(q毸q*
毸 +q*

毸q毸)

类似有栚

1
8毿曇d氂B 2= 1

8毿暺毸毸曚曇d氂(q毸

殼

暳A毸+q*
毸

殼

暳A*
毸 )·(q毸曚

殼

暳A毸曚 +q*
毸曚

殼

暳A*
毸曚 )

= 1
8毿暺毸毸曚 q毸q*

毸曚曇d氂(

殼

暳A毸)·(

殼

暳A*
毸曚{ )

暋+q*
毸q毸曚曇d氂(

殼

暳A*
毸 )·(

殼

暳A毸曚 })

= 1
8毿暺毸毸曚 q毸q*

毸曚
氊2

毸曚

c2曇d氂(A毸·A*
毸曚 )+{ }复共轭项

= 1
2暺

毸

(q毸q*
毸 +q*

毸q毸)氊2
毸

所以辐射场总能量为

H = 1
8毿曇d氂(E 2+ B 2)= 暺

毸
氊2

毸(q毸q*
毸 +q*

毸q毸) (12灡1灡28)

由于q毸、q*
毸 并非实变量,彼此不正则共轭.为便于对辐射场进行量子化,定义实

变量

Q毸 =q毸+q*
毸
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栙

栚

例如,见 M.O.ScullyandM.S.Zubairy,QuantumOptics,CambridgeUniv.Press.1997.
利用

(

殼

暳A毸)·(

殼

暳A*
毸曚 )=

殼

·[A毸暳(

殼

暳A*
毸曚 )]+A毸·[

殼

暳(

殼

暳A*
毸曚 )]

第一项积分后,化为面积分,无贡献.第二项化为

A毸·[

殼

(

殼

·A*
毸曚 )-

殼

2A*
毸曚 ]=-A毸·(-k2

毸曚A*
毸曚 )=

氊2
毸曚

c2 (A毸·A*
毸曚 )



P毸 =q
·
毸+q

·*
毸 =i氊毸(q毸-q*

毸 ) (12灡1灡29)
其逆为

q毸 = 1
2

Q毸-i
氊毸

Pæ

è
ç

ö

ø
÷毸

q*
毸 = 1

2
Q毸+i

氊毸
Pæ

è
ç

ö

ø
÷毸 (12灡1灡30)

式(12灡1灡30)代入式(12灡1灡28),可得

H = 1
2暺

毸

(P2
毸 +氊2

毸Q2
毸) (12灡1灡31)

由此可以看出,辐射场可以看成由无穷多个谐振子组成的体系,振子频率氊毸=
k毸 c由式(12灡1灡21)给出(当L曻曓时,趋于连续变化).(Q毸,P毸)可视为彼此正则

共轭的坐标和动量栙 .

暋暋栙 暋按正则方程,Q
·
毸=灥H

灥P毸
=P毸,P

·
毸=-灥H

灥Q毸
=-氊2

毸Q毸,所以Q暓毸+氊2
毸Q毸=0,P暓毸+氊2

毸P毸=0,与q毸、q*
毸 满

足的微分方程(12灡1灡19)相同.

类似还可求出(留作读者练习)辐射场的总动量为

P= 1
4毿c曇d氂(E暳B)= 暺

毸

k毸

氊毸
(P2

毸 +氊2
毸Q2

毸) (12灡1灡32)

暋暋附录暋矢量代数与矢量分析公式

a,b,c,d,…矢量场;毤,氉,…标量场.

a·(b暳c)=b·(c暳a)+c·(a暳b)

a暳(b暳c)= (a·c)b-(a·b)c
a暳(b暳c)+(b暳c)暳a+c暳(a暳b)=0
(a暳b)·(c暳d)= (a·c)(b·d)-(a·d)(b·c)
(a暳b)暳(c暳d)= [(a暳b)·d]c-[(a暳b)·c]d
暋暋暋 暋暋暋暋 = [(c暳d)·a]b-[(c暳d)·b]a

殼

暳(

殼

毤)=0,暋

殼

·(

殼

暳a)=0,暋

殼

·

殼

毤=

殼

2毤曉 殼毤

殼

暳(

殼

暳a)=

殼

(

殼

·a)-殼a,暋殼a=

殼

·(

殼

a)

殼

(毤氉)=毤

殼

氉+氉

殼

毤
殼(毤氉)=毤殼氉+2(

殼

毤)·(

殼

氉)+氉殼毤

殼

·(毤a)=毤

殼

·a+a·

殼

毤

殼

暳(毤a)=毤

殼

暳a+(

殼

毤)暳a

殼

·(a暳b)=b·(

殼

暳a)-a·(

殼

暳b)

殼

(a·b)=a暳(

殼

暳b)+b暳(

殼

暳a)+(b·

殼

)a+(a·

殼

)b

殼

暳(a暳b)=a(

殼

·b)-b(

殼

·a)+(b·

殼

)a-(a·

殼

)b

l=-i淈r暳

殼

,暋暋

殼

=i灥
灥x+j灥

灥y+k灥
灥z
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殼

=er
灥
灥r- i

淈r2r暳l,暋暋er =r/r(径向单位矢)

殼= 1
r

灥2

灥r2r- l2

淈2r2

殼

·r=3,暋

殼

暳r=0

殼

·er = 2
r

,暋暋

殼

暳er =0

12灡2暋辐射场的量子化

场量子化的基本思想是:找出描述经典场的一组完备的正则坐标和动量,然后

把它们视为相应的算符,满足正则坐标和动量的对易式,从而使之量子化,此时

Planck常数将出现其中.按上节分析,经典辐射场可以看成由无穷多个独立的谐

振子组成的体系.振子的正则坐标和动量记为Q毸 和P毸.按正则量子化方案,要求

它们满足

[Q毸,Q毸曚]=0,暋暋[P毸,P毸曚]=0 (12灡2灡1)
[Q毸,P毸曚]=i淈毮毸毸曚

为方便,不妨引进无量纲算符a毸 与a+
毸

Q毸 = 淈
2氊毸

(a毸+a+
毸 )

P毸 =-i 淈氊毸

2
(a毸-a+

毸 )

(12灡2灡2)

其逆为

a毸 =
氊毸

2淈 Q毸+i
氊毸

Pæ

è
ç

ö

ø
÷毸 =

2氊毸

淈q毸

a+
毸 =

氊毸

2淈 Q毸-i
氊毸

Pæ

è
ç

ö

ø
÷毸 =

2氊毸

淈q*
毸

(12灡2灡3)

利用式(12灡2灡3)和式(12灡2灡1),不难证明

[a毸,a曚毸]=0,暋暋[a+
毸 ,a+

毸曚]=0 (12灡2灡4)
[a毸,a+

毸曚]=毮毸毸曚

这正是Bose子的产生和湮没算符满足的对易关系式.按式(12灡2灡3)及12灡1节式

(12灡1灡26),辐射场矢势的展开式可表示成

A(r,t)= 暺
毸

淈
2氊毸

[a毸A毸(r)exp(i氊毸t)+a+
毸A*

毸 (r)exp(-i氊毸t)]

(12灡2灡5)
这里已经把q毸(t)和q*

毸 (t)中随时间简谐变化的因子明显写出,式(12灡2灡5)中a毸 与

a+
毸 不再依赖于时间.注意式(12灡2灡5)中的a毸 和a+

毸 已化为算符,满足对易式

·554·



(12灡2灡4).在粒子占据数表象(occupationnumberrepresentation)中(参阅4灡1节),如
取适当的相位规定,a毸 和a+

毸 的运算可表示为

a+
毸 n毸暤= n毸+1n毸+1暤

a毸 n毸暤= n毸 n毸-1暤
(12灡2灡6)

不难验证

a+
毸a毸 n毸暤=n毸 n毸暤 (12灡2灡7)

正定厄米算符a+
毸a毸 正是毸 态上的 Bose子数算符,其本征值为n毸=0,1,2,…而

n毸暤正是相应的本征态,n毸 就是处于毸 态上的Bose子数.对于辐射场,n毸 就是处

于毸态的光子数.
把式(12灡2灡2)代入式(12灡1灡31),利用对易式(12灡2灡4),可以得出辐射场的

Hamilton量

H = 1
2暺

毸

(P2
毸 +氊2

毸Q2
毸)= 暺

毸
a+

毸a毸+æ

è
ç

ö

ø
÷

1
2 淈氊毸 (12灡2灡8)

其能量本征值为

E= 暺
毸

n毸+æ

è
ç

ö

ø
÷

1
2 淈氊毸 (12灡2灡9)

n毸 =0,1,2,…
类似可求出辐射场的动量算符

P= 暺
毸

k毸

氊毸
(P2

毸 +氊2
毸Q2

毸)= 暺
毸

a+
毸a毸+æ

è
ç

ö

ø
÷

1
2 淈k毸 (12灡2灡10)

其本征值为

P= 暺
毸

n毸+æ

è
ç

ö

ø
÷

1
2 淈k毸 (12灡2灡11)

由式(12灡2灡9)和式(12灡2灡11)可以看出,辐射场经过量子化之后,就变成了由

光子组成的体系,处于毸态的光子数为n毸,毸态上每一个光子的能量和动量为

E毸 =淈氊毸,暋暋P毸 =淈k毸暋暋(氊毸 = k毸 c) (12灡2灡12)
由此可以看出

E2
毸 -p2

毸c2 =0 (12灡2灡13)
这是光子的静质量为0的反映.考虑到毰毸·k毸=0(见12灡1节,式(12灡1灡23),横波

条件),光子可以有两个独立的偏振态.这是光子具有自旋(淈)的表现(见后).

辐射场能量密度分布

按照Boltzmann分布律,处于热平衡(温度TK)的体系,处于能级Ei 的概率

Pi 为

Pi = 1
Zexp[-毬Ei] (12灡2灡14)

其中
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Z= 暺
i
exp[-毬Ei] (12灡2灡15)

毬= 1
kT

,暋k=1灡38暳10-23J/K(Boltzmann常量)

因此平均能量为

Eav = 暺
i
PiEi =-灥

灥毬
lnZ (12灡2灡16)

对于经典
踿踿

谐振子

E= p2

2m
+1

2m氊2x2

x与p 为连续变量,式(12灡2灡15)中 暺
i

曻曇dx曇dp,此时

Z=犽
+曓

-曓

dxdpexp -毬
1
2m氊2x2+p2

2
æ

è
ç

ö

ø
÷

é

ë
êê

ù

û
úúm =2毿

氊毬
(12灡2灡17)

因而每一个经典谐振子的平均能量为

Eav =-灥
灥毬

lnZ= 1
毬

=kT (12灡2灡18)

对于量子
踿踿

谐振子,能量是不连续的,En= n+æ

è
ç

ö

ø
÷

1
2 淈氊

Z= 暺
曓

n=0
exp[-毬En]= 暺

n
exp -毬淈氊 n+æ

è
ç

ö

ø
÷[ ]1

2

=exp[-淈氊毬/2]暺
n
exp[-毬淈氊n]

=exp[-淈氊毬/2] 1
1-exp[-淈氊毬] (12灡2灡19)

由此得出

Eav =-灥
灥毬

lnZ=淈氊 1
2+ 1

exp[淈氊毬]-{ }1
(12灡2灡20)

可以看出,当T曻曓(毬曻0),每个量子谐振子的平均能量

Eav 曻淈氊 1
2+ 1

淈氊[ ]毬
曋 1

毬
=kT (12灡2灡21)

与经典振子相同.
按12灡1灡2节的分析,在空窖V=L3 内的辐射场可看成很多平面单色(简谐)

波的叠加,波矢k的取值

(kx,ky,kz)=2毿
L

(l,m,n)暋暋暋暋暋暋 (12灡2灡22)

l,m,n=0,暲1,暲2,…(l=m =n=0除外)
考虑到偏振,每一组(l,m,n)值对应有两个振动模式,相当于k空间体积元(2毿/

L)3.因此在k空间中半径曑 k 的球内相应有
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2·4毿
3k3 2毿æ

è
ç

ö

ø
÷

L
3

=8毿
3

毻3L3

c3 暋(k=毻/c) (12灡2灡23)

个振动模式.所以单位体积中在(毻,毻+d毻)频率范围内有

8毿毻2

c3 d毻 (12灡2灡24)

个振动模式.因此热平衡下经典辐射场的平均能量密度为

8毿毻2kT
c3 d毻 (12灡2灡25)

此即Rayleigh灢Jeans公式.辐射场经过量子化之后,被看成无穷多个谐振子(光子)
组成体系,而振子能量是不连续的,其平均能量由式(12灡2灡20)给出.由此可得出辐

射场的平均能量密度随频率的分布

8毿毻2

c3 · h毻
eh毻/kT -1

(12灡2灡26)

此即Planck公式 在上式中,已把式(12灡2灡20)中的零点能1
2淈氊[ ]略去了 .

12灡3暋多极辐射场及其量子化

12灡3灡1暋经典辐射场的多极展开

原子发射或吸收的辐射,在绝大多数情况下(包括可见光、紫外线等),波长烅
原子半径,只需要考虑偶极辐射

踿踿踿踿.此时用平面波(光子动量本征态)来展开辐射场是

方便的.对于原子核的毭辐射,其波长变化的幅度很大,各种多极辐射都有可能出

现.考虑到原子核在辐射过程中角动量守恒
踿踿踿踿踿踿踿踿踿踿

,采用球面波
踿踿踿踿踿

(角动量本征态
踿踿踿踿踿踿

)来展开辐
踿踿踿踿

射场较为方便
踿踿踿踿踿踿.下面的计算表明,多极辐射的跃迁速率随多极性增大而急剧减小

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,

这对于分析实验数据是很方便的.为此,先讨论经典辐射场的多极展开,然后进行

量子化栙.
在求解辐射场方程

(

殼

2+k2)A(r)=0暋暋(k=氊/c) (12灡3灡1)

殼

·A=0暋暋(Coulomb规范) (12灡3灡2)
时,先找出它的一种特解,即球面单色波(角动量本征态),其一般解则可表示成这

些球面波的叠加.为此目的,并为了便于表述边条件,我们假设辐射场局限于半径

为R0 的大球内(最后让R0曻曓).从物理上来看,要求A 在球内有界,并要求在球

面上(r=R0)A的切线方向为0.这样,电场E将沿球面法线方面,而Pointing矢量

c
4毿

(E暳B)将沿球面切线方向,即无辐射能流出球外.
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栙 参阅,J.M.BlattandV.F.Weisskopf,TheoreticalNuclearPhysics,App.B.John Wiley &
Sons,NewYork,1952.



为了便于表述方程(12灡3灡1)的解,先来考察一个更简单的标量场方程

(

殼

2+k2)u(r)=0 (12灡3灡3)

的解,此方程与自由粒子的Schr昳dinger方程相似.方程(12灡3灡3)的包括原点r=0
在内的物理上可接受的解可表示成(见卷栺,6灡2节)

ulm =jl(kr)Ym
l (毴,氄) (12灡3灡4)

其中jl 为球Bessel函数,Ym
l 为球谐函数,k值由边条件确定[见式(12灡3灡8)].

考虑到[l,

殼

2]=0,l=r暳P是角动量算符,可知lulm满足方程(12灡3灡1)

(

殼

2+k2)lulm =0

再利用

殼

·l=-i淈

殼

·(r暳

殼

)=0,可知

殼

·lulm =0

这样,我们就找到了方程(12灡3灡1)的满足横波条件(12灡3灡2)的一类解,记为

AM
lm =iCllulm (12灡3灡5)

iCl 是为方便而引进的归一化常数(待定).A 的右上角标 M是标明其辐射性质(磁
多极辐射,其物理意义见后).考虑到r·l=0,可知r·AM

lm =0,即AM
lm 垂直于r方

向.因此,在球面上A的切线分量为0的条件就是

AM
lm r=R0 =0 (12灡3灡6)

用式(12灡3灡4)、式(12灡3灡5)代入,并注意到l只对角度变量函数运算,式(12灡3灡6)
可化为

jl(kR0)=0 (12灡3灡7)

利用jl(x)的渐近性质

jl(x)x曻
曻
曓 sin(x-l毿/2)

x

可知,当R0曻曓时,式(12灡3灡7)给出k的可能取值为

kR0-l毿/2=毸毿,暋暋毸=0,1,2,…
即

k=k毸 = (毸+l/2)毿/R0 (12灡3灡8)

波动方程(12灡3灡1)的与AM
lm 线性独立的另一个横波解可如下求出.由于

殼

暳
与

殼

2 对易,可知

(

殼

2+k2)

殼

暳(lulm)=0
而且

殼

·[

殼

暳(lulm)]=0
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所以

殼

暳(lulm)也是方程(12灡3灡1)的一个横波解,并且与lulm线性无关,记为

AE
lm =Cl

k

殼

暳(lulm)= 1
ik

殼

暳AM
lm (12灡3灡9)

A右上角标E表示辐射场的性质(电多极辐射).不难看出

AE
lm·AM

lm =0 (12灡3灡10)
可以证明栙

殼

暳(lulm)=

殼

暳[jl(kr)lYm
l (毴,氄)]

=i淈 灥
灥r

[rjl(kr{ })]

殼

Ym
l -i淈jl(kr)r

殼

2Ym
l (12灡3灡11)

上式右侧第一项为切线分量,第二项为径向分量,因此,边条件为

灥
灥r

[rjl(kr)]
r=R0

=0 (12灡3灡12)

在R0曻曓极限下,上式给出

cos(kR0-l毿/2)=0
即

kR0-l毿/2= 毸+æ

è
ç

ö

ø
÷

1
2 毿

亦即

k=k毸 = 毸+l+1æ

è
ç

ö

ø
÷

2 毿/R0 (12灡3灡13)

毸=0,1,2,…
这样,我们已找出辐射场方程(12灡3灡1)的两组线性无关的球面横波解A氁

lm,

氁=M、E分别表示磁多极和电多极辐射.以下为了方便,把以上公式中的角动量量

子数lm 换记为LM,以标记光子的角动量.
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栙 利用

殼

暳l=-i淈

殼

暳(r暳

殼

)

=i淈

殼

1+r 灥
灥( )r -r

殼

[ ]2

令er=r/r(径向单位矢),则

殼

暳(lulm)=

殼

暳[jl(kr)lYm
l (毴氄)]

= (

殼

jl(kr))暳lYm
l +jl(kr)

殼

暳(lYm
l )

= 灥
灥rjl

(kr[ ])er暳lYm
l +i淈jl(kr)

殼

1+r 灥
灥( )r -r

殼

[ ]2 Ym
l

=-i淈 r 灥
灥rjl

(kr[ ])er暳(er暳

殼

)Ym
l +i淈jl(kr)[

殼

Ym
l -r

殼

2Ym
l ]

利用er暳(er暳

殼

)=er(er·

殼

)-

殼

=er
灥
灥r-

殼

,得

殼

暳(lulm)=i淈 r 灥
灥rjl

(kr[ ])

殼

Ym
l +i淈jl(kr)[

殼

Ym
l -r

殼

2Ym
l ]

=i淈 灥
灥r

[rjl(kr{ })]

殼

Ym
l -i淈jl(kr)r

殼

2Ym
l



可以证明栙A氁
LM 的正交归一性,即取适当的归一化因子

CL = 8毿
L(L+1)R0

·氊毸

淈 暋暋暋暋 (12灡3灡14)

之后,

曇A氁*

LM ·A氁曚
L曚M曚d氂=4毿c2毮氁氁曚毮k毸k毸曚毮LL曚毮MM曚 (12灡3灡15)

把(氁,k毸,L,M)诸量子数笼统用毸来标记,则上式可表示为

曇A*
毸 ·A毸曚d氂=4毿c2毮毸毸曚 (12灡3灡15曚)

下面讨论电磁场E氁
LM 和B氁

LM 的性质.
对于单色波

A毸(r,t)=A毸(r)exp[i氊毸t]+c.c. (12灡3灡16)
而
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栙 首先考虑氁=氁曚=M(磁多极辐射),

曇AM
LM* ·AM

L曚M曚d氂= CL 2曇
R0

0
jL(k毸r)jL曚(k毸曚r)r2dr曇(lYLM )* ·(lYL曚M曚)d毟

= CL 2曇
R0

0
jL(k毸r)jL曚(k毸曚r)r2dr曇Y*

LMl2YL曚M曚d毟

= CL 2L(L+1)淈2曇
R0

0
jL(k毸r)jL曚(k毸曚r)r2dr毮LL曚毮MM曚

= CL 2L(L+1)淈2 R0

2k2( )
毸

毮k毸k毸曚
毮LL曚毮MM曚

归一化条件要求

CL 2 =
8毿c2k2

毸

L(L+1)淈2R0
=

8毿氊2
毸

L(L+1)淈2R0

其次考虑氁=氁曚=E(电多极辐射)

曇AE*
LM ·AE

L曚M曚d氂= 1
k毸k毸曚曇(

殼

暳AM
LM )* ·(

殼

暳AM
L曚M曚)d氂

利用

(

殼

暳AM
LM* )·(

殼

暳AM
L曚M曚)=

殼

·[AM
LM* 暳(

殼

暳AM
L曚M曚)]+AM

LM* ·

殼

暳(

殼

AM
L曚M曚)

式中第一项积分后,化为面积分,无贡献.利用横波条件,第二项化为

殼

暳(

殼

AM
L曚M曚)=

殼

(

殼

·AM
L曚M曚)-

殼

2AM
L曚M曚=k2

毸曚AM
L曚M曚

由此,得

曇AE*
LM ·AE

L曚M曚d氂=k毸曚

k毸曇AM
LM* ·AM

L曚M曚d氂=4毿c2毮k毸k毸曚
毮LL曚毮MM曚

最后考虑曇AM
LM* ·AE

L曚M曚d氂,利用式(12灡3灡5)、式(12灡3灡9)及式(12灡3灡11),积分可分为两项,它们的角度部分

分别为

曇(lYLM )* ·(

殼

YL曚M曚)d毟=曇Y*
LMl* ·

殼

YL曚M曚d毟=0

曇(lY*
LM )·(r

殼

2YL曚M曚)d毟=曇Y*
LMl* ·r

殼

2YL曚M曚d毟=0

因而

曇AM
LM* ·AE

L曚M曚d氂=0



E毸(r,t)=E毸(r)exp[i氊毸t]+复共轭项 (12灡3灡17)

B毸(r,t)=B毸(r)exp[i氊毸t]+复共轭项

利用

E=-1
c

灥
灥tA

,暋暋B=

殼

暳A

可得出

E毸(r)=-ik毸A毸(r)暋暋

B毸(r)= i
k毸

殼

暳E毸(r) (12灡3灡18)

对于磁多极辐射(氁=M),利用式(12灡3灡5),得

EM
LM =k毸CLluLM

BM
LM =iCL

殼

暳(luLM ) (12灡3灡19)
对于电多极辐射(氁=E),利用式(12灡3灡9)得栙

暋暋栙 暋BE
LM = 1

k毸

殼

暳(CL

殼

暳luLM )=CL

k毸
{

殼

[

殼

·(luLM )]-

殼

2luLM }=CLk毸luLM

暋暋暋暋(

殼

·l=0,

殼

2luLM =-k2
毸luLM )

EE
LM =-iCL

殼

暳(luLM )

BE
LM =k毸CL(luLM ) (12灡3灡20)

由式(12灡3灡19)、式(12灡3灡20)可看出:
(1)

EM
LM =BE

LM 宇称为(-1)L

EE
LM =-BM

LM 宇称为(-1)L+1
(12灡3灡21)

(2)

r·EM
LM =r·BE

LM =0 (12灡3灡22)
它们均垂直于径向方向.无论氁=M或E,E和B 总是彼此垂直,所以相应的Point灢
ing矢量总是沿球面的切线方向.

12灡3灡2暋多极辐射场的量子化

多极辐射场的量子化的基本思想与12灡2节相同.不同的是,12灡2节是用平面

单色波(光子动量本征态)来展开辐射场,而这里则是用球面单色波(光子角动量本

征态)来展开,即

A(r,t)= 暺
毸

淈
2氊毸

[a毸A毸(r)exp(i氊毸t)+a+
毸A

*
毸 (r)exp(-i氊毸t)]

(12灡3灡23)
形式上与12灡2节式(12灡2灡5)相同,但这里A毸(r)是球面单色波[见式(12灡3灡4)、
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式(12灡3灡5)、式(12灡3灡9)],它们满足的正交归一性公式(12灡3灡15曚)与 12灡1 节

式(12灡1灡24)形式上也完全相同.因此场量子化条件也同样可以表示为

[a毸,a+
毸曚]=毮毸毸曚

[a毸,a毸曚]= [a+
毸 ,a+

毸曚]=0 (12灡3灡24)
[与12灡2节式(12灡2灡4)相同].辐射场的 Hamilton量类似可表示为

H = 1
8毿曇(E2+B2)d氂= 暺

毸
a+

毸a毸+æ

è
ç

ö

ø
÷

1
2 淈氊毸 (12灡3灡25)

A为矢量场,其内禀角动量(光子自旋)为1.这可以从它在空间旋转下的性质

[一阶张量,见7灡3节式(7灡3灡10)]看出.以下证明A氁
LM 是L2(l2),Lz,s2 的共同本征

态,即
L2A氁

LM =l2A氁
LM =L(L+1)淈2A氁

LM ,暋L=1,2,3,…

LzA氁
LM =M淈A氁

LM ,暋M =L,L-1,…,-L (12灡3灡26)

s2A氁
LM =2淈2A氁

LM

这里

L=l+s (12灡3灡27)
是光子的总角动量算符.

证明暋采用Cartesian坐标系,A可表示成列矢

A=
Ax

Ay

A

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

z

(12灡3灡28)

而s对它的运算,可用下列矩阵表示(见卷栺,5灡4灡2节):

sx =i淈
0 0 0
0 0 -1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

0 1 0

,暋sy =i淈
0 0 1
0 0 0
-

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 0 0

,暋sz =i淈
0 -1 0
1 0 0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

0 0 0
(12灡3灡29)

容易证明

s2 =s2
x +s2

y +s2
z =2淈2I (12灡3灡30)

即光子自旋s=1.
另外,利用

lzl=llz-i淈ez暳l=llz-szl
[用式(12灡3灡28)、式(12灡3灡29)及角动量各分量的对易式容易证明],可得

lzluLM =llzuLM -szluLM = (M淈-sz)luLM

所以

LzluLM = (Lz+sz)luLM =M淈luLM (12灡3灡31)
因而

LzAM
LM =M淈AM

LM (12灡3灡32)
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类似也可证明

LzAE
LM =M淈AE

LM (12灡3灡32曚)
再利用

L2 =l2+s2+2s·l (12灡3灡33)
(s·l)luLM =-淈2luLM (12灡3灡34)栙

以及式(12灡3灡30)可证明

L2luLM =l2luLM =ll2uLM =L(L+1)淈2luLM (12灡3灡35)
所以

L2AM
LM =L(L+1)淈2AM

LM

类似也可证明

L2AE
LM =L(L+1)淈2AE

LM

应该提到,L=0的辐射(光子)是不存在的,因为当L=0时,AM
00=iC0lY0

0=0,
同理AE

00=0.这也是辐射场为矢量场(光子有内禀角动量s=1)的反映.

12灡4暋自发多极辐射

下面考虑一个实物粒子(m曎0)体系(例如原子、原子核等)的自发多极辐射.
在此过程中,应把实物粒子体系和辐射场都看成量子体系.整个体系的 Hamilton
量表示为

H =Hr+暺
i

1
2mi

Pi-
ei

cA(iæ

è
ç

ö

ø
÷)
2

-毺i·B(i[ ])+V (12灡4灡1)

其中

Hr = 暺
毸

a+
毸a毸+æ

è
ç

ö

ø
÷

1
2 淈氊毸 (12灡4灡2)

表示辐射场的 Hamilton量,Pi 表示第i个实物粒子的正则动量,ei 和mi 表示各粒

子电荷与质量,毺i 表示其内禀磁矩算符,-毺i·B(i)表示第i个粒子的内禀磁矩与

磁场B 的相互作用,V 表示实物粒子之间的相互作用.H 可改写成

·464·

栙 利用

sxlxl=lxsxl=lxi淈(ex暳l)=i淈lx(lyez-lzey)

sylyl=i淈ly(lzex-lxez)
得

(sxlx+syly)luLM =i淈{M淈(lyex-lxey)+(lxly-lylx)ez}uLM

=i淈{M淈(lyex-lxey)+i淈lzez}uLM

而

szlzluLM =i淈ez暳{lz(lxex+lyey+lzez)}uLM

=i淈ez暳{M淈(lxex+lyey+lzez)-i淈(lyex-lxey)}uLM

=i淈{M淈(lxey-lyex)+i淈(lyey+lxex)}uLM

由此即得出式(12灡3灡34).



H =H0+H曚暋暋暋暋暋暋
H0 =Hr+HN

HN = 暺
i

1
2mi

P2
i +V (12灡4灡3)

H曚=-暺
i

ei

mic
A(i)·Pi-暺

i
毺i·B(i)

HN 表示(无辐射场时)实物粒子体系的 Hamilton量,H曚表示实物粒子体系与辐

射场的相互作用(这里已利用了横波条件

殼

·A=0,并忽略了A2 项,通常认为 H曚
为微扰,而A2 项看成二级微扰项).

图12灡1

为确切起见,设考虑的实物体系为一

个原子核(或原子),其初态记为|a暤,具有

确定的能量Ea,角动量Ja(Ma)及宇称毿a,
如图12灡1所示.对于自发辐射,初态中没

有光子,因此整个体系(原子核+辐射场)
的初态记为|i暤=|a暤|0毸暤.设原子核末态记

为|b暤,在自发辐射过程中将产生一个光子,处于毸态,光子能量淈氊毸=Ea-Eb,整
个体系末态记为|f暤=|b暤|1毸暤.下面计算自发辐射的跃迁概率.

由于原子核的初末态具有确定的角动量和宇称,因此辐射场采用多极展开是

方便的.此时光子态用毸={氁,k毸,L,M}刻画.氁=E(电多极辐射)或 M(磁多极辐

射),k毸=氊毸/c,L(M)表示光子角动量(及投影).当R0曻曓(即辐射场所占据的空

间曻曓),整个体系的末态能量将连续变化.按Fermi的黄金规则(goldenrule),体
系的跃迁速率(单位时间跃迁概率)为

wfi =2毿
淈

暣f H曚i暤2氀f (12灡4灡4)

氀f 是体系末态的态密度(单位能量范围中的量子态数).按12灡3节式(12灡3灡8)与
式(12灡3灡13)

k毸 = 毸+læ

è
ç

ö

ø
÷

2
毿
R0

暋 或 暋 毸+l+1æ

è
ç

ö

ø
÷

2
毿
R0

(12灡4灡5)

毸=0,1,2,…
所以dk毸/d毸=毿/R0,而末态态密度

氀f = d毸
dE = 1

淈
d毸
d氊毸

= 1
淈c

d毸
dk毸

= R0

毿淈c
(12灡4灡6)

因此

wfi 曉2R0

淈2c
暣b旤暣1毸旤H曚旤0毸暤旤a暤2 (12灡4灡7)

微扰 H曚[见 式 (12灡4灡3)]只 含 有 A 的 一 次 项.A 的 多 极 展 开 式 [见 12灡3
节,式(12灡3灡23)]为
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A(r,t)= 暺
毸

淈
2氊毸

[a+
毸A毸(r)exp[i氊毸t]+a+

毸A*
毸 (r)exp[-i氊毸t]]

(12灡4灡8)
这样,H 的每一项只含有一个光子的产生或湮没算符.对于|0毸暤曻|1毸暤的跃迁,只
有a+

毸 项有贡献.利用暣1毸|a+
毸|0毸暤=1,可以得出

wfi = R0

淈c氊
暣b H曚a暤2 (12灡4灡9)

在上式中 H曚已经不再含有光子产生和湮没算符,它只对原子核的态进行运算,表
示为

H曚=-暺
i

ei

mic
A毸(ri)·Pi-暺

i
毺i·[

殼

i暳A毸(ri)] (12灡4灡10)

在式(12灡4灡9)中,只需计算上式在原子核初态|a暤和末态|b暤之间的矩阵元

暣b H曚a暤.对于磁多极辐射(氁=M)

H曚=i暺
i

ei

mic
CL(luLM )*

i ·Pi+CL毺i·(

殼

暳luLM )*{ }i (12灡4灡11)

对于电多极辐射(氁=E)

H曚=-暺
i

ei

mi氊毸
CL(

殼

暳luLM )*
i ·Pi+

CL

k毸
毺i·(luLM )*{ }i (12灡4灡12)

原子核的毭跃迁中,毭光子能量一般约为1MeV,相应波长

毸- =淈c/E 曋200fm烅 核半径a(曋3~7fm) (12灡4灡13)
当r>a时,原子核波函数迅速趋于0,在计算式(12灡4灡9)中的矩阵元暣b H曚a暤的
空间积分时,只需局限在核内,而在此区域中

kr= r
毸- 烆1

因此uLM 函数中的球Bessel函数可近似表示为

jL(kr)kr烆
曻
1 (kr)L

(2L+1)!! (12灡4灡14)

利用此结果可以化简暣b H曚a暤中 H曚各项的表示式,最后可得(见本节末附注)

暣b H曚a暤=CL(L+1)kL

(2L+1)!! 暣b M氁*
LM a暤 (12灡4灡15)

式中

M氁*
LM = 暺

i
M氁*

LM (i)

ME*
LM (i)=eirL

iYM
L (毴i,氄i)-ik-1(L+1)-1(毺i暳ri)·(

殼

rLYM*
L )i暋暋(12灡4灡16)

MM*
LM (i)=

ei

mic(L+1)li·(

殼

rLYM*
L )i+毺i·(

殼

rLYM*
L )i

暋暋暋 =
ei淈
2mic gss+ 2

L+1gl
æ

è
ç

ö

ø
÷l
i
·(

殼

rLYM*
L )i (12灡4灡17)
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氁=E,M分别标记电、磁多极矩算符.式(12灡4灡16)右边第二项的贡献通常比第一项

小得多,可忽略.因此

ME*
LM (i)曋eirL

iYM
L (毴i,氄i) (12灡4灡18)

用式(12灡4灡15)~式(12灡4灡18)代入式(12灡4灡9),利用 CL
2=8毿氊2/L(L+1)淈2R0

[见12灡3节式(12灡3灡14)],得

wfi = 8毿(L+1)
L[(2L+1)!!]2

k2L+1

淈
暣b M氁*

LM a暤2 (12灡4灡19)

暋暋在核物理中,习惯上用Tba(氁LM),表示原子核从a态跃迁到b态,并放出(氁LM)
光子的跃迁概率/单位时间.光子的能量淈氊=Ea-Eb,k=氊/c,角动量为L.原子核能

级与磁量子数M 无关.实验上往往只考虑原子核从初能级Ea 到末能级Eb 的跃迁概

率,此时应该对原子核末态的磁量子数Mb 求和,对初态的磁量子数Ma 求平均(M=
Ma-Mb).这样,从能级a到能级b的跃迁概率/单位时间,可表示为

Tba(氁L)= 8毿(L+1)
L[(2L+1)!!]2

1
淈

氊æ

è
ç

ö

ø
÷

c
2L+1

B(氁L) (12灡4灡20)

其中

B(氁L)= 1
(2Ia +1)暺MaMb

暣b M氁*
LM a暤2 (12灡4灡21)

称为约化(reduced)跃迁速率
踿踿踿踿

,它与原子核的初、末态波函数密切相关,反映了原子
踿踿

核结构的信息
踿踿踿踿踿踿.B(氁L)的计算比较复杂,通常要采用某种简化模型来计算(例如单

粒子模型,集体运动模型等).式(12灡4灡20)右边的因子

8毿(L+1)
L[(2L+1)!!]2

1
淈

氊æ

è
ç

ö

ø
÷

c
2L+1

(12灡4灡22)

则与模型无关
踿踿踿踿踿

,只依赖于跃迁的多极性
踿踿踿踿踿踿踿踿踿踿

(氁L)及毭光子的能量
踿踿踿踿踿淈氊.

例暋电偶极辐射(E1).
如采用单粒子模型来计算,即假定原子核初末态之差别仅在于某单粒子的态

发生了变化,同时伴随有一个毭 光子(L=1,宇称奇)发射.按式(12灡4灡20)与

式(12灡4灡18),可得

Tba(E1)=16毿
9

1
淈

氊æ

è
ç

ö

ø
÷

c
3

暺
M

暣berYM
1 a暤2 (12灡4灡23)

利用

rY0
1 = 3

4毿z
,暋暋rY暲1

1 =熀 3
8毿

(x暲iy)

得

Tba(E1)=16毿
9

1
淈

氊æ

è
ç

ö

ø
÷

c
3 3
4毿

·e2(xba
2+ yba

2+ zba
2)

= 4
3

e2氊3

淈c3 rba
2 (12灡4灡24)

这正是电偶极自发辐射系数,(见卷栺,12灡5灡2节).
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原子核多极辐射的讨论

(a)宇称选择定则

按式(12灡4灡21),对于电(氁=E)L 极辐射(记为EL),光子宇称为(-1)L,对于

磁(氁=M)L极辐射(记为 ML),光子宇称为(-1)L+1.设原子核初、末态的宇称分

别为毿a 和毿b,则按宇称守恒

毿a毿b =
(-1)L, EL
(-1)L+1, M{ L

(12灡4灡25)

(b)角动量选择定则

设原子核初、末态角动量分别为Ia 和Ib.由于氁L光子带走角动量 L,按角动

量守恒

Ia -Ib 曑L曑 (Ia +Ib) (12灡4灡26)
即只当

L= Ia -Ib ,Ia -Ib +1,…,Ia +Ib (12灡4灡27)
跃迁才可能发生.

(c)跃迁速率随多极性的变化

利用

M毰
LM 曋O(eaL)暋暋(a为核半径)

M毺
LM 曋O e淈

mc
氊
caæ

è
ç

ö

ø
÷

L 暋暋(k=氊/c) (12灡4灡28)

按式(12灡4灡20)、式(12灡4灡21)

T(氁L+1)
T(氁L) 曋k2a2 = 毸-æ

è
ç

ö

ø
÷

a
2

(12灡4灡29)

一般原子核的毭射线能量淈氊约为1MeV,可求出(毸-/a)2曋10-2~10-3.所以氁L+1
辐射跃迁速率比氁L辐射要慢2或3个数量级.考虑到宇称守恒,辐射的多极性氁L
的奇偶由毿a毿b 确定[见式(12灡4灡25)].氁相同的多极辐射的L只能相差偶数.而

T(氁L+2)
T(氁L) 曋10-4 ~10-6 (12灡4灡30)

氁L+2辐射根本不可能与氁L辐射竞争.因此,角动量选择定则允许的多极辐射[见
式(12灡4灡27)]中,只有

L= Ia -Ib 或 Ia -Ib +1 (12灡4灡31)
可能被观测到,其中究竟哪一个L(Ia-Ib 或 Ia-Ib +1)辐射能被观测到,取决

于初、末态的宇称和辐射为电多极性或磁多极性.
(d)电、磁多极辐射跃迁速率的比较

按式(12灡4灡20)、式(12灡4灡21)、式(12灡4灡28),可得出(设E毭=淈氊曋1MeV)

T(EL)
T(ML)

æ

è

ç
çç

曋 eaL

e淈
mc

氊
ca

ö

ø

÷
÷÷L

2

曋 mc2
æ

è
ç

ö

ø
÷

淈氊
2

烅1
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T(ML)
T(EL+1)曋 1

k2a2
淈氊
mc

æ

è
ç

ö

ø
÷

2 曋1 (12灡4灡32)

而

T(ML+1)
T(EL) 烆1暋暋暋暋暋暋暋

因此,只有E(L+1)可以与ML竞争.这与实验观测相符.
(e)正负电子对产生与内转换

由于辐射光子总要携带一定的角动量(L=0的辐射不存在),所以Ia=0和

Ib=0之间不可能通过毭辐射来实现其跃迁,即

0曽曻
暳 0(毭跃迁禁戒) (12灡4灡33)

在此情况下只能通过其他方式进行跃迁.例如,正负电子对产生与内转换.当
(Ea -Eb)>2mec2 曋1灡06MeV

则Ea 能级可以通过产生正负电子对来实现退激.如毿a=毿b,也可通过内转换来实

现退激.
概括起来,在给定Ia毿a 和Ib毿b 后,可观测到的多极辐射如下所示:

Ia-Ib

暋毿a毿b

0* 或1 2 3 4 5

+ M1,E2 E2 M3,E4 E4 M5,E6

- E1 M2,E3 E3 M4,E5 E5

暋暋*Ia=Ib=0除外.

(注)暋式(12灡4灡15)~(12灡4灡17)的推导

式(12灡4灡11)右边第一项可化为

i暺
i

ei

mic
CL(luLM )*

i ·Pi=i暺
i

eiCL

mic
Pi·(luLM )*

i 暋[利用了

殼

·(luLM )=0]

=-暺
i

ei淈CL

mic
Pi·(r暳

殼

uLM )*
i = 暺

i

ei淈CL

mic
li·(

殼

u*
LM )i

曋 暺
i

ei淈CL

mic
kL

(2L+1)!!li·(

殼

rLYM*
L )i (12灡4灡34)

式(12灡4灡12)第二项类似可化为

-CL

k 暺
i
毺i·(luLM )*

i =-i淈
kCL暺

i
毺i·(r暳

殼

u*
LM )i

=-i淈
kCL暺

i

(毺i暳ri)·(

殼

u*
LM )i

曋-i淈CL
kL-1

(2L+1)!!暺
i

(毺i暳ri)·(

殼

rLYM*
L )i (12灡4灡35)

式(12灡4灡11)右侧第二项,利用

殼

暳(luLM )* =i淈

殼

暳(r暳

殼

)uM*
L
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=i淈 r

殼

2 -

殼

1+r灥
灥( )[ ]r jL(kr)YM*

L (毴,氄)

曋i淈[rk2 -

殼

(1+L)]jL(kr)YM*
L (毴,氄)

暋(因为kr烆1,第一项 烆 第二项)

曋-i淈(1+L)

殼

jL(kr)YM*
L (毴,氄)

曋-i淈
(L+1)kL

(2L+1)!!

殼

rLYM*
L (毴,氄) (12灡4灡36)

所以式(12灡4灡11)右侧第二项化为

iCL暺
i
毺i·(

殼

暳luLM )*
i 曋CL淈(L+1)kL

(2L+1)!! 暺
i
毺i·(

殼

rLYM*
L )i (12灡4灡37)

最后,式(12灡4灡11)右侧第一项化为

-暺
i

eiCL

mi氊
(

殼

暳luLM )*
i ·Pi=-暺

i

eiCL

mi氊曇d氂毮(r-ri)(

殼

暳luLM )* ·mivi

=-CL

氊曇d氂(

殼

暳luLM )* ·暺
i
ei毮(r-ri)·vi

=-CL

氊曇d氂(

殼

暳luLM )* ·j (12灡4灡38)

其中

j= 暺
i
ei毮(r-ri)vi

是核电流密度.利用式(12灡4灡36),式(12灡4灡38)化为

i淈CL(L+1)kL

氊(2L+1)!!曇d氂(
殼

rLYM*
L )·j=-i淈CL(L+1)kL

氊(2L+1)!!曇rLYM*
L

殼
·jd氂 (12灡4灡39)

[这里在分部积分时,

殼

·(rLYM*
L j)化为面积分,而在边界上(无穷远处),j=0].再利用连续性

方程

殼

·j=- 灥
灥t氀=- 1

i淈
(氀HN -HN氀)

HN 为原子核 Hamilton量,于是式(12灡4灡39)化为

CL(L+1)kL

氊(2L+1)!!曇rLYM*
L (氀HN -HN氀)d氂

在计算矩阵元暣b H曚a暤时,得 注意:Ea -Eb =淈氊,氀(r)= 暺
i
ei毮(r-ri[ ])

CL(L+1)kL

氊(2L+1)!!(Ea -Eb)暣b旤曇rLYM*
L 氀d氂旤a暤=淈CL(L+1)kL

(2L+1)!! 暣b旤暺
i
eirL

iYM*
L (毴,氄i)旤a暤

(12灡4灡40)
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附录A暋分析力学简要回顾栙~栜

A灡1暋最小作用原理与Lagrange方程

栙暋H.Goldstein,ClassicalMechanics,Addison灢Wesley,Reading,Massachusetts,1950.

栚暋L.D.LandauandE.M.Lifshitz,Mechanics,CourseofTheoreticalPhysics,Vol.1,Oxford,Perga灢

monPress,1976;3rded.,世界图书出版社公司,北京:1999.

栛暋E.C.G.SudharshanandMukunda,ClassicalDynamics,AModernPerspective,Wiley,N.Y.,1974.

栜暋E.J.SaletanandA.H.Cromer,TheoreticalMechanics,JohnWiley&Sons,1971.中译本:卢邦正,

姜存志译,理论力学,高等教育出版社,北京,1989.

暋暋设体系的Lagrange函数记为L(q1,…,qn,q·1,…,q·n,t),或简记为L(q,q·,t),qi

(i=1,2,…,n)是足以确定体系位置的一组独立的坐标,n为体系的自由度,q·i 为

广义速度.设体系处于保守势V 中,T 为动能,则L=T-V.(如V 包含与时间有

关的外界作用,即体系为非保守系,L将显含t.以下如不特别声明,都只讨论L 不

显含t的情况.)
设体系在时刻t曚从点A 出发,经过某轨道q(t)在时刻t曞达到点B(图 A灡1).对

于每一条轨道q(t),可定义作用量(action)

S[q(t)]=曇
t曞

t曚
L(q,q·)dt (A灡1灡1)

它依赖于粒子所走的轨道q(t),即它是q(t)的函数,所以是一个泛函(functional),
其量纲与角动量同.对于给定初终点位置A 和B,粒子可以有各种可能的轨道.试
问:自然界中粒子运动将遵循哪一条轨道? 最小作用原理

踿踿踿踿踿踿
(principleofleastac灢

tion)说:粒子实际所走轨道应使
踿踿踿踿踿踿踿踿踿踿S 取极小值

踿踿踿踿.设q(t)作无穷小变化,q(t)曻q(t)

+毮q(t),在下列条件下

毮q(t曚)=毮q(t曞)=0 (A灡1灡2)

暋暋要求

毮S=0 (A灡1灡3)
换言之,粒子实际所走的轨道,与相邻的各种可能轨道(初终点位置相同)相比,其
作用量取极小值.

按照最小作用原理,不难求出q(t)满足的微分方程.按式(A灡1灡1),

毮S=曇
t曞

t曚
dt暺

i

灥L
灥qi

毮qi+灥L
灥q·i

毮q·[ ]i
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图 A灡1

注意到毮q·i=毮dqi

dt=d
dt毮qi,上式右边第二项在分部积分后,得

毮S= 暺
i曇

t曞

t曚
dt 灥L

灥qi
- d

dt
灥L
灥q·

æ

è
ç

ö

ø
÷[ ]

i
毮qi+暺

i

灥L
灥q·i

毮q[ ]i

t曞

t曚

按照式(A灡1灡2)与式(A灡1灡3),得

毮S= 暺
i曇

t曞

t曚
dt 灥L

灥qi
- d

dt
灥L
灥q·

æ

è
ç

ö

ø
÷[ ]

i
毮qi =0

由于毮qi(i=1,2,…,n)是任意的
踿踿踿

,所以要求

灥L
灥qi

- d
dt

灥L
灥q·[ ]

i
=0,暋暋i=1,2,…,n (A灡1灡4)

此即Lagrange方程.
如取qi 为Cartesian坐标xi,则

L=T-V = 1
2暺

i
mix·2

i -V(x1,…,xn) (A灡1灡5)

而Lagrange方程(A灡1灡4)化为

mix··i=-灥V
灥xi

,暋暋i=1,2,…,n (A灡1灡6)

即 Newton方程.令

pi =灥L
灥q·i

(A灡1灡7)

Fi =灥L
灥qi

(A灡1灡8)

分别表示与广义坐标qi 相应的广义动量和广义力栙,则 Lagrange方程形式上与

Newton方程相同,
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p
·
i=Fi (A灡1灡9)

暋暋Lagrange方程(A灡1灡4)是含有n个坐标变量qi 对时间的二阶导数的微分方

程.当给定2n个初条件qi(0)(初位置)和q·i(0)(初“速度暠)之后,求解微分方程

(A灡1灡4)即可把解确定下来.
讨论

(1)在经典力学的Lagrange形式中,人们只需构造体系的L 这样一个标量
踿踿

,
全部的运动方程即可通过对L的简单的微分运算而得出.而 Newton方程的建立,
涉及矢量运算,较为复杂,特别是采用曲线坐标系的情况.

(2)Newton方程(A灡1灡6)所示的简单形式,只在 Cartesian坐标系中才成立.
与此不同,无论采用哪一种坐标系,Lagrange方程的形式都一样,即式(A灡1灡4)
所示.

(3)在Lagrange形式中,易于分析守恒量.设L 不依赖于某坐标qi,而只依赖

于q·i[此时qi 称为体系的 循 环 坐 标
踿 踿 踿 踿

(cycliccoordinate)],按式 (A灡1灡4)和式

(A灡1灡7),可知广义动量pi 为守恒量(p
·
i=0).由于在任何坐标系中Lagrange方程

的形式都一样,人们可以较方便地选择合适的坐标,以找出体系的守恒量,这样可

以最佳地反映势能的对称性.
(4)上面讨论的是保守体系.对于在电场E和磁场B 中的荷电q 的粒子,受力

(Lorentz力)为

F=q E+1
cv暳æ

è
ç

ö

ø
÷B (A灡1灡10)

其中v=r· 是粒子速度.在一般情况下,它不能用一个保守势来描述,L 不能表示

成(T-V)的形式.可以证明,荷电粒子的Lagrange量如写成

L= 1
2mv2-q毤-

q
c

v·A (A灡1灡11)

则可以给出正确的运动方程式.式(A灡1灡11)中毤和A 分别为电磁场的标量势和矢

量势,而

E=-

殼

毤-1
c

灥
灥tA

B=

殼

暳A (A灡1灡12)
事实上,把式(A灡1灡11)代入Lagrange方程,得

d
dt mx·

i+
q
c
A

æ

è
ç

ö

ø
÷i =-q 灥

灥xi
毤+

q
c

灥
灥xi

(v·A),暋i=1,2,3

即

d
dt mv+

q
c

æ

è
ç

ö

ø
÷A =-q

殼

毤+
q
c

殼

(v·A) (A灡1灡13)

式中
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P=mv+
q
c
A (A灡1灡14)

表示正则动量.利用

d
dtA = 灥

灥tA+(v·

殼

)A暋暋暋暋暋暋暋暋暋

殼

(v·A)=v暳(

殼

暳A)+(v·

殼

)A

=v暳B+(v·

殼

)A

可得出

d
dt

(mv)= -q

殼

毤-
q
c

灥
灥t

æ

è
ç

ö

ø
÷A +

q
c

(v暳B)

=qE+
q
c

v暳B=F (A灡1灡15)

与式(A灡1灡10)一致.上式即荷电粒子在电磁场中的 Newton方程.
注意:Lagrange量(A灡1灡11)并不能表示成(T-V)形式,而且

U =q毤+
q
c

v·A

也不能理解为荷电粒子的势能.一般情况下的电磁场(显含t)是非保守场,不能定

义一个与路径无关的功函数.即使在不显含t的情况下,也只有q毤可以理解为电

势能,而q
c
v ·A 并不能理解为磁势能,因为磁场的作用力q

c
v 暳B 总是垂直于粒

子的运动速度v ,是不做功的.

作用量S的计算

1灡 自由粒子

先以一维自由粒子为例,L=1
2mx·2.按 Lagrange方程,p=mx·(动量)为守恒量.因此粒

子沿经典轨道从x曚t曚曻x曞t曞(t曞>t曚)的作用量为

Scl[x曞t曞,x曚t曚]= 1
2曇

t曞

t曚
dtmx·2 = m

2
x曞-x曚
t曞-( )t曚

2
·(t曞-t曚)

= m
2

(x曞-x曚)2
(t曞-t曚) (A灡1灡16)

对于三维自由粒子,则

Scl[r曞t曞,r曚t曚]= m
2

(r曞-r曚)2
(t曞-t曚) (A灡1灡17)

暋暋2灡 谐振子

对于一维谐振子,L=1
2mx·2-1

2m氊2x2,代入Lagrange方程,得

x··-氊2x=0
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设初条件x(0)=0,x·(0)=v0.由于能量E为守恒量E=1
2mv2

0,v0= 2E/m.由此不难解出

x(t)= 2E
m

sin氊t
氊

,暋x·(t)= 2E
mcos氊t

从t=0,x=0点出发,沿经典轨道到达(x,t)的作用量为

S[xt,00]= m
2曇

t

0
dt 2E

mcos氊æ
è
ç

ö
ø
÷t
2

-氊2 2E
m

sin氊tæ
è
ç

ö
ø
÷

氊[ ]
2

= E
2氊sin2氊t= mE

2xcos氊t

推广到一般情况,

S[x曞t曞,x曚t曚]= m氊
2sin氊(t曞-t曚)[(x曞

2 +x曚2)cos氊(t曞-t曚)-2x曚x曞] (A灡1灡18)

而对于三维谐振子,

S[r曞t曞,r曚t曚]= m氊
2sin氊(t曞-t曚)[(t曞

2 +t曚2)cos氊(t曞-t曚)-2r曞·r曚] (A灡1灡19)

A灡2暋Hamilton正则方程,Poisson括号

在Lagrange理论形式中,把Lagrange量表示成广义坐标qi 和广义速度q·
i(i

=1,2,…,n)的函数L(q1,…,qn,q·1,…,q·n,t).在上节中已引进广义动量

pi =灥L
灥q·i

(A灡2灡1)

定义体系的 Hamilton量

H(q,p)= 暺
i
piq·

i-L(q,q·) (A灡2灡2)

注意:这里是把
踿qi,pi(i=1,2,…,n)作为独立变量

踿踿踿踿踿踿
,即应把
踿踿踿 H 看成

踿踿2n个独立变量
踿踿踿踿踿

qi 和
踿pi(i=1,2,…,n)的函数

踿踿踿
,H(q,p)曉H(q1,…,qn,p1,…,pn).利用式(A灡2灡1)

和式(A灡2灡2),可求得

灥H
灥pi

=q·i+暺
j
pj

灥q·j
灥pi

-暺
j

灥L
灥q·j

灥q·j
灥pi

=q·i

类似,利用Lagrange方程,可得

灥H
灥qi

= 暺
j
pj

灥q·j
灥qi

-灥L
灥qi

-暺
j

灥L
灥q·j

灥q·j
灥qi

=-灥L
灥qi

=-p
·
i

概括起来,

q·i =灥H
灥pi

,暋p
·
i =-灥H

灥qi
暋暋(i=1,2,…,n) (A灡2灡3)

此即 Hamilton正则方程.具体写出来,就是2n个独立变量qi、pi(i=1,2,…,n)满
足的含时间一阶导数

踿踿踿踿踿踿踿
的微分方程.当给定初值

踿踿踿踿踿qi(0)、pi(0)(i=1,2,…,n)之后,原
踿
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则上可以从正则方程
踿踿踿踿踿踿踿踿踿

(A灡2灡3),把解
踿踿qi(t)和pi(t)确定下来

踿踿踿踿.在附录 A灡4中将给出

求正则方程的积分的一种系统方法,即Jacobi灢Hamilton理论.
当然,正则方程也可直接从最小作用原理导出.此时,作用量

S=曇
t曞

t曚
dtL =曇

t曞

t曚
d [t 暺

i
piq·

i-H(q,p,t ]) (A灡2灡4)

作为2n个独立变量qi、pi(i=1,2,…,n)的函数,对qi、pi 进行变分

毮S= 暺
i曇

t曞

t曚
dtq·i毮pi+pi毮q·i-灥H

灥qi
毮qi-灥H

灥pi
毮p[ ]i

上式右边第二项分部积分后,得

曇
t曞

t曚
dtpi

d
dt毮qi =pi毮qi

t曞

t曚
-曇

t曞

t曚
dtpi毮qi =-曇

t曞

t曚
dtp

·
i毮qi

所以

毮S= 暺
i曇

t曞

t曚
dt q·i-灥H

灥p
æ

è
ç

ö

ø
÷

i
毮pi- pi+灥H

灥q
æ

è
ç

ö

ø
÷

i
毮q[ ]i (A灡2灡5)

按最小作用原理,要求毮S=0.由于毮qi、毮pi 都是任意的,这就要求

q·i =灥H
灥pi

,暋p
·
i =-灥H

灥qi
,暋i=1,2,…,n

与式(A灡2灡3)完全一样.
设体系处于保守势场V 中,则 H 可表示成

H =T+V
T 为动能,H 代表体系的能量.如采用Cartesian坐标系,则

T= 1
2暺

i
mix·2

i

pi= 灥L
灥x·i

=mix·i

暺
i
pix·i =2T

所以

H = 暺
i
pix·i-L=2T-(T-V)=T+V (A灡2灡6)

更一般情况,采用曲线坐标系(例如球坐标系),设

T = 暺
ij
Tij(q)q·iq·j

同样容易证明 暺
i

piq·
i=2T,因而 H=T+V 仍成立.

与Lagrange量相似,Hamilton量
踿 H 也是标量

踿踿踿踿.正则方程
踿踿踿踿

(A灡2灡3)的形式也不
踿踿踿踿踿

因坐标选择而异
踿踿踿踿踿踿踿.同样,我们也可以选择合适的坐标系以展示体系的守恒量和对称

性.例如,设V(因而 H)不显含t,灥H
灥t=0.按正则方程(A灡2灡3),可求出
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dH
dt = 暺

i

灥H
灥qi

q·
i+灥H

灥pi
p
·

[ ]i = 暺
i

灥H
灥qi

灥H
灥pi

-灥H
灥pi

灥H
灥q

æ

è
ç

ö

ø
÷

i
=0 (A灡2灡7)

即 H(能量)为守恒量.若 H 不依赖于某一坐标qi,则p
·
i=0,即pi 为守恒量.这种

坐标称为体系的循环坐标
踿踿踿踿.

对于任何一个不显含t的力学量A(p,q),有

d
dtA= 暺

i

灥A
灥qi

q·
i+灥A

灥pi
p
·æ

è
ç

ö

ø
÷i

= 暺
i

灥A
灥qi

灥H
灥pi

-灥A
灥pi

灥H
灥q

æ

è
ç

ö

ø
÷

i

记为

曉 {A,H} (A灡2灡8)

{暋}称为Poisson括号.若力学量A(p,q)与体系的 Hamilton量 H 的Poisson括

号为0,
{A,H}=0 (A灡2灡9)

则
d
dtA=0

即A 为守恒量.
任意两个力学量的Poisson括号定义为

{A,B}= 暺
i

灥A
灥qi

灥B
灥pi

-灥A
灥pi

灥B
灥q

æ

è
ç

ö

ø
÷

i
(A灡2灡10)

不难证明Poisson括号满足下列代数恒等式:

{A,B}=-{B,A}暋暋暋暋暋暋暋暋
{A,B+C}= {A,B}+{A,C}

{A,BC}= {A,B}C+B{A,C} (A灡2灡11)

{A,{B,C}}+{B,{C,A}}+{C,{A,B}}=0

暋暋暋(Jacobi恒等式)

最基本的Poisson括号为

{qi,pj}=毮ij,暋{qi,qj}= {pi,pj}=0 (A灡2灡12)
容易证明

{qi,A}=灥A
灥pi

,暋{pi,A}=-灥A
灥qi

(A灡2灡13)

利用Poisson括号,正则方程可表示为

q·i = {qi,H},暋暋p
·
i = {pi,H} (A灡2灡14)

暋暋练习暋设a为体系的任一力学变量,证明

灥
灥a

{A,B}= 灥A
灥a

,{ }B + A,灥B
灥{ }a

(A灡2灡15)
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Poisson定理

若A、B 为体系的守恒量,则{A,B}也是体系的守恒量栙.
证明暋设A 和B 不显含t,利用Jacobi恒等式

{A,{B,H}}+{B,{H,A}}+{H,{A,B}}=0
以及题设{A,H}=0,{B,H}=0,可得

{H,{A,B}}=0
即{A,B}为守恒量.

若A 和B 为含时守恒量
踿踿踿踿踿

,即灥A
灥t+{A,H}=0,灥B

灥t+{B,H}=0.考虑到

d
dt

{A,B}= {{A,B},H}+灥
灥t

{A,B}

=-{{B,H},A}-{{H,A},B}+ 灥A
灥t

,{ }B + A,灥B
灥{ }t

= 灥A
灥t+{A,H},{ }B + A,灥B

灥t+{B,H{ }}
按假设,上式右边两项均为零,所以

d
dt

{A,B}=0

(证毕)
带电粒子在电磁场中的Lagrange量为(见式(A灡1灡11))

L= 1
2mv2-q毤+

q
c

v·A (A灡2灡16)

由它给出的正则动量为

P =mv+
q
c
A (A灡2灡17)

因此 Hamilton量为

H=P·v-L=mv2+
q
c

v·A-1
2mv2+q毤-

q
c

v·A

= 1
2mv2+q毤=T+q毤

仍可表示成T+q毤的形式,但电磁场矢势A不出现于上式中,似乎被弃置一边了.
问题在于 H 应选用正则动量P(而不是r·=v)为变量,所以正确表示式应为

H = 1
2m P-

q
c

æ

è
ç

ö

ø
÷A
2

+q毤 (A灡2灡18)
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A灡3暋正则变换,生成函数

前已提及,Lagrange方程的形式不因坐标选择而异
踿踿踿踿踿踿踿踿踿踿踿踿踿

,即在坐标变换下

qi 曻Qi(q1,q2,…,qn),暋暋i=1,2,…,n (A灡3灡1)
[简记为q曻Q(q)],Lagrange方程形式不变,即

灥L
灥Qi

- d
dt

灥L
灥Q

·
æ

è
ç

ö

ø
÷

i
=0,暋暋i=1,2,…,n (A灡3灡2)

这里已把L(q,q·)改用坐标Q,Q
·

表示出来,但习惯上仍记为L(Q,Q
·),而L(Q,Q

·)

=L(q,q·).严格说来,由于L(Q,Q
·)的函数形式与

踿踿踿踿踿L(q,q·)不同
踿踿

,应记为煀L(Q,Q
·).

此处仍按多数人的习惯,记为L(Q,Q
·).在坐标变换(A灡3灡1)下,可以证明,正则动

量变换如下栙:

pi 曻Pi = 暺
j

灥qj

灥Qi
pj (A灡3灡3)

变换式(A灡3灡1)和式(A灡3灡3)称为点变换
踿踿踿

(pointtransformation).
在点变换式(A灡3灡1)和式(A灡3灡3)之下,Lagrange方程形式的不变性,意味着

Hamilton方程的形式也是不变的,即

Q
·
i =灥H

灥Pi
,暋暋P

·
i =-灥H

灥Qi
(A灡3灡4)

暋暋如把 Hamilton理论形式看成是从 Lagrange理论形式导出的,而后者是建立

在n个广 义 坐 标 所 张 开 的 位 形 空 间 (configurationspace)中,可 以 看 出 变 换

(A灡3灡1)、(A灡3灡3)就是最普遍的变换了.但我们也可以另起炉灶,从最小作用原
踿踿踿踿踿踿

理出发
踿踿踿

,视
踿qi、pi(i=1,2,…,n)为独立变量

踿踿踿踿踿
,导出
踿踿 Hamilton正则方程

踿踿踿踿.Hamilton

·974·

栙 令式(A灡3灡1)之逆变换表示为q=q(Q),则

q·i= 暺
j

灥qi

灥Qj
Q
·
j

可以看出

灥q·i
灥Q

·( )
j Q

=灥qi

灥Qj

按照正则动量的定义,

暋暋暋暋暋暋暋暋暋暋暋暋暋Pi =灥L(Q,Q
·)

灥Q
·
i Q

=灥L(q,q·)

灥Q
·
i Q

= 暺
j

灥L
灥qj

灥qj

灥Q
·
i
+灥L
灥q·j

灥q·j
灥Q

·( )
i Q

注意q=q(Q)而不是q(Q,Q
·),所以灥qj

灥Q
·
i
=0,再利用式

灥q·i
灥Q

·( )
j Q

=灥qi

灥Qj
,得

Pi= 暺
j

灥L
灥q·j

灥qj

灥Qi
= 暺

j

灥qj

灥Qi
pj

此即式(A灡3灡3).



理论形式就建立在
踿踿踿踿踿踿踿踿qi、pi(i=1,2,…,n)张开的

踿踿踿2n维相空间
踿踿踿踿

(phasespace)中
踿.在此

踿踿
空间中
踿踿踿

,还可以有比点变换更普遍的变换
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,

q曻q(Q,P),暋暋p曻p(Q,P) (A灡3灡5)
相空间中这一组新的独立的坐标Qi、Pi(i=1,2,…,n)形式上也可以用来描述体

系的状态,但不一定能保证方程的正则形式
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(A灡3灡4).(类似于简单的 Newton方

程的形式mq··i=-灥V
灥qi

,只当qi 取Cartesian坐标时才成立.)但如变换
踿踿踿

(A灡3灡5)能
踿

保证
踿踿 Hamilton方程的正则形式不变

踿踿踿踿踿踿踿踿踿
,则称为正则变换
踿踿踿踿踿踿踿

(canonicaltransforma灢
tion).

给出一组变换

q曻Q(q,p),暋暋p曻P(q,p) (A灡3灡5曚)
之后,如何判断它是否正则变换? 为此,计算

Q
·
j = 暺

i

灥Qj

灥qi
q·

i+灥Qj

灥pi
pæ

è
ç

ö

ø
÷i = 暺

i

灥Qj

灥qi

灥H
灥pi

-灥Qj

灥pi

灥H
灥q

æ

è
ç

ö

ø
÷

i
(A灡3灡6)

把 H(q,p)曻H(Q,P)=H(q,p),

灥H(q,p)
灥pi

=灥H(Q,P)
灥pi

= 暺
k

灥H
灥Qk

灥Qk

灥pi
+灥H

灥Pk

灥Pk

灥p
æ

è
ç

ö

ø
÷

i

灥H(q,p)
灥qi

=灥H(Q,P)
灥qi

= 暺
k

灥H
灥Qk

灥Qk

灥qi
+灥H

灥Pk

灥Pk

灥q
æ

è
ç

ö

ø
÷

i
(A灡3灡7)

代入式(A灡3灡6)中,经过整理,可得

Q
·
j = 暺

k

灥H
灥Qk

{Qj,Qk}+灥H
灥Pk

{Qj,Pk{ }} (A灡3灡8a)

类似可得

P
·
j = 暺

k

灥H
灥Qk

{Pj,Qk}+灥H
灥Pk

{Pj,Pk{ }} (A灡3灡8b)

可以看出,如要求保证方程的正则形式(A灡3灡4),必须

{Qj,Qk}={Pj,Pk}=0
{Qj,Pk}=毮jk (A灡3灡9)

值得注意的是:上述条件
踿踿踿踿

与 Hamilton量的具体函数形式无关
踿踿踿踿踿踿踿踿踿踿.这是可以理解的,

因为确定一个正则变换纯系运动学问题,对于任何 H 都一视同仁.
设(q,p)与(Q,P)都是正则的,因而与它们相应的 Hamilton方程形式上相

同,即
{qi,qj}= {pi,pj}=0,暋{qi,pj}=毮ij

q·i =灥H
灥pi

,暋暋pi =-灥H
灥qi

(A灡3灡10)
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相应有

{Qi,Qj}= {Pi,Pj}=0,暋暋{Qi,Pj}=毮ij

Q
·
i =灥H

灥Pi
,暋暋P

·
i =-灥H

灥Qi
(A灡3灡11)

暋暋前面我们曾经引进Poisson括号来描述 Hamilton方程.理论的自洽性要求按

两组正则坐标和动量定义出的Poisson括号应相等,或者说,Poisson括号形式在
踿踿踿踿踿

正则变换下具有不变性
踿踿踿踿踿踿踿踿踿踿

,此即
踿踿Jacobi定理

踿踿.
定理证明如下:

{A,B}= 暺
i

灥A
灥qi

灥B
灥pi

-灥A
灥pi

灥B
灥q

æ

è
ç

ö

ø
÷

i

= 暺
i毩

{
毬

灥A
灥Q毩

灥Q毩

灥qi
+灥A

灥P毩

灥P毩

灥q
æ

è
ç

ö

ø
÷

i

灥B
灥Q毬

灥Q毬

灥pi
+灥B

灥P毬

灥P毬

灥p
æ

è
ç

ö

ø
÷

i

暋- 灥A
灥Q毩

灥Q毩

灥pi
+灥A

灥P毩

灥P毩

灥p
æ

è
ç

ö

ø
÷

i

灥B
灥Q毬

灥Q毬

灥qi
+灥B

灥P毬

灥P毬

灥q
æ

è
ç

ö

ø
÷ }

i

= 暺
i毩

{
毬

灥A
灥Q毩

灥B
灥Q毬

灥Q毩

灥qi

灥Q毬

灥pi
-灥Q毩

灥pi

灥Q毬

灥q
æ

è
ç

ö

ø
÷

i

暋+灥A
灥P毩

灥B
灥P毬

灥P毩

灥qi

灥P毬

灥pi
-灥P毩

灥pi

灥P毬

灥q
æ

è
ç

ö

ø
÷

i

暋+灥A
灥Q毩

灥B
灥P毬

灥Q毩

灥qi

灥P毬

灥pi
-灥Q毩

灥pi

灥P毬

灥q
æ

è
ç

ö

ø
÷

i

暋+灥A
灥P毩

灥B
灥Q毬

灥P毩

灥qi

灥Q毬

灥pi
-灥P毩

灥pi

灥Q毬

灥q
æ

è
ç

ö

ø
÷ }

i

(在上式最后一项中,指标毩炣毬已对调)

= 暺
毩,

{
毬

灥A
灥Q毩

灥B
灥Q毬

{Q毩,Q毬}+
灥A
灥P毩

灥B
灥P毬

{P毩,P毬}

暋+ 灥A
灥Q毩

灥B
灥P毬

-灥A
灥P毩

灥B
灥Q

æ

è
ç

ö

ø
÷

毬
{Q毩,P毬 }}

利用式(A灡3灡9)

= 暺
毩

灥A
灥Q毩

灥B
灥P毩

-灥A
灥P毩

灥B
灥Q

æ

è
ç

ö

ø
÷

毩

即
{A,B}(q,p)= {A,B}(Q,P)暋暋(定理证毕) (A灡3灡12)

暋暋Hamilton方程形式在正则变换下是不变的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而存在正则变换的可能性,可以

从最小作用原理来理解.在求变分过程中

毮曇
t曞

t曚
Ldt=0

若被积函数加上一个全微分dF/dt,则上式化为
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毮曇
t曞

t曚
dtL+dF

d
æ

è
ç

ö

ø
÷

t =毮曇
t曞

t曚
Ldt+毮F(t曞)-毮F(t曚) (A灡3灡13)

若毮F(t曚)=毮F(t曞)=0,则得出的结果完全相同.换言之,变分原理对于被积函数加
踿踿踿踿踿踿踿踿踿踿踿

上一项全微分的变换
踿踿踿踿踿踿踿踿踿

(L曻L+dF/dt)具有不变性
踿踿踿踿踿.这种被积函数的不确定性

踿踿踿踿踿踿踿踿踿踿踿
,反映
踿踿

了可以对
踿踿踿踿 Hamilton方程进行适当的正则变换

踿踿踿踿踿踿踿踿踿踿踿.
考虑2n维相空间中的变换,(q,p)曻(Q,P),设它们均为正则坐标,则

q·i =灥H
灥pi

,暋暋暋暋p
·
i =-灥H

灥qi
(A灡3灡14)

Q
·
i =灥K

灥Pi
,暋暋暋暋P

·
i =-灥K

灥Qi
(A灡3灡15)

这里已经把用
踿踿

(Q,P)表示出来的
踿踿踿踿踿 Hamilton量记为

踿踿踿K(Q,P,t),以示与
踿踿踿 H(q,p,t)

的区别
踿踿踿

(函数关系不同).方程(A灡3灡14)与方程(A灡3灡15)可认为是分别按最小作

用原理

毮曇
t曞

t曚
dt 暺

i
piq·

i-H(q,p,t[ ])=0 (A灡3灡16)

毮曇
t曞

t曚
dt 暺

i
PiQ

·
i-K(Q,P,t[ ])=0 (A灡3灡17)

得出的结果.但按式(A灡3灡13)的讨论,它们的被积函数具有一个不确定性,可以加

上一个全微分dF,即

暺
i
piq·

i-( )H dt-(暺
i
PiQ

·
i-K)dt=dF

即

dF= 暺
i

(pidqi-PidQi)+(K-H)dt (A灡3灡18)

到此,F 还是任意的,并未指定它所依赖的变量.试取
踿踿F 作为

踿踿
(q,Q,t)的函数

踿踿踿F(q,

Q,t)则

dF= 暺
i

灥F
灥qi

dqi+灥F
灥Qi

dQæ

è
ç

ö

ø
÷i +灥F

灥tdt (A灡3灡19)

比较式(A灡3灡18)与式(A灡3灡19),得出

pi =灥F
灥qi

,暋Pi =-灥F
灥Qi

,暋i=1,2,…,n (A灡3灡20a)

K =H+灥F
灥t

(A灡3灡20b)

式(A灡3灡20a)中的2n个式子把qi、pi、Qi、Pi 联系了起来.例如,可以把qi、pi 表示

成Qi 和Pi 的函数(或反之),即确定了一个正则变换.所以F 称为生成函数
踿踿踿踿踿踿

(gen灢
eratingfunction).每一个正则变换都用一个相应的生成函数来刻画

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.如生成函数

F 不显含t,按式(A灡3灡20b),则K=H.此时,F 的全微分写成

dF= 暺
i

(pidqi-PidQi) (A灡3灡21)

·284·



暋暋与上类似,如生成函数取为(q,P,t)的函数煄F(q,P,t),则栙

pi =灥煄F
灥qi

,暋Qi = 灥煄F
灥Pi

,暋i=1,2,…,n (A灡3灡22a)

K =H+灥煄F
灥t

(A灡3灡22b)

若煄F 不显含t,则K=H,而

d煄F = 暺
i

(pidqi+QidPi) (A灡3灡23)

概括起来,生成函数有下列
踿踿踿踿踿踿踿4·种类型

踿踿踿
,它们分别取为

(q,Q,t),暋暋(q,P,t),暋暋(p,Q,t),暋暋(p,P,t)
的函数.

例1暋F= 暺
i

qiQi.相应的变量关系为

pi =灥F
灥qi

=Qi,暋Pi =-灥F
灥Qi

=-qi,暋K = H

即相应的正则变换为

Qi =pi,暋暋暋暋Pi =-qi

原来的动量pi 变成新的坐标Qi,而原来坐标的反号(-qi)则成了新的动量Pi.可见在正则变换

之下,平常意义下的坐标与动量的划分已失去意义.

例2暋煄F = 暺
i
qiPi.相应的变量关系为

pi =灥煄F
灥qi

=Pi,暋Qi = 灥煄F
灥Pi

=qi,暋K = H

此煄F 所刻画的正则变换只不过是一个平庸的恒等变换而已.
例3暋利用正则变换化简谐振子的求解.谐振子 Hamilton量表示为

H = p2

2m+ 1
2m氊2q2

可以证明p=m氊qcotQ与P=m氊q2/2sin2Q是一个正则变换.为此,先证明pdq-PdQ 为一个全

微分.事实上,

pdq-PdQ=m氊qcotQdq- m氊q2

2sin2QdQ=d 1
2m氊q2cot( )Q

所以相应的生成函数为

F(q,Q)=m氊q2

2 cotQ

·384·

栙 这相当于生成函数做如下Legendre变换,

煄F(q,P,t)=F(q,Q,t)+ 暺
i

PiQi

按式(A灡3灡19)、式(A灡3灡20)、式(A灡3灡21)

d煄F = 暺
i

(pidqi-PidQi)+ 暺
i

(PidQi+QidPi)= 暺
i

(pidqi+QidPi)

即式(A灡3灡23),式中pi=灥煄F
灥qi

,Qi=灥煄F
灥Pi

,即式(A灡3灡22a).



利用这组正则坐标和动量把 Hamilton量表示出来,

H= 1
2m

(m2氊2q2cot2Q)+ 1
2m氊2 2Psin2Q

m( )氊

= m
2氊2·2Psin2Q

m氊
·cot2Q+氊Psin2Q

=氊P(cos2Q+sin2Q)=氊P(=K)

它不依赖于Q,所以相应的正则动量P 为运动常数,记为P=E/氊.又因为

Q
·
=灥K

灥P =氊暋暋暋暋暋暋暋

所以

Q=氊t+毩暋暋暋暋(毩为积分常数)

而

q= 2P
m氊sinQ= 2E

m氊2sin(氊t+毩)

此即谐振子的解.

应该指出,以上讨论的正则变换并不是什么数学游戏
踿踿踿踿踿踿踿踿踿踿踿踿踿

,而是很有用处的一种技
踿踿踿踿踿踿踿踿踿踿

巧
踿.如果我们能找到一个适当的正则变换

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
(即找到一组合适的正则坐标和动量
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

),使
踿

体系的
踿踿踿 Hamilton量的表示式

踿踿踿踿踿K 具有更简单的形式
踿踿踿踿踿踿踿踿

,则可以使正则方程及其积分
踿踿踿踿踿踿踿踿踿踿踿踿

简化
踿踿.例如,使 Hamilton量K 不含有某正则坐标Qi(参见例3),则相应的正则动

量Pi 就是守恒量,这就使正则方程的求解(积分)容易多了.
特别应该提到,如能找到一个正则变换

踿踿踿踿踿踿踿踿踿踿
(即相应的生成函数

踿踿踿踿踿踿踿
),使新的

踿踿踿 Hamil灢
ton量

踿K=0,则按式(A灡3灡15)

P
·
i =0,暋暋Q

·
i =0暋暋(i=1,2,…,n) (A灡3灡24)

即

Pi =毩i(常量),暋暋Qi =毬i(常量) (A灡3灡25)
均为运动常量
踿踿踿踿踿踿

,它们由初条件给出
踿踿踿踿踿踿踿踿

,于是问题便解决了
踿踿踿踿踿踿踿踿.乍一看来,这种做法似乎太

特殊,没有什么普遍性.实则不然.下面我们将介绍一种系统的方法,即借助于
踿踿踿Ja灢

cobi灢Hamilton方程来找出这种正则变换相应的生成函数
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.

A灡4暋Jacobi灢Hamilton方程

在最小作用原理(A灡1节)中,是对给定初终位置的诸轨道进行比较
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,其中使
踿

作用量
踿踿踿S取极小值

踿踿踿踿
(毮S=0)的轨道

踿踿踿q(t)乃自然界中粒子实际所走的轨道
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,由此就

导出了Lagrange方程.现在换一种看法,即让S中的q(t)就取为满足Lagrange方

程的轨道.设初时刻t曚粒子位置确定[毮q(t曚)=0],但末态
踿踿

(t时刻
踿踿

)的位置
踿踿踿q(t)允许

踿踿
变化
踿踿

,亦即把
踿S看成积分上限的坐标

踿踿踿踿踿踿踿踿踿q(t)的函数
踿踿踿

,S[q(t),t],变分q(t),并进行比

较,如图 A灡2.此时(参见 A灡1节),
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毮S=毮曇
t

t曚
Ldt= 暺

i

灥L
灥q·i

毮qi

t

t曚
+暺

i曇
t

t曚
dt 灥L

灥qi
- d

dt
灥L
灥q·

æ

è
ç

ö

ø
÷[ ]

i
毮qi

= 暺
i

灥L
灥q·

æ

è
ç

ö

ø
÷

i
毮qi(t)= 暺

i
pi毮qi (A灡4灡1)

图 A灡2

由于把S看成q(t)的函数,由式(A灡4灡1)可得

pi =灥S
灥qi

(A灡4灡2)

按上述对S的理解,在轨道上S对t的全微分,就是L,

dS
dt=L (A灡4灡3)

把S看成q(t)的函数,有

L=dS
dt= 暺

i

灥S
灥qi

q·
i+灥S

灥t= 暺
i
piq·

i+灥S
灥t

因而
灥S
灥t=L-暺

i
piq·

i =-H(q,p,t) (A灡4灡4)

上式中pi 理解为灥S
灥qi

,即

灥S
灥t+H q,灥S

灥q
,æ

è
ç

ö

ø
÷t =0 (A灡4灡5)

更详细一点写出,

灥S
灥t+H q1,…,qn,灥S灥q1

,…,灥S
灥qn

,æ

è
ç

ö

ø
÷t =0 (A灡4灡5曚)

此即Jacobi灢Hamilton方程,是作用量
踿踿踿S[作为坐标

踿踿踿踿q(t)的函数
踿踿踿S(q(t),t)]所满足

踿踿踿
的一阶偏微分方程
踿踿踿踿踿踿踿踿

,独立变量选为(q1,q2,…,qn,t)其完全积分含有n+1个积分常

数.由于S只以微分形式出现在方程中,有一个积分常数将以相加形式出现,它与

理论中感兴趣的问题无关.另外n个积分常数记为毩1,毩2,…,毩n.
·584·



若 H 不显含
踿踿t,则式(A灡4灡5)的解可分离变量如下:

S(q,t)=S0(q)+f(t) (A灡4灡6)

代入式(A灡4灡5),得

H q,灥S0

灥
æ

è
ç

ö

ø
÷

q +f
·
=0暋暋暋暋暋

即

H q,灥S0

灥
æ

è
ç

ö

ø
÷

q =-f
·
= 常量梾梾

记为
E

所以

f(t)=-Et暋暋暋暋暋
S(q,t)=S0(q)-Et (A灡4灡7)

而

H q,灥S0

灥
æ

è
ç

ö

ø
÷

q =E (A灡4灡8)

这样,我们已求出n个积分常数中之一,即E(=毩1).E 为体系的能量,即不显含t
的 Hamilton量.

例如,对于在势场V(x,y,z)中运动的粒子,

S(x,y,z,t)=S0(x,y,z)-Et (A灡4灡9)
而S0(x,y,z)满足下列偏微分方程:

1
2m

灥S0

灥
æ

è
ç

ö

ø
÷

x
2

+ 灥S0

灥
æ

è
ç

ö

ø
÷

y

2

+ 灥S0

灥
æ

è
ç

ö

ø
÷

z[ ]
2

=E-V(x,y,z) (A灡4灡10)

粒子的动量为

p=

殼

S0 (A灡4灡11)
式(A灡4灡10)可表示成矢量分析的形式

(

殼

S0)2 =2m(E-V) (A灡4灡12)
它与几何光学(波动光学的短波极限)中的程函(eikonal)方程形式上相似,只不

过把

2m(E-V(x,y,z))=n(x,y,z) (A灡4灡13)
理解为介质的折射系数n(x,y,z)而已.此时,S0 代表光波的相位,S0=常数表示

等相面.在均匀介质中,n=常数(相当于V=常数,即无外力作用下的自由粒子),
等相面为平面族,

S0 =ax+by+cz+d (A灡4灡14)
平面的法线方向为(a,b,c)(即p=

殼

S0 方向),代表“光线暠(ray)的传播方向(相当

于自由粒子的轨道为直线).在非均匀介质中(相当于粒子在外力场中运动),等相

面为曲面簇,其法线方向(

殼

S0 方向)即光线传播方向,一般有折射现象.经典粒子

力学与几何光学的这种相似性,早在19世纪初(1825)已被 Hamilton发现,但未引
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起人们注意而被遗忘了.直到20世纪20年代波动力学提出后,才重新引起人们的

注意栙.

A灡5暋正则方程的积分

利用Jacobi灢Hamilton方程,可以给出求正则方程的积分的一个普遍方法.为
此,试选择一个正则变换,相应的生成函数 煄F(q,P,t)使 K=0.按 A灡3 节 式

(A灡3灡22),可知煄F 满足下列偏微分方程:

灥煄F
灥t+H q1,…,qn,灥

煄F
灥q1

,…,灥
煄F

灥qn
,æ

è
ç

ö

ø
÷t =0 (A灡5灡1)

在采用新的正则坐标后,由于 K=0,按正则方程[A灡3节式(A灡3灡15)],P
·
i=

-灥K/灥Qi=0,所以Pi=毩i(常量).因此,式(A灡5灡1)中煄F(q1,…,qn,P1,…,Pn,t)
中的Pi 可换为常量毩i,即煄F(q1,…,qn,毩1,…,毩n,t),于是煄F 为(q1,…,qn,t)的函

数,而这样的函数满足的偏微分方程(A灡5灡1),正好与Jacobi灢Hamilton方程中S
(q1,…,qn,t)满足的偏微分方程[见 A灡4节式(A灡4灡5曚)]

灥S
灥t+H q1,…,qn,灥S灥q1

,…,灥S
灥qn

,æ

è
ç

ö

ø
÷t =0 (A灡5灡2)

完全相同.假如我们已找出Jacobi灢Hamilton方程的完全积分,S(q1,…,qn,毩1,…,

毩n,t),(毩1,毩2,…,毩n)为积分常数,则我们就找到了一个正则变换相应的生成函数

煄F(q1,…,qn,毩1,…,毩n,t)它使得K=0.而按正则方程理论,对此新的正则“坐标暠,

有Q
·
i=灥K

灥Pi
=0,即 Qi=毬i(常量).按照 A灡3节式(A灡3灡22a),Qi=灥煄F/灥Pi=

灥煄F/灥毩i,因此我们有

灥S
灥毩i

=毬i暋暋(i=1,…,n) (A灡5灡3)

上式中S(q1,…,qn,毩1,…,毩n,t)是Jacobi灢Hamilton方程(A灡5灡2)的完全积分.从
式(A灡5灡3)可解出qi(毩1,…,毩n,毬1,…,毬n,t)其中常量(毩1,…,毩n,毬1,…,毬n)由初条

件确定.动量pi=灥S/灥qi 也可由S 计算出.
如 H 不显含t,则立即求出一个积分常量,即毩1=E(体系能量),而

S=S0-Et (A灡5灡4)

S0 满足

H q1,…,qn,灥S0

灥q1
,…,灥S0

灥q
æ

è
ç

ö

ø
÷

n
=E (A灡5灡5)

解之,得出完全积分S0(q1,…,qn,E,毩2,…,毩n),再按照
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灥S0

灥毩i
=毬i暋暋(i=2,…,n) (A灡5灡6)

并利用

灥S0

灥E =t+毬1 (A灡5灡7)

可求出qi(E,毩2,…,毩n,毬1,…,毬n,t),进而求出pi=灥S0/灥qi.
下面给出两个例子,来阐明如何利用Jacobi灢Hamilton方法来求正则方程的

积分.
例1暋谐振子

H = 1
2mp

2 + 1
2Kq2 (A灡5灡8)

由于 H 不显含t
S(q,t)=S0(q)-毩t

式中毩(=E)乃积分常数(能量).S0 满足Jacobi灢Hamilton方程

1
2m

灥S0

灥( )q

2

+ 1
2Kq2 =E

由此得

灥S0

灥q = 2m E- 1
2Kq( )2 = mK(2E/K-q2)1/2

积分得

S0(q,E)= mK曇
q

2E/K-q2dq

而

S(q,E,t)= mK曇
q

2E/K-q2dq-Et (A灡5灡9)

另一积分常数(毬=灥S/灥毩)为

毬=灥S
灥E = m

K曇
q dq

2E/K-q2
-t

= m
K -arccos

q
2E/

æ

è
ç

ö

ø
÷[ ]K

-t

所以

毬+t=- m
Karccos

q
2E/

æ

è
ç

ö

ø
÷

K
(A灡5灡10)

令 K/m=氊,则得

cos[氊(毬+t)]=q m氊2

2E
即

q(t)= 2E
m氊2cos[氊(毬+t)] (A灡5灡11)
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E和毬为两个运动积分.设t=0,p=0,q=q0(最大振幅),易求出毬=0,E= 1
2Kq2

0,而q(t)=

q0cos氊t.
例2暋中心力场V(r)中的粒子.采用球坐标系,则动能

T= m
2

[r·2 +r2毴
·2 +r2sin2毴氄

·2] (A灡5灡12)

所以

pr =mr·,暋p毴 =mr2毴
·,暋p氄 =mr2sin2毴氄

·

而 Hamilton量表示成

H = 1
2m p2

r +p2
毴

r2 + 1
r2sin2毴p2[ ]氄 +V(r) (A灡5灡13)

H 不显含t,所以

S=S0(r,毴,氄)-Et (A灡5灡14)

E为一积分常数,S0 满足

1
2m

灥S0

灥( )r
2

+ 1
r2

灥S0

灥( )毴
2

+ 1
r2sin2毴

灥S0

灥( )氄[ ]
2

+V(r)=E (A灡5灡15)

S0 可分离变量,令

S0 =S曚r(r)+S毴(毴)+S氄(氄) (A灡5灡16)
则

1
2m S曚2

r + 1
r2S曚

2
毴 + 1

r2sin2毴S曚2[ ]氄 +V(r)=E (A灡5灡17)

上式中不出现氄,S曚氄 是与氄 无关的常数,记为毩氄,得

1
2m S曚2

r + 1
r2S曚

2
毴 + 1

r2sin2毴毩
2[ ]氄 +V(r)=E

可以看出S曚2
毴+ 1

sin2毴毩
2
氄 是与毴无关的常数,令

S曚2
毴 + 1

sin2毴毩
2
氄 =毩2

毴(常数)

由此得

dS毴

d毴 = 毩2
毴 - 1

sin2毴毩
2
氄

(A灡5灡18)

而

S曚2
r +

毩2
毴

r2 =2m[E-V(r)]

所以

dSr

dr= 2m[E-V(r)]-毩2
毴/r2

Sr=曇dr 2m[E-V(r)]-毩2
毴/r2 (A灡5灡19)

可以取适当的坐标取向,使毩氄=0(相当于选运动平面为极坐标平面),于是

S毴 =毩毴毴 (A灡5灡20)
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把此S作为一个正则变换的生成函数,即视E、毩毴 为“正则动量暠,相应的“坐标暠为运动常数

毬、毬毴,

毬=灥S
灥E =灥S0

灥E -t

毬毴= 灥S
灥毩毴

=灥S0

灥毩毴
=毴

所以

毬+t=灥S0

灥E =m曇 dr
2m[E-V(r)]-毩2

毴/r2
(A灡5灡21)

毬毴=毴-毩毴曇 dr
r2 2m[E-V(r)]-毩2

毴/r2
(A灡5灡22)

积分常数毩毴、毬毴、毬由初条件确定.当V(r)给定后,由式(A灡5灡22)可求出轨道方程r(毴).由式

(A灡5灡21)可求出r(t),再代入式(A灡5灡22),还可求出毴(t).参数毩毴、毬毴、E、毬由初条件确定.
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附录B暋群与群表示理论简介

群论作为代数的一个分支,早在19世纪初就已建立栙.矩阵和矩阵群的理论

也早在19世纪中叶就已提出栚.Lie群理论是19世纪80年代提出的栛,但当时人

们都认为群论对其他自然科学没有什么用处,而物理学家对群论则几乎一无所

知栜.直到1925年量子力学建立以后,M.vonLaue首先认识到群论可以为量子力

学处理问题提供一个自然的工具栞.H.A.Bethe(1929)首先应用点群理论来研究

晶体场中原子能级的分裂.H.Weyl(1928)、E.P.Wigner(1931)、VanderWaerden
(1932)等用群论方法研究了原子和分子结构以及光谱规律.人们发现,几乎所有关

于原子光谱的规律(矢量模型,光跃迁的电偶极辐射选择规则,Laporte关于宇称

守恒的定律等),均可根据量子力学体系的对称性考虑而得出.当时已经认识到转

动群和置换群理论对于研究原子结构有很大用处栟.
如果说数学家对于抽象群理论比较有兴趣,量子力学则更多与群表示理论打

交道,特别是跟幺正(unitary)变换群的表示打交道.群表示理论特别适合于用来
踿踿踿踿踿踿踿踿踿踿踿踿

分析量子体系的对称性
踿踿踿踿踿踿踿踿踿踿.这与量子力学中态的描述的特点

踿踿踿踿踿踿踿踿踿踿踿踿踿踿
(用
踿 Hibert空间中一个

踿踿踿踿踿
矢量来描述一个量子态
踿踿踿踿踿踿踿踿踿踿

)以及量子力学有一条基本原理
踿踿踿踿踿踿踿踿踿踿踿踿踿

(态叠加原理
踿踿踿踿踿

)有密切的关
踿踿踿踿踿

系
踿.量子力学中广泛使用算符(矩阵)这种数学工具,可观测量都用厄米算符(矩阵)
来刻画.常见的有经典对应的力学量,例如,动量、角动量、Hamilton量等及相应的

守恒定律都和体系的某种对称性变换群的无穷小算子(生成元)密切相关.目前,群
及其表示的理论已经相当广泛地在以量子力学作为理论基础的近代物理学的各前

沿领域中被使用.
也许有人争辩说,量子力学可以不必使用群论.在某种意义上讲,这也有一定
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例如,参阅E.T.Bell,MenofMathematics,PenguinBooks,LTD.,Harmondsworth,Middlesex,Eng灢
land,1965..对此有重要贡献的数学家有:Gauss,Cauchy,Abel,Hamilton等人.

矩阵力学的创始人 W.Heisenberg并不了解在此之前已有矩阵代数.只是在稍后他与 M.Born和

P.Jordon的合作中才了解到这一点.事实上当时一些著名物理学家,如 A.Einstein,A.Sommerfeld等对矩阵

代数都不大了解.
S.LieandF.Engel,TheoriederTransformationsGruppen,Band1,1888;Band2,1890;Band3,

1893,Leipzig.
例如参阅,D.Gilmore,Liegroup,Liealgebraandsomeoftheirapplications,preface,JohnWiley

&Sons,1974.
E.P.Wigner,GroupTheoryanditsApplicationtotheQuantumMechanicsofAtomicSpectra,Ac灢

ademicPress,NewYork,1959.
H.Weyl,TheoryofGroupsandQuantum Mechanics,PrincetonUniversityPress,1931.



道理.因为不用群论,量子力学的很多问题也可以很好解决.然而当你熟悉了群论

之后,所得到的报偿将是很丰厚的(参阅7灡1灡2节,7灡3节等).
当然,对于物理学工作者,群论只是一个重要的数学工具,学习时应结合有

关的物理背景,有目的和有选择地学习,以期达到事半功倍,否则会在浩如烟海

的群论书籍中迷失方向.此外,也不可认为群论可以解决量子力学中的一切问

题,事实上它并不能代替量子力学的动力学理论.有些量子力学问题(例如,能级

的简并度,简并态的标记,在外场作用下能级是否分裂,跃迁选择定则等),群论

可以较方便处理,而有一些问题(例如能级具体分裂大小,跃迁概率等),群论则

无能为力.
这一附录的目的是为量子力学的读者进一步学习群论提供一个引导.有了这

点准备知识,既有助于学习量子力学中关于对称性的理论,也有助于读者有选择地

学习有关的群论知识,达到学用结合栙.

B灡1暋群的基本概念

B灡1灡1暋群与群结构

设有一系列元素a,b,c,…的集合,在它们之间规定了某种“乘法暠,并且

(1)若a暿G,b暿G,则其乘积ab暿G(封闭性).
(2)乘法遵守结合律,即a(bc)=(ab)c.
(3)存在单位元素e,使对G 内任一元素a,ae=ea=a.
(4)对应于任一个元素a暿G,必存在一个元素b暿G,使ba=ab=e(b称为a

之逆,记为a-1).
则称集合G 构成一个群.

群元素的具体含义,视不同问题而异.它们可以是普通的数、算符、矩阵、体系

的各种对称操作等.“乘法暠的含义也随问题而异,但作为群论的研究对象来说,关
心的是要给出任何两个元素的“有序乘积

踿踿踿踿
暠(可以列序,或用函数形式表达等),即群
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栙 下列参考书可作为物理专业的读者进一步学习群论之用:

M.Hamermesh,GroupTheoryanditsApplicationtoPhysicalProblems,Addison灢Wesly,1962.
J.P.ElliottandP.G.Dawber,SymmetryinPhysics,Vol.1,2,MacMillanPressLTD,1979.
B.F.Bayman,SomeLacturesonGroupsandTheirApplicationstoSpectroscopy,Nordita,1960.
A.W.Joshi,ElementsofGroupTheoryforPhysicists2nd.ed,JohnWiley&Sons,1977.
V.Heine.GroupTheoryinQuantum Mechanics,PergamonPress,1960.
M.Tinkham,GroupTheoryandQuantum Mechanics,McGrawl灢Hill,1964.
韩其智,孙洪洲,群论,北京大学出版社,北京,1987.
马中骐,物理学中的群论,科学出版社,北京,1998.
孙洪洲,韩其智,李代数李超代数及在物理学中的应用,北京大学出版社,北京,2000.



结构.如果群的元素的数目有限,则称为有限群.反之,为无限群.有限群的元素的

数目,称为群的阶(order).一般来说
踿踿踿踿

,群的乘法不满足交换律
踿踿踿踿踿踿踿踿踿踿

,即ab曎ba.如乘法满

足交换律,则称之为 Abel群.否则称为非 Abel群.
下面举几个例子:
例1暋空间反射变换P[(x,y,z)曻(-x,-y,-z)]与恒等变换I[(x,y,z)曻(x,y,z)]构成

一个2阶群,即空间反射群.显然,II=I,PP=I,IP=PI=P,I即群的单位元.
例2暋所有n维非奇异矩阵A(detA曎0)构成一个n维矩阵群.乘法即平常矩阵乘法.单位

元素即单位矩阵.元素A 之逆即A 之逆矩阵,记为A-1[因detA曎0,总可以找到其逆矩阵A-1,

AA-1=A-1A=I(单位矩阵)].由于矩阵乘法不满足交换律,所以n维矩阵群为非 Abel群(n=
1除外).

例3暋考虑绕定轴(如z轴)旋转2毿/n角(n曒1,正整数)的操作,记为Cn.相继两次操作记

为C2
n,表示绕定轴旋转2·2毿/n.绕相反方向旋转2毿/n角,记为C-1

n .显然C-1
n Cn=CnC-1

n =e,

表示还原(相继两次操作之后,回到原来位置).还容易看出(Cn)n=e,即经过n次操作Cn 之后,

又回到原来位置.这个群包含n个元素,

Cn,C 2
n,C 3

n,…,Cn
n =e暋暋(单位元素)

是一个n阶循环群
踿踿踿

,它是一个 Abel群.习惯上,称为Cn 群.
当n曻曓(元素的数目曻曓),则构成一个连续群,它包含绕定轴的一切转动.每一个元素

(转动)用一转角毴(连续变化,0曑毴曑2毿)来描述.这个群记为SO2(二维旋转群).
例4暋NH3 分子的对称性群C3v.
如图B灡1,NH3 分子在下列操作下具有不变性:
(1)e(单位元素).
(2)C暲

3 分别为绕z轴逆时针和顺时针旋转120曘角.
(3)氁1、氁2、氁3 分别表示3个镜像反射,镜像面(z轴在面内)分别包含11曚、22曚、33曚在内[图

B灡1(b)].
这个群习惯上称为C3v,包含6个元素,其群结构如表B灡1.

图B灡1

可以看出,它是一个非 Abel群(也是阶最小的一个非 Abel群).可以看出,氁2
1=氁2

2=氁2
3=e,

我们称元素氁1、氁2、氁3 的阶为2.又(C+
3 )2=C-

3 ,(C+
3 )3=e,(C-

3 )2=C+
3 ,(C-

3 )3=e,所以C+
3 与

C-
3 的阶为3.显然,单位元e的阶为1.
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表B灡1暋C3v群的乘积表

e C-
3 C+

3 氁1 氁2 氁3

e e C-
3 C+

3 氁1 氁2 氁3

C-
3 C-

3 C+
3 e 氁3 氁1 氁2

C+
3 C+

3 e C-
3 氁2 氁3 氁1

氁1 氁1 氁2 氁3 e C-
3 C+

3

氁2 氁2 氁3 氁1 C+
3 e C-

3

氁3 氁3 氁1 氁2 C-
3 C+

3 e

暋暋练习1暋设群G的元素记为{g0,g1,g2,…},则集合

giG:{gig0,gig1,gig2,…}

(gi 暿G)

也构成一个群,并与G相同.(重排定理
踿踿踿踿

)

练习2暋设2阶群的元素记为e(单位元素)和a,证明它的唯一结构如下:

e a

e e a

a a e

练习3暋设3阶群的元素记为e(单位元素)、a、b,则它唯一的群结构如下(3阶循环群):

e a b

e e a b

a a b e

b b e a

练习4暋设4阶群的元素记为e(单位元素)、a、b、c,则它有下列两种群结构:

e a b c

e e a b c

a a b c e

b b c e a

c c e a b

(4阶循环群)
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e a b c

e e a b c

a a e c b

b b c e a

c c b a e

练习5暋证明5阶群只有一种结构,即5阶循环群.
还可以证明,n阶群

踿踿
(n为素数

踿踿踿
,1,2,3,5,7,11,13,17,…)只有一种结构

踿踿踿踿踿踿
,即n阶循环群

踿踿踿踿
,是

一种 Abel群,其元素可记为

a,a2,a3,…,an =e
暋暋综上所述,n曑5的有限群均为 Abel群.最低阶的非 Abel群从n=6开始(例如C3v群).

B灡1灡2暋子群与陪集

设H为群G 的一个子集合
踿踿踿

(H灱G),并且在与G 相同的乘法之下,H本身也构

成一个群,则称H为G 的一个子群
踿踿

(subgroup)栙.
判断一个子集合

踿踿踿H是子群的判据
踿踿踿踿踿

:
(1)H中任何两元素之积仍在

踿踿踿踿踿踿踿踿踿踿H内
踿.

(2)H如含有一个元素,同时也含有该元素之逆(因而单位元素也在H内).
对于有限群,判据(2)并不必要.因为有限群的元素的阶总是有限的.设a暿H,

a的阶为k,即ak=e,因此a-1=ak-1,而按(1),ak-1总在H内,因而a-1总在H内.
如C3v群,由表B灡1可看出,H =C3{e,C+

3 ,C-
3 }构成C3v的一个子群.又如Cn

群是C2n群的一个子群.
设H为G 的一个子群,元素记为{e,h1,h2,…}.设a为G 的一个元素,但不在

H内,则集合aH{a,ah1,ah2,…}称为子群H的一个左陪集(leftcoset).类似还可

定义右陪集(rightcoset)Ha.可以证明:
(1)aH中没有两个元素相同.(如若不然,设ahi=ahj,则hi=hj,与假设矛盾,

H作为一个子群,hi曎hj.)
(2)aH中没有一个元素在H内.(如若不然,设ahi=hj,则a=hjh-1

i .按子群

定义,a必在H内,与假设矛盾.)
如H+aH尚未把群G 的一切元素囊括在内,则不妨从G 内去找出另一个元素

b(b曎a,也不在H内)去构造H的另一个左陪集bH.类似可以证明:
(1)bH中没有两个元素相同.
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(2)bH中没有一个元素在H和aH内.
如果H+aH+bH还没有把G 的全部元素囊括进去,还可以继续做下去,最后

可以把G 分解成如下一系列集合:

G=H+aH+bH+…
(注意:aH,bH,…都不是子群,至少,它们并不包含单位元).这样,设G 为nG 阶群,
子群H为nH 阶.由于陪集aH,bH,…每一个集合都含nH 个元素,必然有

nG/nH=m暋暋(正整数)
此即Lagrange定理———有限群的子群的阶必可整除群的阶

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.
由此可以得出:nG 为素数的群一定没有真正子群(propersubgroup),而且其

元素(除单位元素外)的阶必为nG.所以nG 为素数的群必为
踿踿踿踿踿踿踿nG 阶循环群

踿踿踿踿
,是一个

很特殊的 Abel群.
练习暋证明C3v群可分解为H+氁1H,其中H=C3,含有三个元素{e,C+

3 ,C-
3 }(注意:氁2H=氁3H

=氁1H(见表B灡1),都包含3个元素{氁1,氁2,氁3},它们本身都不构成一个群.)

B灡1灡3暋类,不变子群,商群

对于群G 中两个元素a 与b,若能找到某元素u暿G,使uau-1=b,则称元素a
与b共轭.容易证明,若a与b共轭,b与c共轭,则a与c也共轭.群内彼此共轭的

诸元素组成的集合,称为一类
踿

(class).单位元素本身就构成一类.群内诸元素可以
踿踿踿踿踿踿踿

分割成若干类
踿踿踿踿踿踿

,互相不重叠
踿踿踿踿踿.例如,C3v群诸元素分为3类:

K1: e
KC3

: C-
3 ,C+

3

K氁: 氁1,氁2,氁3

(读者根据表B灡1验证.)

练习暋对于 Abel群,每个元素自成一类,所以它所含类的数目,即群阶.

设H为G的一个子群,a暿G(a可以在 H内,也可以不在 H内),则aHa-1也

是G的一个子群,称为H的共轭子群栙.若对于所有
踿踿

元素a暿G,我们有aHa-1=
H,则称H是G的一个不变子群

踿踿踿踿
(invariantsubgroup).容易证明:一个子群如由若

踿踿踿踿踿踿踿
干类元素构成
踿踿踿踿踿踿

(即当它含有某一元素时,同时也就含有与该元素同类的诸元素),
则必为不变子群
踿踿踿踿踿踿踿.反之,若子群只含某一类元素的一部分(而不是全部),则必非

不变子群.例如,C3v群的子群C3 包含两类元素,K1 和KC3
,所以C3 是C3v的一个

不变子群.
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一个群若无非平庸不变子群
踿踿踿踿踿踿踿踿踿踿踿踿

,则称为单纯群
踿踿踿踿踿踿

(simplegroup).(不言而喻,一个

子群都没有的群,当然是单纯群).一个群
踿踿踿G 如有不变子群

踿踿踿踿踿踿
(因而不是单纯群),但

踿
这些不变子群均为非
踿踿踿踿踿踿踿踿踿 Abel群,则称

踿踿G 是一个半纯群
踿踿踿踿踿踿

(semi灢simplegroup).但如这
踿踿踿

些不变子群中有一个是
踿踿踿踿踿踿踿踿踿踿 Abel群

踿
,则
踿G 是非半纯群

踿踿踿踿踿
(当然,更不是单纯群了).

以下介绍商群.
设群G 有不变子群H,元素a和b不在H内,所以aH和bH构成H的左陪集.

可以看出:
(1) (aH)(bH)=aHbH=abHH=(ab)H

即两个左陪集相乘,仍为H的一个左陪集.
(2)因H为不变子群,aHa-1=H,即aH=Ha,所以

H(aH)=HaH=aHH=aH
即不变子群H与其陪集相乘时,它所起的作用与“单位元素暠相同.
(3) (a-1H)(aH)=a-1HaH=HH=H

即aH之逆为a-1H.
因此,如把群G 的不变子群H看成“单位元素暠,并把它的每一个陪集都看成

一个元素,则在陪集相乘下,H及其诸陪集也构成一个群,称为G 的商群(factor
group),记为G/H,其阶为nG/nH.

例暋C3 群含有两类元素:KI,KC3
,它构成C3v群的一个不变子群.取E=H=C3,包含元素

{e,C+
3 ,C-

3 }.从表B灡1容易看出,其陪集氁1H=氁2H=氁3H含有3个元素{氁1,氁2,氁3},记为A.可以

证明:(留作读者练习)

EE=E,暋暋EA=AE=A,暋暋AA=E
所以在陪集相乘下,E与A 构成一个商群(nG/nH=2).

B灡1灡4暋同构与同态

以上讨论的是群内各元素之间的关系.以下讨论群与群之间的关系

设群G{e,a,b,c,…}与群G曚{e曚,a曚,b曚,c曚,…}的元素之间有双向一一对应关
踿踿踿踿踿踿踿

系
踿

,即
e炣e曚,暋暋a炣a曚,暋暋b炣b曚,暋暋c炣c曚,暋暋…

乘法规则相同,有序乘积也一一对应,即
ab炣a曚b曚,暋暋ac炣a曚c曚,暋暋…

则称群G 与G曚同构
踿踿

(isomorphic),记为G曋G曚.显然G 与G曚的阶相同.
设与G 内任一个元素相对应,在G曚内有一个确切的元素(单向对应

踿踿踿踿
,反过来不

一定一一对应,即对应于G曚内一个元素,G 内可能存在不止一个元素),并能保持
踿踿踿踿

同样的乘法关系
踿踿踿踿踿踿踿

,则称群G 与G曚同态(homomorphic),记为G~G曚,或称G曚为G 的

同态映象
踿踿踿踿

(homomorphicmapping),显然,nG曚曑nG.其关系可形象地表示如下:
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B灡2暋量子体系的对称性变换群

B灡2灡1暋幺正变换群

根据波函数的统计诠释,Wigner曾经证明,量子体系的对称性变换,或为幺正

变换,或为反幺正变换.对于连续对称性变换,则必为幺正变换.对于离散对称性变

换,则除了幺正变换外,也可能出现反幺正变换.最常见的反幺正变换是时间反演,
但空间反射则为幺正变换.全同粒子的置换也属于幺正变换.幺正变换是一种特殊

的非奇异的(即存在逆变换的)线性变换.连续幺正变换群是一种最简单的Lie群.

1灡 线性变换群

考虑实n维空间中的非奇异线性变换L(n),它们用n暳n非奇异实矩阵描述:

L=

L11 L12 … L1n

L21 L22 … L2n

汅 汅 汅

Ln1 Ln2 … L

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

nn

,暋暋detL曎0 (B灡2灡1)

n维空间实矢量x 经过此变换后,化为

x曚=Lx (B灡2灡2)
或用分量表示出来,

x曚i= 暺
j
Lijxj (B灡2灡3)

n维实线性变换用独立的n2 个参数描述,例如,可以取为Lij(i,j=1,2,…,n).[在

Lie群理论中称L(n)群的阶为n2.]所有这些n维矩阵的集合构成一个群,乘法即

矩阵乘法,单位元素即单位矩阵,逆元素即逆矩阵.
对于复n维空间的线性变换群,群阶为2n2.

2灡 幺正变换群

满足幺正性条件的复n维变换群,称为n维幺正(unitary)变换群,记为U(n),

UU+=U+U =1暋暋(或U-1 =U+) (B灡2灡4)
对于n维幺正变换群 U(n),式(B灡2灡4)给出n2 个限制条件,因此,U(n)群的阶为

n2.如进一步要求

detU =1 (B灡2灡5)
则描述变换的独立参数将减少一个,这种幺正变换群称为SU 群.因此,SU(n)群
的阶为n2-1.SU(n)是U(n)的一个子群.

根据式(B灡2灡4)
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(U+U)ik = 暺
j
U+

ijUjk = 暺
j
U*

jiUjk =毮ik

对于i=k,

暺
j

Ujk
2 =1

所以

Ujk
2 曑1 (B灡2灡6)

即所有参数的变化范围是有界的.
幺正变换还可以表示成

U =exp(iF) (B灡2灡7)
式中F 为厄米算符

F+=F (B灡2灡8)
容易看出

detU =deteiF =exp(itrF) (B灡2灡9)
对于SU变换(detU=1),则

trF=0 (B灡2灡10)
因此,若记SU(n)=exp(iF0),U(n)=exp(iF),由于F 为厄米矩阵,令trF=毩
(实),则F 可以表示成

F=F0+i毩
nI (B灡2灡11)

式中I为n暳n单位矩阵.因此U(n)可表示成

U(n)=expi毩
n[ ]ISU(n)=SU(n)expi毩

n[ ]I (B灡2灡12)

其中expi毩
n[ ]I 为n暳n常数矩阵,可视为 U(1)群元素.所以U(n)可表为 U(1)与

SU(n)群的直积

U(n)=U(1)煪SU(n) (B灡2灡13)
暋暋例暋求SU(2)矩阵的一般表达式

令

SU(2)=
a暋b
c暋( )d

(B灡2灡14)

按幺正条件

a* 暋c*

b* 暋d( )*
a暋b
c暋( )d =

1暋0
0暋( )1

可给出4个限制

a*a+c*c=1 (B灡2灡15a)

b*b+d*d=1 (B灡2灡15b)

a*b+c*d=ab* +cd* =0 (B灡2灡15c)

而幺模条件detSU(2)=1给出一个限制
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ad-bc=1 (B灡2灡16)

利用式(B灡2灡15c)、式(B灡2灡15b),得

ad-bc= -cd*

b( )* d-bc=- c
b* (d*d+b*b)=- c

b*

因此c=-b* .再利用式(B灡2灡15c),可得a=-cd*/b* =d* .因此,SU(2)矩阵的一般形式可表

示为

a b

-b* a
æ

è
ç

ö

ø
÷

*
暋暋 a 2 + b 2 =1 (B灡2灡17)

是一个3参数矩阵
踿踿踿踿.

练习暋对于SU(2)变换,证明其共轭变换SU(2)* 与SU(2)只差一个相似变换.

提示:SU(2)=
a b

-b* a
æ

è
ç

ö

ø
÷

*
,暋SU(2)* =

a* b*

-
æ

è
ç

ö

ø
÷

b a

证明经过相似变换X=
0 1æ

è
ç

ö

ø
÷

-1 0
,X-1=

0 -1æ

è
ç

ö

ø
÷

1 0
后,SU(2)曻SU(2)* .

3灡O(n)(实正交)变换群

保证实
踿踿踿n维空间中任意两个矢量的标积不变的线性变换

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,称为实正交
踿踿踿踿踿

(or灢
thogonal)变换

踿踿.两个矢量x和y 的标积定义为

(x,y)= 暺
ij
gijxiyj (B灡2灡18)

式中gij=gji是对称的度规张量
踿踿踿踿

(metrictensor),煄G=G.显然(x,y)=(y,x).在

O(n)变换下,x曻x曚=Ox,y曻y曚=Oy,要求(x曚,y曚)=(x,y),即

暺
ij
gijx曚iy曚j= 暺

ij
gij暺

kl
OikxkOjlyl

= 暺
kl
xk 暺

ij

煄OkigijOj( )l yl

= 暺
kl
gklxkyl

所以

gkl = 暺
ij

煄OkigijQjl

即要求变换O 满足

G=煄OGO暋暋暋暋(煄G =G) (B灡2灡19)
特别是,如取gij=毮ij(正则形式),则上式化为

煄OO =1 (B灡2灡20)
由此可看出,O(n)是一种 实 幺 正 变 换

踿 踿 踿 踿 踿.因为对于实幺正变换,U+ =煋U,U+U
=1曻煋UU=1.

由式(B灡2灡19)或式(B灡2灡20),并(利用det煄O=detO),可得出(detO)2=1,所以

detO=暲1 (B灡2灡21)
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凡满足detO=+1的 O(n)变换,称为真(proper)O(n)变换,记为SO(n).SO(n)是

SU(n)的一个子群.detO=暲1的 O(n)群称为实n维空间转动 反射群,或称实n
维空间全(full)转动群,记为 O(n).

考虑到度规张量煄G=G,它有n个对角元和1
2n(n-1)个非对角元,是独立变

化的.条件(B灡2灡19)给 O(n)变换带来

n+1
2n(n-1)= 1

2n(n+1)

个限制.因此 O(n)群的阶为

n2-1
2n(n+1)= 1

2n(n-1) (B灡2灡22)

例如,O(3)群为3参数变换群,习惯选它们为三个Euler角.

4灡Sp(n)群(sympleticgroup)

保证实n维空间任何两个矢量的赝标积(skewproduct)不变的线性变换,称
为Sp(n)变换.矢量x与y 的赝标积定义为栙

{x,y}= 暺
ij
gijxiyj

它与标积不同,这里gij=-gji(反对称度规张量).
煄G =-G (B灡2灡23)

容易看出

{x,y}=-{y,x} (B灡2灡24)
所以对于任何矢量x,

{x,x}=0
按式(B灡2灡23),det煄G=(-1)ndetG,所以要求n=偶,否则detG=0.

与 O(n)变换类似,可以证明,Sp(n)(n=偶)变换(记为A)要求满足

G=煋AGA暋暋暋暋(煄G =-G) (B灡2灡25)

但由于煄G=-G,对角元为0,它只有1
2n(n-1)个非对角元可独立变化.所以式

(B灡2灡25)给Sp(n)变换带来1
2n(n-1)个附加限制.因此Sp(n)群的阶为

n2-1
2n(n-1)= 1

2n(n+1)暋(n偶) (B灡2灡26)
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栙 量子力学中两个角动量耦合为J=0的态表示为

(氉j氄j)J=0= 暺
mm曚

暣jmjm曚旤00暤氉jm氄jm曚 = 暺
mm曚

gmm曚氉jm氄jm曚

其中gmm曚=毮m曚,-m(-1)j-m/ 2j+1.利用CG.系数性质,gmm曚=(-1)2jgm曚m.
当j=整数时,gmm曚=gm曚m,而当j=半奇数时gmm曚=-gm曚m.



B灡2灡2暋置换群

置换群(permutationgroup)及其表示的理论,对量子力学中处理全同粒子系

波函数的置换对称性,是很有用的数学工具.n个全同粒子的可能的置换的总数有

n! 个,即n个物体的可能的排列数.它们构成的群称为置换群,记为Sn.
例如,S2 群的两个元素可表示成

e=
1 2æ

è
ç

ö

ø
÷

1 2
,暋暋P12 =

1 2æ

è
ç

ö

ø
÷

2 1
e是单位元(表示没有粒子置换),P12表示 偣偢1 2两个粒子对换

踿踿
(transposition).

显然,P12P12=e.
S3 群的3! 个元素可表示为

123æ

è
ç

ö

ø
÷

123
暋暋

123æ

è
ç

ö

ø
÷

231
暋暋

123æ

è
ç

ö

ø
÷

312
123æ

è
ç

ö

ø
÷

132
暋暋

123æ

è
ç

ö

ø
÷

321
暋暋

123æ

è
ç

ö

ø
÷

213
暋暋为便于研究置换群的结构,先介绍一下循环置换

踿踿踿踿
(cyclicpermutation)概念.

例如

123æ

è
ç

ö

ø
÷

231
表示

的循环置换(或称轮换),
记为(123)

123æ

è
ç

ö

ø
÷

312
=

132æ

è
ç

ö

ø
÷

321
表示 的循环置换,记为(132)

暋暋显然(123)=(231)=(312),(132)=(321)=(213).但注意(123)曎
(132).

可以证明,任何一个循环置换均可表示成若干个对换的乘积,即
(123)= (13)(12)暋暋暋暋暋
(1234)= (14)(13)(12)
…………
(123…n)= (1n)(1n-1)…(13)(12)

暋暋注意:(a)在上列分解中,各对换所涉及的粒子并不完全是不同的对象,因此各

对换的先后顺序不能随便调动.例如

(123)=(13)(12)曎(12)(13)=(132).
(b)一个循环置换按对换进行分解时,因子的个数不是唯一的.例如,可以把
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(12)改为(23)(13)(23),并不影响结果.但分解时因子个数的奇偶性
踿踿踿

是完全确

定的.(12…n)的奇偶性由(-1)n-1确定.由偶数个对换的乘积构成的循环称为偶
踿

循环
踿踿.由奇数个对换的乘积构成的循环称为奇循环

踿踿踿.
任何一个置换总可以分解成若干个循环之积
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,或者说可以按循环结构进行分
踿踿踿踿踿踿踿踿

解
踿.例如

12345678æ

è
çç

ö

ø
÷÷

23154768
= (123)(45)(67)(8)

其中(8)表示第8个粒子不参与置换,这种结构常略去不写.在分解时,各循环结构

涉及的对象各不相同,因此各循环彼此的乘积顺序可以随便调动.例如

(123)(45)(67)=(45)(123)(67)
由于每一个置换的循环结构是完全确定的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

,而每一个循环都具有确定的奇偶
踿踿踿踿踿踿踿踿踿踿踿踿踿踿

性
踿

,所以每一个置换的奇偶性也是完全确定的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.Sn 群的偶置换与奇置换各占一半

踿踿踿踿踿踿踿踿踿踿踿
,

数目都是n!/2.考虑到偶置换暳偶置换=偶置换,在Sn 群中的n!/2个偶置换的集

合,构成Sn 群的一个子群,称为交替(alternating)群.
可以证明,具有相同循环结构的各置换构成一类

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,因而置换群的元素可以按循
踿踿踿踿踿踿踿踿踿踿踿踿

环结构进行分类
踿踿踿踿踿踿踿.因为如果

a=
1 2…n
a1 a2…a
æ

è
ç

ö

ø
÷

n

b=
1 2…n
b1 b2…b
æ

è
ç

ö

ø
÷

n
=

a1 a2…an

ba1 ba2
…ba

æ

è
çç

ö

ø
÷÷

n

则

bab-1=
a1 a2…an

ba1 ba2
…ba

æ

è
çç

ö

ø
÷÷

n

1 2…n
a1 a2…a
æ

è
ç

ö

ø
÷

n

b1 b2…bn

1 2…
æ

è
ç

ö

ø
÷

n

=
b1 b2…bn

ba1 ba2
…ba

æ

è
çç

ö

ø
÷÷

n

但容易看出

b1 b2…bn

ba1 ba2
…ba

æ

è
çç

ö

ø
÷÷

n

与
1 2…n
a1 a2…a
æ

è
ç

ö

ø
÷

n

具有相同的循环结构,因为b1,b2,…,bn 只不过是1,2,…,n 的某种重排.所以

bab-1与a的不同仅在于对象的编号改变(1曻b1,2曻b2,…,n曻bn),而这并不影响

置换的循环结构.
例如,(123)与(132)同类,因为

(23)(123)(23)-1 =
23æ

è
ç

ö

ø
÷

32
123æ

è
ç

ö

ø
÷

231
32æ

è
ç

ö

ø
÷

23
暋
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=
23æ

è
ç

ö

ø
÷

32
321æ

è
ç

ö

ø
÷

312
=

321æ

è
ç

ö

ø
÷

213
=

132æ

è
ç

ö

ø
÷

321
= (132)

暋暋根据以上对置换的循环结构的分析,可得出下列重要结论:
置换群Sn 的类的数目

踿踿踿踿=可能的循环结构的数目
踿踿踿踿踿踿踿踿踿踿

,而后者正是把n分成若干非

负整数之和,即

n=f1+f2+…暋暋(fi曒0,i=1,2,…)
的可能分法[f1f2…]的数目,这里fi 表示第i个循环结构所包括的对象的数目.
为确切起见,不妨取

f1曒f2曒f3曒…曒0
如n=2=2+0=1+1,S2 有两类元素,即

[f1f2]=[20],简记为[2],包含一个元素,即(12)
[f1f2]=[11],包含一个元素,即单位元e=(1)(2)

n=3=3+0+0=2+1+0=1+1+1,S3 有3类元素,即
[f1f2f3]=[300],简记为[3],包含两个元素,即

(123),(132)
[f1f2f3]=[210],简记为[21],包含3个元素,即

(12)(3),(23)(1),(31)(2),或简记为

(12),(23),(31)
[f1f2f3]=[111],只包含一个元素,即单位元e=(1)(2)(3)

其余类推.习惯上还常用 Young图来标记各类
踿踿踿踿踿踿.由于有限群的不等价不可约表示

的数目=群的类的数目(见B灡3).所以人们也借用 Young图来标记置换群的各不
踿踿踿踿踿踿踿踿踿踿

可约表示
踿踿踿踿.例如

n [f1f2…] Young图

1 [1]

2 [2]

[11]

3 [3]

[21]

[111]

例暋S3 群有6个元素,分成3类,其群结构(乘积表)如表 B灡2.可以看出,偶置换e、(123)、

(132)构成S3 的一个子群,即交替群,阶nH=3(nG/nH=2).此子群是由两类元素组成,所以是S3

的不变子群,与表B灡1比较,可看出S3 群与C3v群具有相同的群结构.
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表B灡2暋置换群S3 的乘积表

e (123) (132) (23) (31) (12)

e

(123)

(132)

e (123) (132)

(123) (132) e

(132) e (123)

(23) (31) (12)

(12) (23) (31)

(31) (12) (23)

(23) (23) (31) (12) e (123) (132)

(31) (31) (12) (23) (132) e (123)

(12) (12) (23) (31) (123) (132) e

B灡3暋群表示的基本定理

B灡3灡1暋群表示的基本概念

(a)群表示定义

设群G 与群G曚同态对应(G曻G曚),G曚是由维数相同的非奇异矩阵构成的群,
则称G曚为G 的一个表示(representation),

G 曻G曚=D(G)暋暋 矩阵群

即设

gi 曻D(gi),暋暋gi 暿G
gk 曻D(gk),暋暋gk 暿G

而

gl =gigk 曻D(gl)=D(gi)D(gk)
我们就称G曚是G 的一个表示,矩阵的维数就称为表示的维数.

若G炣G曚(双向一一对应,或称同构对应),则称G曚为G 的一个单值表示.
如G曚=D(G)是由幺正矩阵组成,则称之为幺正表示.
讨论

(1)群的单位元对应于群表示的单位矩阵.
设g0 为G 的单位元,即g0gi=gi,相应有D(g0)D(gi)=D(gi).用逆矩阵

D(gi)-1右乘,得D(g0)=D(gi)D(gi)-1=I(单位矩阵).
(2)群G 的两个互逆的元素所对应的两个矩阵也互逆,即

D(g-1
i )=D(gi)-1

因为

gig-1
i =g0 曻D(gi)D(g-1

i )=D(g0)=I暋暋(单位矩阵)

所以D(g-1
i )=D(gi)-1.
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(3)表示中不能有任何矩阵为奇异矩阵.例如,假设

detD(g1)=0
于是D(g1gi)=D(g1)D(gi)也是奇异矩阵[因detD(g1gi)=detD(g1)detD(gi)=
0].当gi 跑遍整个群G,g1gi 也跑遍整个群G,因而D(g1gi)也跑遍整个群G曚,而
它们都是奇异矩阵.这与群表示的假设矛盾.

(b)等价表示

设D(G)是群G 的一个表示.X 是维数与D(G)相同的一个非奇异矩阵,则
XD(G)X-1也是群G 的一个表示,称为与D(G)等价的一个表示.因为设

gi 曻D(gi),暋暋gk 曻D(gk),暋暋(gi,gk 暿G)
则有

gigk 曻D(gi)D(gk)
与此类似,设

gi 曻XD(gi)X-1,暋暋gk 曻XD(gk)X-1

则有

gigk 曻XD(gigk)X-1 =XD(gi)D(gk)X-1 =XD(gi)X-1XD(gk)X-1

群的一个表示和它的等价表示的差别仅在于表示空间基矢选择不同(两组基矢通

过某种非奇异的线性变换X 相联系),此外无实质性差别.所以在彼此等价的诸表

示中,只要选用其中一个即可.这样,找寻群的一切表示的问题,就缩小为找寻它的

所有彼此不等价的表示.

(c)表示的直和

设D(1)(G)是群G 的一个f1 维表示,D(2)(G)是群G 的一个f2 维表示,则矩

阵群

D(G)=
D(1)(G) 0

0 D(2)(G

æ

è
çç

ö

ø
÷÷

)
也是群G 的一个表示,维数为(f1+f2),称为表示D(1)和D(2)的直和(directsum),
记为D(G)=D(1)(G)煩D(2)(G).因为,设

gi 曻D(1)(gi),暋暋gk 曻D(1)(gk)
则有

gigk 曻D(1)(gi)D(1)(gk)
同样,设

gi 曻D(2)(gi),暋暋gk 曻D(2)(gk)
则有

gigk 曻D(2)(gi)D(2)(gk)
因此,
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D(gi)D(gk)=
D(1)(gi) 0

0 D(2)(gi

æ

è
çç

ö

ø
÷÷)
D(1)(gk) 0

0 D(2)(gk

æ

è
çç

ö

ø
÷÷)

=
D(1)(gi)D(1)(gk) 0

0 D(2)(gi)D(2)(gk

æ

è
çç

ö

ø
÷÷)

=
D(1)(gigk) 0

0 D(2)(gigk

æ

è
çç

ö

ø
÷÷)
=D(gigk)

即D(gigk)=D(gi)D(gk),所以D(G)也是群G 的一个表示.

(d)可约表示与不可约表示

设D(G)为群G 的一个表示.如经过适当的相似变换之后,所有矩阵均可化为

块对角(block灢diagonal)形式,即

D(G)曻XD(G)X-1=

D(1)(G)

D(2)(G)

D(3)(G)

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

暋暋暋烑

=D(1)(G)煩D(2)(G)煩D(3)(G)煩 …
则称表示D(G)是可约的(reducible).通过相似变换把一个表示化为维数较低的

若干个表示的直和,称为表示的约化(reduction).这相当于找一个表象
踿踿踿踿踿踿踿踿

(基矢
踿踿

)变换
踿踿

把空间分解成若干个不变子空间
踿踿踿踿踿踿踿踿踿踿踿踿踿踿.假如不存在任何相似变换可以把所有

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿D(G)矩
踿

阵都块对角化
踿踿踿踿踿踿

,则称表示
踿踿踿踿D(G)不可约

踿踿踿
(irreducible).这样,找寻群G 的一切表示的

问题,又可进一步缩小为找出它的一切彼此不等价的不可约表示
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

的问题.

B灡3灡2暋有限群的表示的两条基本定理

定理1暋对于群
踿踿踿G 的任何一个表示

踿踿踿踿踿踿踿D(G),必有一个与之等价的幺正表示
踿踿踿踿踿踿踿踿踿踿踿踿踿.

定理2暋设D(j)(G)(j=1,2,3,…)是群G 的一系列彼此不等价的不可约表
踿踿踿踿踿踿踿踿踿踿

示
踿

,维数为fj,则

暺
nG

i=1
D(j)*

毺毻
(gi)D

(j曚)
毺曚毻曚

(gi)=
nG

fj
毮jj曚毮毺毺曚毮毻毻曚 (B灡3灡1)

nG 为群元素的个数.(此定理称为群表示的正交性定理
踿踿踿踿踿.)

定理1的证明

(1)试作厄米矩阵

H = 暺
nG

i=1
D(gi)D(gi)+=H+

它总可以通过一个幺正(表象)变换而对角化(对角元为实).设经过幺正变换U 之

后,H 化为实对角矩阵d
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d=U+ HU =U+ 暺
i
D(gi)D(gi)+U

= 暺
i
U+ D(gi)UU+ D(gi)+U

= 暺
i

煆D(gi)煆D(gi)+

其中

煆D(gi)=U+ D(gi)U =U-1D(gi)U
煆D 是与D 等价的一个表示.d的对角元为

dkk = 暺
ij

煆D(gi)kj煆D(gi)+
jk = 暺

ij

煆D(gi)kj 2

暋暋(2)d记为

d=

d11 0 …

0 d22

汅

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

烑
定义

d1/2 =

d1/2
11 0…

0 d1/2
22

汅

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

烑
其逆可表示为

d-1/2=

d-1/2
11 0…

0 d-1/2
22

汅

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

烑
试作另一个等价表示煇D,

煇D(gi)=d-1/2煆D(gi)d1/2 =d-1/2U-1D(gi)Ud1/2

= (Ud1/2)-1D(gi)(Ud1/2)

暋暋(3)下面证明煇D 为一个幺正表示.
煇D(gi)煇D(gi)+=d-1/2煆D(gi)d1/2(d-1/2煆D(gi)d1/2)+ 暋暋(d为实)

=d-1/2煆D(gi)d煆D(gi)+d-1/2

=d-1/2煆D(gi)暺
k

煆D(gk)煆D(gk)+ 煆D(gi)+d-1/2

=d-1/2暺
k

煆D(gigk)煆D(gigk)+d-1/2

=d-1/2暺
k

煆D(gk)煆D(gk)+d-1/2暋暋(重排定理)

=d-1/2·d·d-1/2=I暋暋(单位矩阵)
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暋暋定理2的证明

下面分几步来证明:
(1)Schur引理1暋设 D(G)为群G 的一个不可约表示.设矩阵 M 与所有

D(G)对易,即MD(gi)=D(gi)M,gi暿G,则M 必为常数矩阵,即M=kI.
(a)证明:设有厄米矩阵 H 与所有D(G)对易,则 H 必为常数矩阵.
厄米矩阵H 总可以通过幺正交换U 而对角化,即d=U-1HU 为实对角矩阵.

按假定,HD(gi)=D(gi)H,因而

U-1HD(gi)U=U-1D(gi)HU
U-1HUU-1D(gi)U=U-1D(gi)UU-1HU

由此得
d煆D(gi)=煆D(gi)d

其中煆D(gi)=U-1D(gi)U.上式取矩阵元,考虑到d为对角矩阵,我们有

dkk
煆Dkj(gi)=煆Dkj(gi)djj

所以
(dkk -djj)煆Dkj(gi)=0

这就要求dkk=djj(否则,当k曎j时,煆Dkj(gi)=0,即煆D 可约,因而D 可约,与假设

矛盾).这样,我们就证明了d 的所有对角元相同,即d 为常数矩阵,因而 H=
UdU-1=dUU-1=d也是常数矩阵.

(b)按定理1,不妨假设D(G)为幺正表示,这并不失去证明的普遍性.按假定

MD(gi)=D(gi)M暋暋暋暋(gi 暿G)
因而有

D(gi)+ M+=M+ D(gi)+

上式左乘D(gi),右乘D(gi),注意它是幺正表示,得

M+ D(gi)=D(gi)M+ 暋暋暋暋(gi 暿G)
即M+ 也与所有D(G)对易.因此,如果令

H1 =M+M+,暋暋H2 =i(M-M+)
则 H1 与 H2 都是与所有D(G)对易的厄米矩阵.按照(a),H1 与 H2 必为常数矩

阵.因而

M = 1
2

(H1-iH2),暋暋M+= 1
2

(H1+iH2)

也是常数矩阵.(Schur引理1证毕.)
按Schur引理1,如能找到一个不是常数的非零矩阵与群G 的某表示D(G)的

所有矩阵对易,则D(G)必为可约表示.
(2)Schur引理2暋设D(1)(G)和D(2)(G)为群G 的两个不可约表示,维数分别

为f1 和f2.设有矩阵M(f1 列,f2 行)满足

MD(1)(gi)=D(2)(gi)M暋暋暋暋(gi 暿G)

若f1曎f2,则M=0.若f1=f2,则M=0或非奇异矩阵(此时D(1)与D(2)表示等价).
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证明暋按定理1,不妨假设D(1)和D(2)均为幺正表示,为确切起见,设f2曒f1.
分几步来证明.

(a)按假设

MD(1)(gi)=D(2)(gi)M暋暋暋暋(gi 暿G)
取厄米共轭

D(1)(gi)+ M+=M+ D(2)(gi)+

考虑到D(1)与D(2)均为幺正表示(D+ =D-1)上式可化为

D(1)(g-1
i )M+=M+ D(2)(g-1

i )
左乘M,得

MD(1)(g-1
i )M+=MM+ D(2)(g-1

i ) (B灡3灡2)
类似,设gi暿G,我们有

MD(1)(g-1
i )=D(2)(g-1

i )M
右乘M+,得

MD(1)(g-1
i )M+=D(2)(g-1

i )MM+ (B灡3灡3)
比较式(B灡3灡2)与式(B灡3灡3),有

MM+ D(2)(g-1
i )=D(2)(g-1

i )MM+

即

MM+ D(2)(gi)=D(2)(gi)MM+ (B灡3灡4)
按照Schur引理1,MM+ 必为常数矩阵,MM+ =kI.

(b)设f1=f2=f.若常数k曎0,则

det(MM+)=kf 曎0
因而,

det(MM+)=detM·detM+曎0

即detM曎0,M 为非奇异矩阵,此时D(1)与D(2)表示等价.
若k=0,即MM+ =0,取对角元,有

(MM+)ii = 暺
j
MijM+

ji = 暺
j

Mij
2 =0

因此,必须 Mij =0,即Mij=0,M 为0矩阵.
(c)设f2>f1.此时可以把M 补上一些零列,以构成f2暳f2 方阵,记为N

M11 M12…M1f1 0…0
M21 M22…M2f1 0…0
汅 汅暋汅 汅暋汅

Mf21 Mf22
…Mf2f1

0…

æ

è

ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷0

曉N

显然,detN=0,而用矩阵乘法容易验明 MM+ =NN+.按式(B灡3灡4),NN+D(2)(gi)
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=D(2)(gi)NN+,而D(2)是不可约表示,按Schur引理1,得NN+ =MM+ =kI.所以

det(NN+)=kf2

但

det(NN+)=detN·detN+=0
所以必然k=0,即NN+ =MM+ =0.与(b)类似,可证明N 和M 为0矩阵.

(3)设D(1)(G)和D(2)(G)是群G 的两个不等价的不可约表示,维数分别为f1

维和f2 维.设X 是f1 列、f2 行的任一矩阵,作

M = 暺
i
D(2)(gi)XD(1)(gi)-1

可以证明,M =0.因为

D(2)(gk)M= 暺
i
D(2)(gk)D

(2)(gi)XD
(1)(gi)-1

= 暺
i
D(2)(gkgi)XD

(1)(gkgi)-1D(1)(gk)

= 暺
i
D(2)(gi)XD

(1)(gi)-1D(1)(gk)

=MD(1)(gk) (B灡3灡5)

按Schur引理2,当f1曎f2 时,M=0,当f1=f2 时,M=0或非奇异矩阵(但此时

D(2)与D(1)等价,与假设矛盾).所以无论f1 与f2 相等与否,都有M=0.
因此,

M毺曚毺 = 暺
i氀毸

D(2)
毺曚氀

(gi)X氀毸D
(1)
毸毺

(gi)-1 =0

X 是任意的,不妨取X氀毸=毮氀毻曚毮毸毻,则

M毺曚毺 = 暺
i
D(2)

毺曚毻曚
(gi)D

(1)
毻毺

(gi)-1 =0

考虑到D(1)为幺正表示,D(1)-1=D(1)+ ,所以上式化为

暺
i
D(2)

毺曚毻曚
(gi)D(1)

毺毻
(gi)* =0暋暋(正交性) (B灡3灡6)

暋暋(4)假设X 为f1暳f1 方阵,作

M = 暺
i
D(1)(gi)XD

(1)(gi)-1

与式(B灡3灡5)类似,可以证明

MD(1)(gk)=D(1)(gk)M
按Schur引理1

M =kI暋暋暋(常数矩阵)
即

M毺曚毺 =k毮毺曚毺
(B灡3灡7)
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另外,不言而喻 ,D(1)与D(1)等价,按Schur引理2,必然M曎0.M 的矩阵元为

M毺曚毺 = 暺
i
暺
氀毸

D(1)
毺曚氀

(gi)X氀毸D
(1)
毸毺

(gi)-1

仍取X氀毸=毮氀毻曚毮毸毻,得

M毺曚毺 = 暺
i
D(1)

毺曚毻曚
(gi)D

(1)
毻毺

(gi)-1 (B灡3灡8)

其对角和为

暺
毺
M毺毺= 暺

i
暺
毺
D(1)

毺毻曚
(gi)D(1)

毻毺
(gi)-1

= 暺
i

暺
毺
D(1)

毻毺
(g-1

i )D(1)
毺毻曚

(gi[ ])

= 暺
i

D(1)(g-1
i )D(1)(gi[ ])毻毻曚

= 暺
i
D(1)

毻毻曚 (g-1
i gi)= 暺

i
D(1)

毻毻曚 (g0)暋暋(g0 为单位元)

= 暺
i
毮毻毻曚 =nG毮毻毻曚 (B灡3灡9)

nG 为群G 元素的个数.

比较式(B灡3灡7)与式(B灡3灡9),暺
毺
M毺毺 =kf1 =nG毮毻毻曚,所以

k=
nG

f1
毮毻毻曚

比较式(B灡3灡7)与式(B灡3灡8),考虑到D(1)为幺正表示,最后得

暺
nG

i=1
D(1)*

毺毻
(gi)D

(1)
毺曚毻曚

(gi)=
nG

f1
毮毺毺曚毮毻毻曚 暋暋(归一性) (B灡3灡10)

暋暋把正交性关系(B灡3灡6)与归一性关系(B灡3灡10)联合起来,可表示成

暺
nG

i=1
D(j)*

毺毻
(gi)D(j曚)

毺曚毻曚
(gi)=

nG

fj
毮jj曚毮毺毺曚毮毻毻曚

(定理2证毕)
讨论

彼此不等价的不可约表示的正交归一性定理可表示为

暺
nG

i=1
v(j)*

毺毻
(gi)v

(j曚)
毺曚毻曚

(gi)=毮jj曚毮毺毺曚毮毻毻曚 (B灡3灡11)

式中

v(j)
毺毻

(gi)= fj

nG
·D(j)

毺毻
(gi) (B灡3灡12)

我们不妨把v(j)
毺毻

(gi)视为nG 维空间(群空间)中一个“矢量暠的第i分量,每一“矢
量暠用(j,毺,毻)标记,则式(B灡3灡11)表示nG 维空间中这些“矢量暠的正交归一性.设
群G 有c个不等价不可约表示,维数分别为fj(j=1,2,…,c).对于给定j,毺,毻=1,
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2,…,fj,因而有f2
j 个v(j)

毺毻 .这些正交归一的“矢量暠的总数为 暺
j
f2

j,它当然不能超

过群空间的维数nG,所以

暺
c

j=1
f2

j 曑nG (B灡3灡13)

还可以证明(略)

暺
c

j=1
f2

j =nG (B灡3灡14)

即有限群的一切不等价不可约表示的维数平方之和等于群元素的个数
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿

(群阶
踿踿

).
还可以证明,有限群的不等价不可约表示的个数

踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿c等于群的类的数目
踿踿踿踿踿踿踿踿.

以上两个关系对于寻找有限群的不可约表示是很有用的.例如,对于Abel群,

c=nG.按式(B灡3灡14),必须fj=1(对所有j),即 Abel群的不可约表示必为一维.

B灡4暋特暋征暋标

B灡4灡1暋特征标概念

设D(j)(G)是群G 的一个表示,其特征标
踿踿踿

(character)定义为

氈
(j)(gi)= 暺

毺
D(1)

毺毺
(gi) (B灡4灡1)

即表示矩阵的对角元之和,或称为矩阵之迹(trace).根据矩阵求迹的规律,可得出

下列两个结论:
(1)由于在相似变换下矩阵之迹不变,即特征标不因群表示空间基矢(表象)的

选择而异,所以两个等价表示所相应的特征标是相同的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.因此根据特征标往往就可

以判明群表示的许多重要性质.在处理很多具体问题时,往往只需用到特征标,而
不需要群表示本身.当然,如人们已经找出了群的一个表示,根据式(B灡4灡1)定义,
就可以计算其特征标.但要找出群的不可约表示,一般说来,比找特征标要麻烦得

多.事实上,可以不必先找出群的表示而用其他办法计算出其特征标(参阅B灡4灡3
节).

(2)属于同一类的各元素所相应的群表示的特征标是相等的
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.因此,特征标是

踿踿踿踿
“类函数
踿踿踿

暠.因为,设元素gi 与gk 同类,即存在gl暿G,使gk=glgig-1
l ,因此D(gk)

=D(gl)D(gi)D(g-1
l ),而

trD(gk)=tr[D(gl)D(gi)D(g-1
l )]

=tr[D(g-1
l )D(gl)D(gi)]

=tr[D(g-1
l gl)D(gi)]

考虑到g-1
l gl 即单位元,因而D(g-1

l gl)=单位矩阵,所以

trD(gk)=trD(gi)

暋暋例暋转动群不可约表示的特征标.
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转动角的值相同
踿踿踿踿踿踿踿

(不管转轴的取向
踿踿踿踿踿踿踿

)的所有转动都属于一类
踿踿踿踿踿踿踿踿踿踿.因此转角为氄的

转动所相应的特征标可以如下方便地计算出,即选择转轴为z轴,此时,转动群的

(2j+1)维不可约表示为对角矩阵

D
(j)
m曚m(氄,0,0)=e-im曚氄毮m曚m

D(j)(氄,0,0)=

e-ij氄

暋暋e-i(j-1)氄

暋暋暋暋暋烑
暋暋暋暋暋暋暋eij

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷

氄

(B灡4灡2)

特征标为

氈j(氄)= 暺
j

m=-j
e-im氄 =

sin[(j+1/2)氄]
sin[氄/2] , 氄曎0

2j+1, 氄=
{

0
(B灡4灡3)

B灡4灡2暋几条重要定理

定理1暋群的不等价不可约表示的个数
踿踿踿踿踿踿踿踿踿踿踿踿踿=踿

群的类的个数
踿踿踿踿踿踿.

定理2暋设群G 有c类元素,则它的某个表示是不可约的判据
踿踿踿踿踿踿踿踿踿

(充分
踿踿

,必要
踿踿

)为

1
nG

暺
nG

i=1
氈* (gi)氈(gi)= 1

nG
暺
c

氀=1
n氀氈

* (氀)氈(氀)=1 (B灡4灡4)

其中氈(氀)是第氀类元素(有n氀 个)相应的特征标.
定理3暋群的两个表示的特征标如果相等

踿踿踿踿踿踿踿踿踿踿踿踿踿踿
,则两个表示等价
踿踿踿踿踿踿踿.

前面已提到,两个等价表示的特征标是相等的.因此,两个表示等价的充分和
踿踿踿踿踿踿踿踿踿踿

必要条件是它们的特征标相等
踿踿踿踿踿踿踿踿踿踿踿踿踿.

定理4暋有限群的特征标若为实数
踿踿踿踿踿踿踿踿踿踿踿

,则必为整数
踿踿踿踿踿.

可以证明,置换群的特征标可取为实数
踿踿踿踿踿踿踿踿踿踿踿踿.又按 Cayley定理,对于一个k阶群,

总可以找到置换群Sk 的一个k阶子群与之同构.因此,有限群的特征标可取为实
踿踿踿踿踿踿踿踿踿踿踿

数
踿.此时,它们必取整数

踿踿踿踿踿踿.

定理1的证明

利用不可约表示的正交归一性定理[B灡3灡2节,式(B灡3灡1)],可得

暺
nG

i=1
氈

(j)*

(gi)氈
(j曚)(gi)= 暺

i
暺
毺毻

D(j)*

毺毺
(gi)D

(j曚)
毻毻 (gi)

= 暺
毺毻

nG

fj
毮jj曚毮毺毻 =

nG

fj
毮jj曚暺

j

毺=1
1=nG毮jj曚 (B灡4灡5)

此即特征标的正交归一性关系.考虑到特征标是类函数.设群G 有c类元素,记为

K氀(氀=1,2,…,c),K氀 类含n氀 个元素,对于不可约表示 D(j),它的特征标记为

氈
(j)(氀).令
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v(j)
氀 =

n氀

nG
氈

(j)(氀) (B灡4灡6)

则式(B灡4灡5)化为

暺
c

氀=1
v(j)* (氀)v(j曚)(氀)=毮jj曚 (B灡4灡7)

v(j)(氀)可以看成c维空间中的一个“矢量暠(用j标记)的第氀分量(氀=1,2,…,c).
设群G 有c曚个不等价不可约表示(j=1,2,…,c曚),则式(B灡4灡7)表示有c曚个“矢量暠
彼此正交,因此c曚曑c.还可以证明(略),c曚=c,即不等价不可约表示的个数=群的

类的个数.

定理2的证明

先假设群的某表示D(G)是可约的,即经过相似变换之后可以化为块对角的

形式

XD(G)X-1 =
D(1)(G)

暋暋暋D(2)(G)
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

暋暋暋暋暋烑

(B灡4灡8)

设D(1),D(2),…均为不可约表示,在D(G)约化时,D(j)出现aj 次(aj 为非负整数).
对式(B灡4灡8)求迹,得

氈(gi)= 暺
j
aj氈

(j)(gi) (B灡4灡9)

利用不等价不可约表示的特征标的正交归一性关系(B灡4灡5),可得

暺
i
氈

* (gi)氈(gi)= 暺
jj曚
ajaj曚暺

i
氈

(j)*

(gi)氈
(j曚)(gi)

= 暺
jj曚
ajaj曚nG毮jj曚 =nG暺

j
a2

j

所以

暺
j
a2

j=
1
nG

暺
nG

i=1
氈

* (gi)氈(gi)= 1
nG

暺
c

氀=1
n氀氈

* (氀)氈(氀) (B灡4灡10)

如果一个表示是不可约的,则式(B灡4灡9)的系数aj 中只有一个不为0.此时 暺
j
a2

j

=1.因此

1
nG

暺
nG

i=1
氈

* (gi)氈(gi)= 1
nG

暺
c

氀=1
n氀氈

* (氀)氈(氀)=1

此即式(B灡4灡4).

定理3的证明

设群表示D(G)可约,如式(B灡4灡8)所示,其特征标如式(B灡4灡9)所示.用
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氈
(j曚)*

(gi)乘式(B灡4灡9),求和

暺
nG

i=1
氈

(j曚)*

(gi)氈(gi)= 暺
j
aj暺

nG

i=1
氈

(j曚)*

(gi)氈
(j)(gi)

= 暺
j
ajnG毮jj曚 =nGaj曚

所以

aj= 1
nG

暺
nG

i=1
氈

(j)*

(gi)氈(gi)

= 1
nG

暺
c

氀=1
n氀氈

(j)*

(氀)氈(氀) (B灡4灡11)

aj 值由群表示D(G)的特征标氈(氀)决定,不因表象变换而异.因此,如两个表示的

特征标相等,则它们约化时,各不可约表示D(j)出现的次数是完全相同的.它们约

化成块对角形式(B灡4灡8)之后,唯一可能出现的差别是各个D(j)在对角线上的位置

不同,而这种位置上不同的表示是彼此等价的(可以通过一个相似变换把D(j)在对

角线上的位置改变,使两者相同).

定理4的证明

按群表示基本定理1(B灡3灡2节),不妨假定D(G)为幺正表示,即D+D=1.取
对角元,得

暺
毺
D+

毻毺D毺毻 = 暺
毺
D*

毺毻D毺毻 =1

设群表示已经通过相似变换化为对角形式,则上式化为D*
毺毺D毺毺=1.如取D毺毺为

实,则(D毺毺
)2=1,因而D毺毺=暲1,从而 暺

毺
D毺毺

(即特征标)=整数.但特征标不因

相似变换而异,因此特征标总可取为整数.

B灡4灡3暋特征标的一种计算方法,类的乘积

下面介绍一种不必找出群表示而直接计算特征标的方法,即利用群元素之间

的代数关系来找出特征标之间的关系,从而计算出特征标.
先介绍“类乘积暠概念.设群G 的K氀 类含有n氀 个元素g(氀)

l ,l=1,2,…,n氀.令

K氀 = 暺
n
氀

l=1
g(氀)

l (B灡4灡12)

两个类之积表示为

K氀K毺 = 暺
n
氀

l=1
暺
n
毺

m=1
g(氀)

l g(毺)
m (B灡4灡13)

设g暿G,则
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gK氀K毺g-1= 暺
lm

gg(氀)
l g-1gg

(毺)
m g-1

= 暺
lm

g(氀)
l g(毺)

m =K氀K毺 (B灡4灡14)

即类的乘积
踿踿踿踿K氀K毺 总是若干类之和

踿踿踿踿踿踿踿
(它或者含有某类元素的全体,或者完全不含某

类元素).因此

K氀K毺 = 暺
毻
C氀毺毻K毻暋暋(C氀毺毻 为正整数) (B灡4灡15)

现在考虑群G 的某不可约表示D(G).令

D氀 = 暺
gi暿K氀

D(gi) (B灡4灡16)

即把K氀 类诸元素所对应的表示矩阵相加.可以证明D氀 为常数矩阵栙 ,即

D氀 =毸氀I暋暋暋暋(毸氀 待定) (B灡4灡17)

栙 暋D氀 = 暺
gi暿K氀

D(ggig-1),暋暋g暿G

= 暺
gi暿K氀

D(g)D(gi)D(g-1)=D(g)暺
gi暿K氀

D(gi)D(g)-1 =D(g)D氀D(g)-1

所以D(g)D氀=D氀D(g),g暿G.由于D(g)为不可约表示,按B灡3灡2节,Schur引理1,D氀 必为常数矩阵.

对式(B灡4灡16)、式(B灡4灡17)分别求对角和,进行比较,得

n氀氈(氀)=毸氀氈(I) (B灡4灡18)

氈(I)即群表示的维数.因此

毸氀 =n氀氈(氀)/氈(I) (B灡4灡19)
与式(B灡4灡15)相应的表示矩阵的关系为

D氀D毺 = 暺
毻
C氀毺毻D毻 (B灡4灡20)

用式(B灡4灡17)、式(B灡4灡19)代入,得

n氀n毺氈(氀)氈(毺)=氈(I)暺
毻
C氀毺毻n毻氈(毻) (B灡4灡21)

此即特征标之间的关系.设已给出群的乘积表,则n氀、n毺、n毻、C氀毺毻均可求出.利用式

(B灡4灡21),即可定出特征标.

例暋求群C3v的不可约表示的特征标.
利用群C3v的乘积表B灡1,可得出类的乘积如下:

KC3KC3 =2K1 +KC3
(B灡4灡22a)

K氁K氁 =3K1 +3KC3
(B灡4灡22b)

KC3K氁 =2K氁 (B灡4灡22c)

与式(B灡4灡15)比较,即可得出C氀毺毻
,然后代入式(B灡4灡21),即可求出特征标.
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由于C3v有3类元素,所以有3个不等价不可约表示.设维数分别为f1、f2 与f3,而f2
1+f2

2

+f2
3=6(群阶),它只有一个可能解,即(f1,f2,f3)=(1,1,2).现分别求它们的特征标.

(a)计算一维表示[氈(I)=1]的特征标.
对于氀=毺=C3,按式(B灡4灡22a),式(B灡4灡21)表示为

2·2·氈(C3)2 =2+1·2·氈(C3)
即

2氈(C3)2 -氈(C3)-1=0

解之,得氈(C3)=1,-1/2.但特征标(实)必为整数,所以

氈(C3)=1
暋暋对于氀=毺=氁,按式(B灡4灡22b),式(B灡4灡21)表示为

3·3·氈(氁)2 =3+3·2·氈(C3)=9

解之,得氈(氁)=暲1.这样,我们就求得了群C3v的两个一维表示的特征标如下 :

氈(I) 氈(C3) 氈(氁)

1 1 1

1 1 -1

(b)计算二维表示氈(I)=2的特征标.
对于氀=毺=C3,利用式(B灡4灡22a),式(B灡4灡21)表示为

2·2·氈(C3)2 =2·2·2+2·1·2·氈(C3)
即

氈(C3)2 -氈(C3)-2=0

解之,得氈(C3)=2,-1.
对于氀=毺=氁,利用式(B灡4灡22b),式(B灡4灡21)表示为

3·3·氈(氁)2 =2·3·2+2·3·2·氈(C3)
即

3氈(氁)2 =4+4氈(C3)

用氈(C3)=2代入,得

氈(氁)=暲2

用氈(C3)=-1代入,得

氈(氁)=0
于是得出三个二维表示的特征标如下:

氈(I) 氈(C3) 氈(氁)

2 2 2

2 2 -2

2 -1 0
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暋暋但可以判明[利用 B灡4灡2节,式(B灡4灡4)],前两个表示是可约的(可分别约化为两个一维

表示),而最后一个表示是不可约的.最后我们得出群C3v的三个不等价不可约表示的特征标

如下:暋暋

不可约表示的记号*) 氈(I) 氈(C3) 氈(氁)

A1 1 1 1

A2 1 1 -1

E 2 -1 0

暋暋暋暋*)这是研究分子对称性的点群理论中的习惯记号,A 标记一维表示,E标记二维表示.

练习暋试验证C3v的3个不等价不可约表示A1、A2 和E的特征标的正交归一性.

B灡5暋群表示的直积与群的直积

B灡5灡1暋群表示的直积及其约化

设D(i)(G)为群G 的一个fi 维不可约表示,氉
(i)
毺

(毺=1,2,…,fi)为表示空间的

一组基矢,即

R氉
(i)
毺 = 暺

毺曚
氉

(i)
毺曚D

(i)
毺曚毺

(R)暋暋暋(R 暿G) (B灡5灡1)

又设D(j)(G)为群G 的一个fj 维表示,基矢氉
(j)
毻 (毻=1,2,…,fj)

R氉
(j)
毻 = 暺

毻曚
氉

(j)
毻曚 D

(j)

毻曚毻
(R)暋暋暋(R 暿G) (B灡5灡2)

则基矢乘积氉
(i)
毺氉

(j)
毻 张开的fifj 维空间栙,也可用以荷载群G 的表示(但一般可约).

证明

R(氉
(i)
毺氉

(j)
毻 )= (R氉

(i)
毺

)(R氉
(j)
毻 )

= 暺
毺曚毻曚

氉
(i)
毺曚氉

(j)
毻曚 D(i)

毺曚毺
(R)D(j)

毻曚毻 (R) (B灡5灡3)

令

D(i)
毺曚毺

(R)D(j)
毻曚毻(R)曉 [D(i)(R)暳D(j)(R)]

毺曚毻曚,毺毻

曉D(i暳j)
毺曚毻曚,毺毻

(R) (B灡5灡4)
则

R(氉
(i)
毺氉

(j)
毻 )= 暺

毺曚毻曚

(氉
(i)
毺曚氉

(j)
毻曚 )D(i暳j)

毺曚毻曚,毺毻
(R) (B灡5灡5)
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栙 在多粒子体系的独立粒子模型中,体系的波函数可以表示为单粒子波函数的乘积.单粒子 Hamilton
量往往具有某种对称性.单粒子能级的诸简并态可荷载对称性群的不可约表示.乘积波函数在对称性变换下

的性质是量子力学理论感兴趣的问题.这就涉及对称性群的两个不可约表示乘积的约化
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.对于转动群

踿踿踿
,就是
踿踿

角动量耦合表象的基矢按照非耦合表象基矢来展开的问题
踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿踿.



我们称D(i)暳D(j)或D(i暳j)为不可约表示D(i)与D(j)的直积(directproduct)栙.
下面证明D(i暳j)(G)确系G 的一个表示.因为

D(i暳j)
毺曚毻曚,毺毻

(RS)曉D(i)
毺曚毺

(RS)D(j)
毻曚毻 (RS)暋暋(R,S暿G)

= [D(i)(R)Di(S)]
毺曚毺

[D(j)(R)D(j)(S)]毻曚毻

= 暺
毸氁

D(i)
毺曚毸

(R)D(i)
毸毺

(S)D(j)
毻曚氁 (R)D(j)

氁毻 (S)

= 暺
毸氁

D(i暳j)
毺曚毻曚,毸氁(R)D(i暳j)

毸氁,毺毻
(S)

= [D(i暳j)(R)D(i暳j)(S)]
毺曚毻曚,毺毻

即

D(i暳j)(RS)=D(i暳j)(R)D(i暳j)(S) (B灡5灡6)
所以D(i暳j)(G)确系群G 的一个表示,其特征标即两个表示的特征标之积

踿踿踿踿踿踿踿踿踿踿踿踿踿踿.因为

氈
(i暳j)(R)= 暺

毺毻
D(i暳j)

毺毻,毺毻
(R)= 暺

毺毻
D(i)

毺毺
(R)D(j)

毻毻 (R)

=氈
(i)(R)氈

(j)(R) (B灡5灡7)
两个不可约表示的直积
踿踿踿踿踿踿踿踿踿踿

,作为群的表示
踿踿踿踿踿踿

,一般是可约的
踿踿踿踿踿踿

,即可以化为若干个不可约

表示的直和,记为

D(i暳j)= 暺
k
akD

(k) (B灡5灡8)

ak 是不可约表示D(k)重复出现的次数.上式称为 Clebsch灢Gordan系列.ak 由下式

确定[参阅B灡4灡2节式(B灡4灡11)]
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栙 不同于通常矩阵乘法,两个矩阵A 与B 的直积A暳B定义为

(A暳B)i毩,k毬=毩ikb毩毬

例如,A=
a11 a12

a21 a( )
22

,B=
b11 b12

b21 b( )
22

,则

A暳B=
a11B a12B
a21B a22
( )B

=

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b

棆
棆

棆
棆棆棆棆棆棆棆棆棆棆棆

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

22

显然,两个矩阵的直积的维数=两个矩阵维数之积.两个对角矩阵的直积仍为对角矩阵.矩阵直积的性质:

(1)设A(1)与A(2)为n维矩阵,B(1)与B(2)为m 维矩阵,则
(A(1)暳B(1))(A(2)暳B(2))=(A(1)A(2))暳(B(1)B(2))

因为,左边

[(A(1)暳B(1))(A(2)暳B(2))]i毩,k毬=暺
lr

(A(1)暳B(1))i毩,lr(A(2)暳B(2))lr,k毬=暺
lr
a(1)

ilb(1)
ara(2)

lkb(2)
r毬

右边暋暋[(A(1)B(1))暳(A(2)B(2))]i毩,k毬=(A(1)A(2))ik(B(1)B(2))毩毬=暺
lr
a(1)

il a(2)
lkb(1)

arb(2)
r毬

(2)(A暳B)-1=A-1暳B-1.因(A暳B)(A-1暳B-1)=(AA-1暳BB-1)=I,所以(A-1暳B-1)=(A暳

B)-1.
(3)设A+ =A,B+ =B,则(A暳B)+ =(A暳B),因(A暳B)+ =A+ 暳B+ =A暳B.



ak = 1
nG

暺
氀
n氀氈

(k)*

(氀)[氈
(i)(氀)氈

(j)(氀)] (B灡5灡9)

在式(B灡5灡8)中,如ak曑1,即任何两个不可约表示的直积在约化时,任何一个不可

约表示最多只出现一次,则称群G 为简单可约(simplyreducible)栙.
设不可约表示D(k)的基矢记为氉

(k)
毸 (毸=1,2,…,fk).在式(B灡5灡8)中,如D(k)

重复出现多次(ak>1),则需用一个附加记号氂k 来区别它们,相应的基矢记为

氉
(k,氂k)
毸 .令

氉
(k,氂k)
毸 = 暺

毺毻

暣i毺j毻旤k毸氂k暤氉
(i)
毺氉

(j)
毻 (B灡5灡10)

暣i毺j毻|k毸氂k暤称为推广的Clebsch灢Gordan系数.上式之逆可表示为

氉
(i)
毺氉

(j)
毻 = 暺

k氂k

暣k毸氂k旤i毺j毻暤氉
(k,氂k)
毸 (B灡5灡11)

对于实幺正表示,则
暣k毸氂k旤i毺j毻暤= 暣i毺j毻旤k毸氂k暤 (B灡5灡12)

则式(B灡5灡11)可表示成

氉
(i)
毺氉

(j)
毻 = 暺

k氂k

暣i毺j毻旤k毸氂k暤氉
(k,氂k)
毸 (B灡5灡13)

Clebsch灢Gordan系数满足下列正交归一性关系:

暺
毺毻

暣i毺j毻旤k毸氂k暤暣i毺j毻旤k曚毸曚氂曚k暤=毮kk曚毮毸毸曚毮氂k氂曚k
(B灡5灡14)

暺
k氂k

暣i毺j毻旤k毸氂k暤暣i毺曚j毻曚旤k毸氂k暤=毮毺毺曚毮毻毻曚 (B灡5灡15)

B灡5灡2暋群的直积及其表示

设有两个群,
H,元素记为h毩 毩=1,2,…,nH

K,元素记为k毬 毬=1,2,…,nK

如果(i)H=K,或(ii)h毩k毬=k毬h毩,h毩暿 H,k毬暿K,则nHnK 个元素h毩k毬 的集合也构

成一个群,记为H暳K=G(元素可记为g毩毬=h毩k毬),称为两个群的直积栚.
证明

(a)H=K,按群的封闭性,H暳K就是原来的群.

·125·

栙

栚

如三维转动群,就是简单可约,

D(j1)暳D(j2)= 暺
j1+j2

j= j1-j2

D(j).

设无相互作用的两个量子体系的对称性群分别为G1 和G2,则复合体系的对称性群为G=G1暳G2,

G1 的元素作用于第一体系,G2 的元素作用于第二体系,两种运算是对易的.又例如,同一个体系的两种自由

度,如粒子的轨道角动量与自旋,尽管它们都是三维空间转动的无穷小算符,但分别作用于空间和自旋波函

数上,乘积是对易的.如无自旋轨道耦合,则体系的空间旋转对称性为(SO3)轨道 暳(SO3)自旋 .



(b)设h毩,h毩曚暿H,k毬,k毬曚暿K,则h毩k毬,h毩曚k毬曚暿H暳K,即g毩毬
,g毩曚毬曚暿H暳K=G.此

时,g毩毬g毩曚毬曚=h毩k毬h毩曚k毬曚=h毩h毩曚k毬k毬曚,由于h毩h毩曚暿H,k毬k毬曚暿K,所以(h毩h毩曚)(k毬k毬曚)
在H暳K之中,即g毩毬g毩曚毬曚在G=H暳K之中,这就证明了群的封闭性.又设h1 为 H
的单位元,k1 为K的单位元,不难证明,h1k1 是G=H暳K的单位元.设h毩 之逆为

h-1
毩 ,k毬 之逆为k-1

毬
,也不难证明g毩毬=h毩k毬 之逆为h-1

毩 k-1
毬 .

不难证明:直积群 H暳K的类的数目=(H群的类的数目)暳(K群的类的数

目).为此,只需证明:如h毩 属于H的一类,k毬 属于K的一类,则h毩k毬 构成H暳K的

一类.事实上,对于H暳K的任一元素h毭k毮,我们有

(h毭k毮)-1h毩k毬(h毭k毮)=h-1
毭 k-1

毮 h毩k毬h毭k毮=(h-1
毭 h毩h毭)(k-1

毮 k毬k毮),而h-1
毭 h毩h毭

与h毩 同属一类,k-1
毮 k毬k毮 与k毬 同属一类,因此其乘积(h-1

毭 h毩h毭)(k-1
毮 k毬k毮),亦即

(h毭k毮)-1h毩k毬(h毭k毮),在H暳K中,与h毩k毬 同属一类.
有些比较复杂的群可以表示为较简单的两个子群的直积.此时,它们的不可约

表示的性质(特征标等)就可以从较简单的子群的性质推出.
设群G 有两个子群H和K,如果(i)子群 H的元素与 K的元素的乘积是对易

的,(ii)G 的每一个元素可以表示成唯一的形式h毩k毬,(h毩暿H,k毬暿K),记为g毩毬
,则

称G 是其子群H与K的直积,记为G=H暳K.
由上述要求可知:
(a)H与K只有一个公共元素,即单位元素.
用反证法.设h1=k1=e(单位元).又设H与K有另外一个公共元素h2=k2,

则g12=h1k2=h1h2=h2=h2k1=g21,这与(ii)矛盾.
(b)H与K均为G 的不变子群.
例如,设h毩曚暿H,g毩毬=h毩k毬为G 内任一元素,则

g毩毬h毩曚(g毩毬
)-1 =h毩k毬h毩曚h-1

毩 k-1
毬 =h毩h毩曚h-1

毩

仍在H中.

例1暋6阶循环群可以表示成它的两个子群H{e,a2,a4}和K(e,a3)的直积.G=H暳K:{e,a,

a2,a3,a4,a5}.
例2暋D3h=C3v暳Cs 是三角棱柱(triangularprism)的对称性群.它包含两种对称性操作.
(a)在xy平面内的对称性操作(图B灡1)C3v,有6个元素:

e,C暲
3 ,氁j(j=1,2,3)

暋暋(b)氁h(对xy平面的反射),S暲
3 =C暲

3氁h,C2j=氁j氁h(j=1,2,3)是绕垂直于z轴的11曚,22曚,33曚
轴旋转180曘,共6个元素.

把{e,氁h}记为Cs.由于氁h 与C3v对易,有

D3h =C3v 暳Cs

下面讨论群的直积的不可约表示.
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设G=H暳K,氉
(i)
毺 是群H的不可约表示D(i)的基矢(毺=1,2,…,fi),毤(j)

毻 是群K
的不可约表示殼(j)的基矢(毻=1,2,…,fj),则氉

(i)
毺毤

(j)
毻 (共fifj 个)可以构成群G=H

暳K的表示空间的一组基.如 H曎K,则这一组基张开群G 的一个fifj 维不可约

表示栙.
证明暋设

h氉
(i)
毺 = 暺

毺曚
氉

(i)
毺曚D

(i)
毺曚毺

(h),暋暋暋暋h暿H

k毤(j)
毻 = 暺

毻曚
毤(j)

毻曚殼(j)
毻曚毻 (k),暋暋暋暋k暿K

于是

hk氉
(i)
毺毤

(j)
毻 =h氉

(i)
毺k毤

(j)
毻 = 暺

毺曚毻曚
氉

(i)
毺曚毤

(j)
毻曚 D(i)

毺曚毺
(h)殼(j)

毻曚毻 (k)

= 暺
毺曚毻曚

氉
(i)
毺曚毤

(j)
毻曚 D(i暳j)

毺曚毻曚,毺毻
(hk)

其中

D(i暳j)(hk)曉D(i)(h)暳殼(j)(k)
即

D(i暳j)
毺曚毻曚,毺毻

(hk)曉D(i)
毺曚毺

(h)殼(j)
毻曚毻 (k)

暋暋设g=hk,g曚=h曚k曚,则
D(i暳j)(gg曚)=D(i暳j)(hkh曚k曚)=D(i暳j)(hh曚kk曚)

=D(i)(hh曚)暳殼(j)(kk曚)=D(i)(h)D(i)(h曚)暳殼(j)(k)殼(j)(k曚)
利用(A暳B)(C暳D)=(AC)暳(CD),则

Di暳j(gg曚)=D(i)(h)D(i)(h曚)暳殼(j)(k)殼(j)(k曚)

= (D(i)(h)暳殼(j)(k))(D(i)(h曚)暳殼(j)(k曚))

=D(i暳j)(hk)D(i暳j)(h曚k曚)=D(i暳j)(g)D(i暳j)(g曚)
这就证明了D(i暳j)(G)确系群G 的一个表示.下面证明它是不可约.为此,只需计算

其特征标

氈
(i暳j)(hk)= 暺

毺毻
D(i暳j)

毺毻,毺毻
(hk)= 暺

毺
D(i)

毺毺
(h)殼(j)

毻毻 (k)=氈
(i)(h)毲

(j)(k)

注意到群G=H暳K的阶为nKnK,而

1
nHnK

暺
g
氈

(i暳j)(g)氈
(i暳j)*(g)= 1

nHnK
暺
hk
氈

(i暳j)(hk)氈
(i暳j)*(hk)

= 1
nH

暺
h
氈

(j)
(h)氈

(j)*(h)·1
nH

暺
k
毲

(j)(k)毲
(j)*(k)=1

按B灡4灡2节定理2,可知D
(i暳j)(G)表示是不可约的.
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常用物理常量简表

国际单位制 Gauss单位制

Planck常量 h=6.6260755(40)暳10-34J·s
淈=h/2毿=1.05457266(63)暳10-34J·s

=6.5821220(20)暳10-22MeV·s

h=6.626暳10-27erg·s
淈=1.055暳10-27erg·s

=6.582暳10-22MeV·s

真空光速 c=2.99792458暳108m·s-1 c=2.998暳1010cm·s-1

电子电荷 e=1.60217733(49)暳10-19C e=4.803暳10-10esu

质子质量单位 u= 1
12

(12C原子质量)

=1.6605402(10)暳10-27kg
=931.49432(28)MeV/c2

u=1.6605暳10-24g

真空电容率

真空磁导率

毰0

毺 }
0

暋毰0毺0=1/c2

毰0=8.854187817…暳10-12F·m-1

毺0=4毿暳10-7N·A-2

毰0=1

毺0=1

精细结构常数 毩=e2/4毿毰0淈c=1/137.0359895(61) 毩=e2/淈c災1/137

电子质量 me =9.1093897(54)暳10-31kg
=0.51099906(15)MeV/c2

me =9.109暳10-28g
=0.511MeV/c2

Bohr半径 a=4毿毰0淈2/mee2=0.529177249(24)暳10-10m a=淈2/mee2=0.529暳10-8cm

电子Compton波长 毸e=淈/mec=3.86159323(35)暳10-13m 毸e=淈/mec=3.862暳10-11cm

电子经典半径 re=e2/4毿毰0mec2=2.81794092(38)暳10-15m re=e2/mec2=2.818暳10-13cm

Rydberg能量 hcR曓 =mee4/(4毿毰0)22淈2=mec2毩2/2
=13.6056981(40)eV

hcR曓 =mee4/2淈2=13.61eV

Bohr磁子 毺B=e淈/2me=5.78838263(52)暳10-11

MeV·T-1 毺B=e淈/2mec=9.273暳10-21erg/Gs

质子质量 mp =1.6726231(10)暳10-27kg
=938.27231(28)MeV/c2

=1.007276470(12)u
=1836.152701(37)me

mp =1.6726暳10-24g
=938.272MeV/c2

=1836.15me

中子质量 mn=939.56563(28)MeV/c2

mn-mp=1.293318(9)MeV/c2

mn=939.566MeV/c2

mn-mp=1.293MeV/c2

Boltzmann常量 k=1.380658(12)暳10-23J·K-1

=8.617385(73)暳10-5eV·K-1

k=1.3807暳10-10erg·K-1

=8.6174暳10-5eV·K-1

Avogadro常量 NA=6.0221367(36)暳1023mol-1 NA=6.022暳1023mol-1

暋暋换算关系:1痄=10-10m=10-8cm=0.1nm

1fm=10-15m=10-13cm

1b(barn)=10-28m2=10-24cm2

1eV=1.60217733(49)暳10-19J=1.602暳10-12erg

0曟=273.15K
本表选自ParticleDataGroup编,Reviewofparticleproperties,PhysLett.B204(1988).
还可参阅E.R.CohenandB.N.Taylor,PhysicsToday,Aug.1993,BG9灢BG12.
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索暋暋引栙

一暋画

6j符号 263灢265,267,270灢272

9j符号 268灢271

毭代数 439
一维氢原子 386,387

二暋画

二次量子化 144,162,164,172
二体算符 150,152,153,155,158,160,161,

164,172,173,174,320
二粒子关联函数 167,168
二维各向同性谐振子 88灢90,308,311,352,

353,372,374,386
二维氢原子 336,338,378灢380,384
几何相 232,234,235,237
力学量完全集 5灢7,10,12,18,19

三暋画

三轴对称性 294
三维各向同性谐振子 191,197,311,314,327,

329,332,335,350,353,367,370,372,373,

375,385,386,447
三维氢原子 336,337,339,340,343,345,375,

376,377,378,384,386,387
广义动量 296,472,473,475
子群 300,301,316,318,319,495灢498,501,

503,504,514,522
子群链 286,300,301
幺正变换 7,10,16,35,42,77,212,219,255,

261,268,269,290,291,299,318,351,353,

388,397,498灢500,507
幺正变换群 491,497,498

无穷小算子 291,294,301,337,491
无相互作用Fermi气体 165

四暋画

不可约张量 253灢256,258灢260,272,273,301灢

304,400
不可约表示 240,253,257,286,297,299灢305,

315灢319,354,504,507,509,511灢523
不变子群 496,497,504,522
不确定度关系 3,4,7,64,66,71,77,84,403
互补性原理 3,11,12
中微子的二分量理论 415
中心力场 5,39,58,88,89,95,186,187,284,

301,304,305,311,313,315,319,325,326,

329,332,336,343,346,367,380,381,424,

427,446,489
内禀磁矩 403,424,464
升算符 145,353
反幺正变换 290,291,388,498
反应截面 184
反射不变性 292,310,318,365
反常磁矩 404,424,435
反粒子 404
分支比 286,303
双光子纠缠态 103,105
双缝干涉 1,208,209
幻数 309,311,312

五暋画

正电子 404
正则方程 1,34,35,211,288,454,475灢477,

479,484,487
正则方程的积分 476,487,488
正则动量 30,36,37,39,211灢213,288,464,
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474,478,479,484,490
正则系综 20,68
正则变换 33,35,78,181,182,478,480灢484,

487,490
正则量子化 33灢36,289,455
正规乘积 173,175,176,181
布居 19,21
平面转子 33,86,236
占据数表象 456
电子自旋 16,281,318,321,403,411,419
电子磁矩 423,424,435
电四极矩 150,274,277,400
电多极辐射 460,462,465,466
电偶极辐射 30,467,491
生成函数 70,76,478,482灢484,487,490
矢量模型 279,280,286,491
对关联 176,184,388
对应原理 26,27,29灢31,83,338
对称陀螺 247,249,250
对称性群 286,293,294,289,298,299,301灢

303,305灢307,315灢318,493,521,522
纠缠态 7,105

六暋画

动力 学 对 称 性 305,308,315,325,335灢340,

343,345,346,350,351,367
动力学相 230,232,234,235,237,238,448
动量守恒 197,284,412,468
协变形式 408,442
轨道闭合性 312,325
光子的偏振态 103
光量子 43,202,448
同构与同态 497
因式 分 解 145,281,355灢357,367,373,376,

380,381,385,386
传 播 子 188灢192,194灢198,200灢202,204灢

207,215
自由电子的平面波解 418
自发多极辐射 464
自发辐射系数 30,31,467
自动关联函数 88
自洽场 170,171,174
自旋 15,17,19,20,94,103灢105,144,162灢

165,167,168,170,171,202,239,277,278,

282,287,291灢293,301,309,311,312,320,

321,389,391,392,397,399,400,402,403,

406,409,412,413,415,417灢419,427,430,

435,447,456,463,521
自旋轨道耦合 319,320,322,400,424,426,

427,435,521
全同Fermi子 147
全同性 144,287
各向同性谐振子 89,305,308,313,315,326,

327,329,332,335,336,350灢353,367,376,

382,383,385,386
多边折线道方案 194
多极辐射场 449,458,462
多重态 254
交换对称性 321
产生算符 164
产生算符 78,145,147,148,158,175,186
宇称选择规则 286
宇称选择定则 468
守恒量 4,5,10,34,58,90,190,191,212,214,

219,220,222,225,238,250,252,280,284,

286,288,289,291灢297,301,305灢307,318,

320,323,325灢330,332,335灢339,343,345,

348,352,353,355,367,370,372,374,376,

377,380,383,385,386,388,390,398,412,

415,417灢419,427灢430,473灢478,484
约化矩阵元 256,258灢260,281,322,323
形状不变性 361,362,363
远日点 325,327,328,327,333

七暋画

壳结构 287,309,312,313
声子数算符 146
极化矢量 17,19
极化度 20
连接公式 53,55灢58
投影定理 279
投影算符 8,9,12,13,16
时间反演 176,290,291,299,388,389,391,

392,394,395,397,398,400,443,444,498
时间反演不变性 388,394,395,397,398,400
时间反演态 176,388灢395,397,398,400
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时间反演算符 388,391,393,396灢398
时间平移不变性 295
作用量 30,32,33,43,44,48,188,189,191,

194,196灢198,200,215,448,471,474灢476,

484,485
位形空间中的路径积分 204,206
近日点 325,327,333
坐标表 象 8,9,15,36,41,64,66,144,145,

162灢164,170,189,212,213,249,287,292,

306,389
含时不变量 219,220,222,230,237,238
含时相位不定性 219,221,225
角动量选择定则 468
角动量耦合 186,219,258,275,276,303,304,

501,519
系综 2,43,64
完备性 8,74,230,266,270
局域幺正变换 23
张量积 272灢276
陀螺的转动 247,249
纯态 23

八暋画

表象变换 5,516
规范不变性 210,212,214,215,450
直积态 21灢24,101灢103,130,139
态叠加原理 5灢7,299,491
势垒隧穿 52,55,56
转动参考系 244
转动算符 239,240,243,245
转折点 32,50,52灢54,56,61,63,94,95
非正交性 75
非定域性 7
非 相 对 论 极 限 406,407,422,423,425灢

427,433
非轴对称陀螺 247,252
非隐变量定理 112,113
径向 方 程 63,306,347,367,370,372,374灢

376,378,380,381,384,387,407,430,

431,432
径向波函数 58,60灢62,91,347,369,371,373,

374,376灢378,383
周期运动 30,32,51,84,88,312,328,329

变分原理 170,171,284,482
变换对称性 286
单体 算 符 150灢152,158灢160,165,172,173,

320,322
单粒子密度矩阵 166
波包坍塌 84,86
波动 粒子二象性 12
波函数的统计诠释 1灢3,6,11,19,20,47,193,

217,347,388,396,497
定态 5灢7,9,10,12,27,29,43,70,72,83灢85,

90,202,220,222,225,235灢238,292,346,

390,391,419,423,424,430
空穴态 393,394
空间反射不变性 286,291,292,305
空间旋转不变性 291,292,318,325
实正交变换 500
实验室参照系 244,245
降算符 71,145,338,351,353,355,356,367,

370,372,374灢378,380灢387
经典辐射场 69,449,451,452,455,458
相干态 68灢79,81,85,89灢91,236,237
相干态表象 75,76
相干叠加性 1
相 对 论 量 子 力 学 361,402灢404,409,434,

435,448
相位不定性 2,217灢219
相空间 1,30,32,64,65,67,79,85,189,204,

286,288,327,480,482
相空间中的路径积分 206,207
轴对称陀螺 250
轴对称变形势 309,310
点变换 479,480
矩阵力学 26,33,188,202,207,448,491
氢原子 27,29,34,83,87,88,96,224,286,

287,314,325,326,329,332,336,339,340,

345灢347,350,376灢378,383灢387,403,407,

427,430,432灢436,438,445,446
选择定则 5,31,224,252,253,280,374,376,

380,385,386

九暋画

重耦合系数 261,262,265,270,271
复合体系 521
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独立粒子模型 170,320,322,519
突发近似 222,223
屏蔽Coulomb场 336,343
绝热不变量 30,33
绝热相 229灢232,237,238

十暋画

配分函数 20
配对能隙 183
圆轨道 27,33,79,83,88灢93,286,325,327,

328,338,378
特征标 301,319,513灢519,522,523
部分熵 24
准自旋 187
准经典近似 47,59灢62,93灢96
准经典态 66,67,71
准粒子 175灢177,180灢185
能量表象 10,15,19,20,190
能隙 184

十一画

球谐函数 277
球谐函数 383
球谐函数 58,59,244灢246,259,278,286,347,

348,350,371,393,433,459
堵塞效应 183,185
移动算符 359
偶然简并 4,299,305,315
偏振 18,103灢105,284,452,453,456,457
旋转不变性 67,85,285,291,292,295,306,

309,318,325,327
旋称 251,252,286,293
粒子数表象 144,145,147,150灢152,155,158,

159,161,162,164,170
混合态 2,13,17灢20
密度矩阵 13,14,16灢20,64,172,173
密度算符 13灢15,18,20,64,165,172
谐振子 6,21,32,66灢74,76灢79,83灢86,88灢90,

92,95,145灢147,191,197,220,224,236,305,

307灢309,311灢313,315,325,327,335,350,

351,355,356,358,359,367,374,380,386,

454,455,457,474,475,483,484,488

十一画

超对称性 355
超对称量子力学 63,355,356,361,367
超导性 184
超完备性 75
超势 63,359,363
超精细结构 435
最小 作 用 原 理 44,188,194,201,215,471,

476,479,481,482,484
量子化条件 26,30,51,62,63,93灢96,463
量子态的分类 297
量子态的测量 64
量子势 47
程函 46,486
等价表示 506,508,513,514
循环坐标 473,477
湮没算符 72,74,77,78,80,81,145灢150,152,

158,162,163,175灢178,181,182,351,352,

455,466

十二画

概率守恒 11,42,43,405,409,410,416,426
概率波幅 190,193灢195,198
概率流密度 94,405
概率密度 15,42,70,403,405,407,409
辐射场的量子化 448,449,455
辐射场能量密度分布 456
路径 积 分 188,192,194灢196,198灢200,202,

204,207灢209,215
置换群 491,501,502,504,505,514
简并 4,5,50,87,148,165,176,180,185,186,

190,219,220,229,230,232,236,250,251,

286,298灢301,304灢319,322灢324,328,329,

336灢339,341,344灢348,352,354,357,358,

367,371,378,383,387,388,399,428,

492,519
群表示 253,286,299灢301,303,305,318,491,

505灢507,513,515灢517
群表示的直积 519
群的直积 499,521,522
磁多极辐射 459,460,462,465,466,468
磁量 子 数 254,256,258,261灢263,265,268,
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281,300灢302,304,306,313,321灢323,467
精 细 结 构 223,403,407,408,427,432灢

435,524
谱表示 9,13,105
缩并 175,176
横波条件 452,456,459,460,465
瞬时本征态 225,227,230
螺旋度 104

Aharonov灢Anandan相 234

Aharonov灢Bohm效应 189

BCS方法 180,183灢185

Bernoulli的局域原理 200,201

Berry绝热相 232,237,238

Bertrand定理 89,332

Bloch球 20

Bogoliubov灢Valatin变换 180

Bohr灢Sommerfeld量子化条件 50,51

Bohr互补性原理 11

Bohr半径 29,83,223,433,524

Bohr对应原理 26,31

Bohr磁子 323,403,424,524

Bose子 80,144,145,147,149,150,152,158灢

160,163,168,169,186,203,287,351,352,

355,399,401,455,456

Casimir算子 301,302,318,346,347

Clebsch灢Gordan 系 数 219,244,303,304,

520,521

Coulomb 场 27,29,305,306,318,325灢327,

329,336,343,344

Coulomb规范 208

Darwin项 427

Dirac方程 202,408,422

Dirac方程 403,408,410,411,413,415,418,

422灢424,427,430灢432,434,443,444,

446,447

D函数 240,243灢247,256,257,272

Ehrenfest定理 83

EPR佯谬 7

Euler运动学方程 248

Euler角 240,245,247,248,250,300,501

Fermat最短光程原理 44

Fermi子 144,145,147灢150,158灢160,162,

163,167灢170,175,176,178,179,181,183,

185灢187,287,321,355,399灢401

Fermi气体 165,170

Fermi分布 180

Feynman路径积分 188,192,194,195,198,

199,215

Fock方程 173

GHZ定理 111

Hamilton正则方程 475,479

Hamilton最小作用原理 201

Hartree灢Fock自洽场方法 170

Hilbert空间 7,12,64,76,286,395

Hund法则 320灢322

Huygens原理 44,200,202

Jacobi灢Hamilton方程 42,43,45,47,48,484,

485,487,488

Jacobi定理 35,481

Kepler轨道 69,89

Klein灢Gordon 方 程 202,402灢408,411,

422,445

Kramers简并 388,399,400

Lagrange方 程 44,45,201,210,285,296,

297,471灢475,478,479,484

Lamb移动 404,434,435

Land湪g因子 282,323

Legendre变换 482

Liouville方程 79

Liouville定理 67,68

Lorentz力 212,295,449,450,473

Lorentz不变性 285,409,444

Lorentz变换 285,440,442灢444

LR相 219,222,225,238

LS耦合 269,278,281,319,320,322

Maxwell方程 202,402,403,410,449,450

Newton力学形式 210,288,294

O(n)变换 500,501

Planck公式 31,202,458

Pointing矢量 451,458,462

Poisson定理 34,477

Poisson括 号 5,33灢35,188,288,289,475,

477,481

Racah系数 219,261灢263,275

Rayleigh灢Jeans公式 31,458
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Regge 313

Runge灢Lenz矢量 325,331,341

Rydberg灢Ritz组合原则 27

Rydberg态 69,83,89

Rydberg波包 83灢89

Schmidt分解 23,24

Schmidt系数 24

Schmidt数 24

Schr昳dinger方程 9,42,45,47,49,54,67,68,

170,189,230,238,250,356,367,380,397

Schr昳dinger因式分解 355

Schur引理 441,509灢512,517

Sp(n)变换 501

Stark效应 306,318

Thomas项 404,426

vonNeumann熵 23,24

Wigner灢Eckart 303

Wigner灢Eckart定理 253,256,303

Wigner函数 64灢67,79

WKB近似 48,50,52,61,64,94,95,229

Young图 354,504

Zeeman效应 306,318
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